6,407 research outputs found

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata

    On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures

    Get PDF
    We study the notion of limit sets of cellular automata associated with probability measures (mu-limit sets). This notion was introduced by P. Kurka and A. Maass. It is a refinement of the classical notion of omega-limit sets dealing with the typical long term behavior of cellular automata. It focuses on the words whose probability of appearance does not tend to 0 as time tends to infinity (the persistent words). In this paper, we give a characterisation of the persistent language for non sensible cellular automata associated with Bernouilli measures. We also study the computational complexity of these languages. We show that the persistent language can be non-recursive. But our main result is that the set of quasi-nilpotent cellular automata (those with a single configuration in their mu-limit set) is neither recursively enumerable nor co-recursively enumerable

    Restricted density classification in one dimension

    Full text link
    The density classification task is to determine which of the symbols appearing in an array has the majority. A cellular automaton solving this task is required to converge to a uniform configuration with the majority symbol at each site. It is not known whether a one-dimensional cellular automaton with binary alphabet can classify all Bernoulli random configurations almost surely according to their densities. We show that any cellular automaton that washes out finite islands in linear time classifies all Bernoulli random configurations with parameters close to 0 or 1 almost surely correctly. The proof is a direct application of a "percolation" argument which goes back to Gacs (1986).Comment: 13 pages, 5 figure

    Entropy rate of higher-dimensional cellular automata

    Full text link
    We introduce the entropy rate of multidimensional cellular automata. This number is invariant under shift-commuting isomorphisms; as opposed to the entropy of such CA, it is always finite. The invariance property and the finiteness of the entropy rate result from basic results about the entropy of partitions of multidimensional cellular automata. We prove several results that show that entropy rate of 2-dimensional automata preserve similar properties of the entropy of one dimensional cellular automata. In particular we establish an inequality which involves the entropy rate, the radius of the cellular automaton and the entropy of the d-dimensional shift. We also compute the entropy rate of permutative bi-dimensional cellular automata and show that the finite value of the entropy rate (like the standard entropy of for one-dimensional CA) depends on the number of permutative sites. Finally we define the topological entropy rate and prove that it is an invariant for topological shift-commuting conjugacy and establish some relations between topological and measure-theoretic entropy rates

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Quantum Walks and Reversible Cellular Automata

    Full text link
    We investigate a connection between a property of the distribution and a conserved quantity for the reversible cellular automaton derived from a discrete-time quantum walk in one dimension. As a corollary, we give a detailed information of the quantum walk.Comment: 15 pages, minor corrections, some references adde

    Identification of binary cellular automata from spatiotemporal binary patterns using a fourier representation

    Get PDF
    The identification of binary cellular automata from spatio-temporal binary patterns is investigated in this paper. Instead of using the usual Boolean or multilinear polynomial representation, the Fourier transform representation of Boolean functions is employed in terms of a Fourier basis. In this way, the orthogonal forward regression least-squares algorithm can be applied directly to detect the significant terms and to estimate the associated parameters. Compared with conventional methods, the new approach is much more robust to noise. Examples are provided to illustrate the effectiveness of the proposed approach
    corecore