885 research outputs found

    Abduction-Based Explanations for Machine Learning Models

    Full text link
    The growing range of applications of Machine Learning (ML) in a multitude of settings motivates the ability of computing small explanations for predictions made. Small explanations are generally accepted as easier for human decision makers to understand. Most earlier work on computing explanations is based on heuristic approaches, providing no guarantees of quality, in terms of how close such solutions are from cardinality- or subset-minimal explanations. This paper develops a constraint-agnostic solution for computing explanations for any ML model. The proposed solution exploits abductive reasoning, and imposes the requirement that the ML model can be represented as sets of constraints using some target constraint reasoning system for which the decision problem can be answered with some oracle. The experimental results, obtained on well-known datasets, validate the scalability of the proposed approach as well as the quality of the computed solutions

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Disproving in First-Order Logic with Definitions, Arithmetic and Finite Domains

    Get PDF
    This thesis explores several methods which enable a first-order reasoner to conclude satisfiability of a formula modulo an arithmetic theory. The most general method requires restricting certain quantifiers to range over finite sets; such assumptions are common in the software verification setting. In addition, the use of first-order reasoning allows for an implicit representation of those finite sets, which can avoid scalability problems that affect other quantified reasoning methods. These new techniques form a useful complement to existing methods that are primarily aimed at proving validity. The Superposition calculus for hierarchic theory combinations provides a basis for reasoning modulo theories in a first-order setting. The recent account of ‘weak abstraction’ and related improvements make an mplementation of the calculus practical. Also, for several logical theories of interest Superposition is an effective decision procedure for the quantifier free fragment. The first contribution is an implementation of that calculus (Beagle), including an optimized implementation of Cooper’s algorithm for quantifier elimination in the theory of linear integer arithmetic. This includes a novel means of extracting values for quantified variables in satisfiable integer problems. Beagle won an efficiency award at CADE Automated theorem prover System Competition (CASC)-J7, and won the arithmetic non-theorem category at CASC-25. This implementation is the start point for solving the ‘disproving with theories’ problem. Some hypotheses can be disproved by showing that, together with axioms the hypothesis is unsatisfiable. Often this is relative to other axioms that enrich a base theory by defining new functions. In that case, the disproof is contingent on the satisfiability of the enrichment. Satisfiability in this context is undecidable. Instead, general characterizations of definition formulas, which do not alter the satisfiability status of the main axioms, are given. These general criteria apply to recursive definitions, definitions over lists, and to arrays. This allows proving some non-theorems which are otherwise intractable, and justifies similar disproofs of non-linear arithmetic formulas. When the hypothesis is contingently true, disproof requires proving existence of a model. If the Superposition calculus saturates a clause set, then a model exists, but only when the clause set satisfies a completeness criterion. This requires each instance of an uninterpreted, theory-sorted term to have a definition in terms of theory symbols. The second contribution is a procedure that creates such definitions, given that a subset of quantifiers range over finite sets. Definitions are produced in a counter-example driven way via a sequence of over and under approximations to the clause set. Two descriptions of the method are given: the first uses the component solver modularly, but has an inefficient counter-example heuristic. The second is more general, correcting many of the inefficiencies of the first, yet it requires tracking clauses through a proof. This latter method is shown to apply also to lists and to problems with unbounded quantifiers. Together, these tools give new ways for applying successful first-order reasoning methods to problems involving interpreted theories
    • …
    corecore