3,066 research outputs found

    SPADE: SPKI/SDSI for Attribute Release Policies in a Distributed Environment

    Get PDF
    Shibboleth is a federated administrated system that supports inter-institutional authentication and authorization for sharing of resources. SPKI/SDSI is a public key infrastructure whose creation was motivated by the perception that X.509 is too complex and flawed. This thesis addresses the problem of how users that are part of a Public Key Infrastructure in a distributed computing system can effectively specify, create, and disseminate their Attribute Release Policies for Shibboleth using SPKI/SDSI. This thesis explores existing privacy mechanims, as well as distributed trust management and policy based systems. My work describes the prototype for a Trust Management Framework called SPADE (SPKI/SDSI for Attribute Release Policies in a Distributed Environment) that I have designed, developed and implemented. The principal result of this research has been the demonstration that SPKI/SDSI is a viable approach for trust management and privacy policy specification, especially for minimalistic policies in a distributed environment

    Obligations of trust for privacy and confidentiality in distributed transactions

    Get PDF
    Purpose – This paper aims to describe a bilateral symmetric approach to authorization, privacy protection and obligation enforcement in distributed transactions. The authors introduce the concept of the obligation of trust (OoT) protocol as a privacy assurance and authorization mechanism that is built upon the XACML standard. The OoT allows two communicating parties to dynamically exchange their privacy and authorization requirements and capabilities, which the authors term a notification of obligation (NoB), as well as their commitments to fulfilling each other's requirements, which the authors term signed acceptance of obligations (SAO). The authors seek to describe some applicability of these concepts and to show how they can be integrated into distributed authorization systems for stricter privacy and confidentiality control. Design/methodology/approach – Existing access control and privacy protection systems are typically unilateral and provider-centric, in that the enterprise service provider assigns the access rights, makes the access control decisions, and determines the privacy policy. There is no negotiation between the client and the service provider about which access control or privacy policy to use. The authors adopt a symmetric, more user-centric approach to privacy protection and authorization, which treats the client and service provider as peers, in which both can stipulate their requirements and capabilities, and hence negotiate terms which are equally acceptable to both parties. Findings – The authors demonstrate how the obligation of trust protocol can be used in a number of different scenarios to improve upon the mechanisms that are currently available today. Practical implications – This approach will serve to increase trust in distributed transactions since each communicating party receives a difficult to repudiate digitally signed acceptance of obligations, in a standard language (XACML), which can be automatically enforced by their respective computing machinery. Originality/value – The paper adds to current research in trust negotiation, privacy protection and authorization by combining all three together into one set of standardized protocols. Furthermore, by providing hard to repudiate signed acceptance of obligations messages, this strengthens the legal case of the injured party should a dispute arise

    Strategic Techniques for Enhancing Web Services Security in Cloud Computing Model

    Get PDF
    The 21st century has witnessed an integration of enterprise business process with emerging techniques in a quest to maximize opportunities and organisational strength. In spite of these, vulnerabilities and risks still abound due to the integration for an effective operational mechanism. Mitigating against these requires strategic techniques for enhancing web services security. It is on this background that this paper has been presented. A critical study of web services architecture and cloud computing model as an emerging technology has been given a succinct digest. Furthermore, an evaluation of recent trends in web services and cloud computing model security issues were x-rayed. The threat to web services application deployed in cloud computing were identified hence presenting strategic techniques for enhancing web services security as a proactive measure to enhancing enterprise success. This paper concludes by re-iterating the need to understanding various security threats and proactively and dynamically reacting to them. Keywords: Web Services, Cloud Computing, Cross Site Scripting, SQL Injection and Web Securit

    Distributed access control and the prototype of the Mojoy trust policy language

    Get PDF
    In a highly distributed computing environment, people frequently move from one place to another where the new system has no previous knowledge of them at all. Traditional access control mechanisms such as access matrix and RBAC depend heavily on central management. However, the identities and privileges of the users are stored and administered in different locations in distributed systems. How to establish trust between these strange entities remains a challenge. Many efforts have been made to solve this problem. In the previous work, the decentralised administration of trust is achieved through delegation which is a very rigid mechanism. The limitation of delegation is that the identities of the delegators and delegatees must be known in advance and the privileges must be definite. In this thesis, we present a new model for decentralised administration of trust: trust empowerment. In trust empowerment, trust is defined as a set of properties. Properties can be owned and/or controlled. Owners of the properties can perform the privileges denoted by the properties. Controllers of the properties can grant the properties to other subjects but cannot gain the privileges of the properties. Each subject has its own policy to define trust empowerment. We design the Mojoy tmst policy language that supports trust empowerment. We give the syntax, semantics and an XML implementation of the language. The Mojoy trust policy language is based on XACML, which is an OASIS standard. We develop a compliance checker for the language. The responsibility of the compliance checker is to examine the certificates and policy, and return a Boolean value to indicate whether the user's request is allowed. We apply our new model, the language and the compliance checker to a case study to show that they are capable of coping with the trust issues met in the distributed systems

    Economics and Engineering for Preserving Digital Content

    Get PDF
    Progress towards practical long-term preservation seems to be stalled. Preservationists cannot afford specially developed technology, but must exploit what is created for the marketplace. Economic and technical facts suggest that most preservation ork should be shifted from repository institutions to information producers and consumers. Prior publications describe solutions for all known conceptual challenges of preserving a single digital object, but do not deal with software development or scaling to large collections. Much of the document handling software needed is available. It has, however, not yet been selected, adapted, integrated, or deployed for digital preservation. The daily tools of both information producers and information consumers can be extended to embed preservation packaging without much burdening these users. We describe a practical strategy for detailed design and implementation. Document handling is intrinsically complicated because of human sensitivity to communication nuances. Our engineering section therefore starts by discussing how project managers can master the many pertinent details.

    Web services security: A proposed architecture for interdomain trust relationship

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2006Includes bibliographical references (leaves: 49)Text in English; Abstract: Turkish and Englishix, 68 leavesWeb services technology is vulnerable to security threats similar to other technologies which are based on communication over internet. Some applications working over internet typically require strong authentication. The security requirements of a scenario may involve interdomain authentication mechanisms. These domains may be operating using different technologies. In order to enable such scenarios, we leverage existing approaches with emerging standards and propose an architecture. Our proposed architecture takes advantage of XML technology and emerging SAML standard. The most important aim of the proposed architecture is platform indepedence. Our proposed architecture includes a Security Token Service and a protocol for communication between token requesters, consumers and issuers. Although, the exact flow of execution depends on the scenario, we believe our approaches can be used as common ground for implementation

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    An Insider Misuse Threat Detection and Prediction Language

    Get PDF
    Numerous studies indicate that amongst the various types of security threats, the problem of insider misuse of IT systems can have serious consequences for the health of computing infrastructures. Although incidents of external origin are also dangerous, the insider IT misuse problem is difficult to address for a number of reasons. A fundamental reason that makes the problem mitigation difficult relates to the level of trust legitimate users possess inside the organization. The trust factor makes it difficult to detect threats originating from the actions and credentials of individual users. An equally important difficulty in the process of mitigating insider IT threats is based on the variability of the problem. The nature of Insider IT misuse varies amongst organizations. Hence, the problem of expressing what constitutes a threat, as well as the process of detecting and predicting it are non trivial tasks that add up to the multi- factorial nature of insider IT misuse. This thesis is concerned with the process of systematizing the specification of insider threats, focusing on their system-level detection and prediction. The design of suitable user audit mechanisms and semantics form a Domain Specific Language to detect and predict insider misuse incidents. As a result, the thesis proposes in detail ways to construct standardized descriptions (signatures) of insider threat incidents, as means of aiding researchers and IT system experts mitigate the problem of insider IT misuse. The produced audit engine (LUARM – Logging User Actions in Relational Mode) and the Insider Threat Prediction and Specification Language (ITPSL) are two utilities that can be added to the IT insider misuse mitigation arsenal. LUARM is a novel audit engine designed specifically to address the needs of monitoring insider actions. These needs cannot be met by traditional open source audit utilities. ITPSL is an XML based markup that can standardize the description of incidents and threats and thus make use of the LUARM audit data. Its novelty lies on the fact that it can be used to detect as well as predict instances of threats, a task that has not been achieved to this date by a domain specific language to address threats. The research project evaluated the produced language using a cyber-misuse experiment approach derived from real world misuse incident data. The results of the experiment showed that the ITPSL and its associated audit engine LUARM provide a good foundation for insider threat specification and prediction. Some language deficiencies relate to the fact that the insider threat specification process requires a good knowledge of the software applications used in a computer system. As the language is easily expandable, future developments to improve the language towards this direction are suggested
    • …
    corecore