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Abstract

This thesis explores several methods which enable a first-order reasoner to conclude
satisfiability of a formula modulo an arithmetic theory. The most general method
requires restricting certain quantifiers to range over finite sets; such assumptions
are common in the software verification setting. In addition, the use of first-order
reasoning allows for an implicit representation of those finite sets, which can avoid
scalability problems that affect other quantified reasoning methods. These new tech-
niques form a useful complement to existing methods that are primarily aimed at
proving validity.

The Superposition calculus for hierarchic theory combinations provides a basis
for reasoning modulo theories in a first-order setting. The recent account of ‘weak
abstraction’ and related improvements make an implementation of the calculus prac-
tical. Also, for several logical theories of interest Superposition is an effective decision
procedure for the quantifier free fragment.

The first contribution is an implementation of that calculus (Beagle), including
an optimized implementation of Cooper’s algorithm for quantifier elimination in the
theory of linear integer arithmetic. This includes a novel means of extracting values
for quantified variables in satisfiable integer problems. Beagle won an efficiency
award at CADE Automated theorem prover System Competition (CASC)-J7, and won
the arithmetic non-theorem category at CASC-25. This implementation is the start
point for solving the ‘disproving with theories’ problem.

Some hypotheses can be disproved by showing that, together with axioms the
hypothesis is unsatisfiable. Often this is relative to other axioms that enrich a base
theory by defining new functions. In that case, the disproof is contingent on the
satisfiability of the enrichment.

Satisfiability in this context is undecidable. Instead, general characterizations of
definition formulas, which do not alter the satisfiability status of the main axioms, are
given. These general criteria apply to recursive definitions, definitions over lists, and
to arrays. This allows proving some non-theorems which are otherwise intractable,
and justifies similar disproofs of non-linear arithmetic formulas.

When the hypothesis is contingently true, disproof requires proving existence of
a model. If the Superposition calculus saturates a clause set, then a model exists,
but only when the clause set satisfies a completeness criterion. This requires each
instance of an uninterpreted, theory-sorted term to have a definition in terms of
theory symbols.

The second contribution is a procedure that creates such definitions, given that
a subset of quantifiers range over finite sets. Definitions are produced in a counter-
example driven way via a sequence of over and under approximations to the clause
set. Two descriptions of the method are given: the first uses the component solver
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modularly, but has an inefficient counter-example heuristic. The second is more
general, correcting many of the inefficiencies of the first, yet it requires tracking
clauses through a proof. This latter method is shown to apply also to lists and to
problems with unbounded quantifiers.

Together, these tools give new ways for applying successful first-order reasoning
methods to problems involving interpreted theories.
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Chapter 1

Introduction

1.1 Thesis Statement

Formalizations of problems in software verification typically involve quantification,
equality, and arithmetic. The Satisfiability Modulo Theories (SMT) field has made
significant progress in developing efficient solvers for such problems, but solvers
for first-order logic have yet to catch up, despite a strong base of equational and
quantifier reasoning capability. The reason for this is the high theoretical complex-
ity of reasoning with interpreted theories, specifically arithmetic. SMT-solvers also
have the valuable capability of providing counter-example models, while first-order
solvers are better able to produce proofs of valid theorems.

The Superposition calculus for hierarchic theory combinations provides a sound
basis for reasoning modulo theories in a first-order setting. The recent account of
‘weak abstraction’ and related improvements make an implementation of the calculus
practical. Also, for several logical theories of interest, Superposition is an effective
decision procedure for the quantifier free fragment.

This thesis explores several methods which enable a first-order reasoner to con-
clude satisfiability of a formula, modulo an arithmetic theory. The most general
method requires that certain quantifiers are restricted to range over finite sets, how-
ever, such assumptions are common in the software verification setting. Moreover,
the use of first-order reasoning allows for an implicit representation of those finite
sets, possibly avoiding scalability problems that affect other quantifier reasoning
methods. These new techniques will form a useful complement to existing meth-
ods usually aimed at proving validity.

1.2 Introduction

The most successful verification technologies today, measured in terms of their use in
practical applications to industrial problems, are those of Constraint Programming
(CP) and of SMT. These are routinely used for solving difficult optimization and
software verification problems.

Using this metric, it appears that the state-of-the-art in first-order theorem prov-
ing lags behind. The main technical reason for that is the inherent difficulty in
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2 Introduction

combining reasoning for quantified first-order formulas with reasoning for special-
ized background theories (theorem proving in this general setting is not even semi-
decidable). The CP and SMT approaches avoid this issue by dealing with quantifier-
free (ground) formulas only, but doing so in a very efficient way.

Not being able to deal with quantified formulas is a serious practical limitation;
it limits the range of potential applications, if not the scale. This has been recognized
for software verification applications, but currently the limitation is addressed in an
ad hoc way: all SMT approaches today rely on heuristic instantiation of quantifiers to
deal with quantified formulas. The drawback to heuristic instantiation is that com-
pleteness can be guaranteed only in very limited cases. Consequently, such methods
will often not find proofs in expected cases, and are not well suited for disproving
invalid conjectures stemming from buggy programs. On the other hand, first-order
theorem proving approaches inherently support reasoning with quantified formu-
las, but lag behind in reasoning with background theories for the reasons mentioned
above.

The main hypothesis of this research is that by combining and advancing recent
developments in first-order theorem proving, as well as ideas from the CP and SMT
fields, it will be possible to design theorem provers that better support reasoning
with quantified formulas and background theories together.

1.3 Thesis Outline

Chapter 2 introduces the conventions used in the thesis as well as the Hierarchic
Superposition calculus, which is the main tool for first-order reasoning used later.
Several first-order theories of interest for software verification are identified. Chapter
3 describes Beagle , a test-bed implementation of Hierarchic Superposition with Weak
Abstraction. This includes an optimized implementation of Cooper’s algorithm ca-
pable of returning solutions to quantifier free problems in the form of bindings to the
free variables. Some useful parametric test problems for integer arithmetic are de-
fined and experiments with the customized arithmetic solver are reported on. Chap-
ter 4 describes a method for classifying problems in which theories (in particular inte-
ger and other infinite theories) are extended with new definitions in such a way that
satisfiability is not compromised. This allows using a refutation-based solver (i. e. ,
one only capable of showing unsatisfiability of formula sets) to show satisfiability of
a given conjecture by showing that its negation is contradictory. Chapter 5 follows
the theme of disproving and considers the case where a given hypothesis and its
negative are satisfiable. Being theoretically more difficult, this task requires stronger
assumptions on the input clause set. The method presented in the chapter assumes
that a subset of quantifiers in the input are restricted to range over finite integer sets
in such a way that the number of ground instances of free theory sorted terms is
finite. The method proceeds by sequential under and over approximation in order to
limit generation of new clauses instances. This allows concluding T-satisfiability of
certain clause sets; otherwise impossible due to the fact that the semantics of Hierar-
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chic Superposition allows degenerate models. An advantage of this first method is
that it can be implemented with off-the-shelf solvers, at the cost of some inefficiency
in computing successive over-approximations. Chapter 6 expands on the method
in Chapter 5 by considering the equations that define the over-approximation sep-
arately from the clause set. This eliminates some built-in inefficiencies of the prior
method and enables an analysis of just which changes are required to advance to the
next over-approximation set. The analysis is automatically done with a small prover
modification and new heuristics to minimize the resulting change set are given. The
abstract description of the method in Chapter 5 can be carried over to create an anal-
ogous method that works for recursive data structures and a method for unbounded
domains is sketched. The class of basic definitions is defined, which can be excluded
from the approximation process yielding further reductions in instantiation. Exper-
iments show that heuristics enabled by the more general description do lead to an
increase in performance of the definition search.

1.3.1 Joint Contributions

Each chapter except this one and the last are based on papers authored with other
people. This section outlines the extent of the reuse of the paper content in each
chapter, as well as the new contributions.

Chapter 4 is based on Baumgartner and Bax [BB13]. That chapter provides more
general theorems (new) relative to the original results and describes more applica-
tions.

Chapter 3 is based on the system description in Baumgartner et al. [BBW15].
Much of the theoretical work in developing Beagle is due to Baumgartner and Wald-
mann, and work on the implementation of Beagle is joint work with Baumgartner.
The section on solution finding and on LIA examples are original.

Chapter 5 is based on Baumgartner et al. [BBW14]. The original idea underpin-
ning this version of the checkSAT algorithm is due to Baumgartner. I contributed
an implementation as well as experiments to that paper. The presentation of the al-
gorithm in the chapter is new, as are most of the proofs. As said above, Chapter 6
consists of original work.

1.4 An Overview of Automated Reasoning

1.4.1 Constraint Solving and SAT

A constraint satisfaction problem is given as a set of variables each with an associated
domain of solution and a set of relations (the constraints) over the variables or subsets
thereof. An assignment of values to variables solves the constraint problem when
each set of variables satisfies its constraint. This framework can be used to encode
many problems, such as scheduling/routing problems, planning, and various other
optimization problems. It generalizes Linear Programming problems as it allows for
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arbitrary relations over arbitrary sets of objects. A concrete definition is given by
Dechter [Dec03], as well as an overview of current algorithms and search strategies.

Constraint solving formalizes many common aspects of reasoning problems and
this abstract framework allows the development of generic approaches which can
be applied to a diverse range of problems. At its core, constraint solving focuses
on search strategy and inference. The basic search strategy is backtracking and most
other methods are essentially refinements of this, for example, lookahead and look-
back fall into this category. Inference in constraint solving tries to reduce the search
space based on the structure of the problem. The key inference process in con-
straint satisfaction is called constraint propagation. In this process the constraints are
inspected and the domains of variables are restricted in order to enforce varying de-
grees of consistency; arc-consistency is the weakest– requiring only that an admissible
value for a variable is also admissible in every constraint over that variable. Path-
consistency is stronger, it requires that any assignment to a pair of variables can be
extended to a full solution.

For certain combinations of constraints a higher level of consistency is desired: a
common example is when there are many mutual disequations, for example, when
assigning drivers to buses, no driver simultaneously drives two buses. Enforcing
low-level consistency on the variables participating in these constraints often does not
produce any useful inferences, and enforcing high-level consistency on the problem
is costly. Instead, a middle ground is struck and consistency is enforced only for
the disequation constraints. The regularity of these constraints yields an efficient
algorithm for consistency based on matchings on bipartite graphs. Constraint solvers
provide a modelling abstraction called an allDifferent constraint that allows replacing
the individual disequations with a single equivalent constraint. The new constraint
can be solved using a specialized algorithm. In general many such constructions have
been given for problems such as solving weighted sums or bin packing problems,
these are known as global constraints.

Finite constraint satisfaction problems have been shown to fall in the fragment of
effectively propositional (EPR) formulas of first-order logic [Mac92]. Formulas in the
EPR fragment are equivalent to (possibly very large) finite sets of ground formulas–
hence they can be solved by a SAT/SMT solver. Conversely, SAT is itself a specific
instance of a constraint satisfaction problem. The fact that the two approaches can be
translated between in no way implies such a translation would be efficient, and there
are other respective benefits to the two approaches besides. A good comparison of
SAT with CP can be found in Bordeaux et al. [BHZ05].

SAT also focuses on both search and inference, although the language and data
structures it uses are much more restricted than that found in CP problems. In CP,
problems are modelled directly, often natively in the programming language of the
library– most problems treated by SAT solvers are translated via a specialized tool
into propositional formulas. Furthermore, SAT is a push-button/black box technol-
ogy focused on verification only, while CP is mostly open and programmable and
can do optimization as well as verification.

Many works have suggested the application of CP techniques to theorem provers.
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Sometimes the use is explicit: as a theory solver for SMT [Nie10], otherwise the use
is implicit, specifically using the underlying algorithms to improve various reasoning
tasks [BS09, Mac92]. This was a motivation for the Finite Model finding technique,
which is described below.

1.4.2 Superposition and First-Order theorem proving

First-order logic theorem proving aims to develop push-button verification technol-
ogy for recognizing first-order logic theorems. First-order logic is expressive enough
to encode almost all modern mathematics and, as would be expected, is undecidable.
However, classical results also show that the set of valid formulas of first-order logic
is in fact enumerable– this follows from the existence of effective calculi whose rules
produce valid formulas from a set of axioms. From Herbrand’s theorem and the
compactness theorem it follows that any given unsatisfiable formula can be demon-
strated as such by finding a finite set of instances of the formula which do not have
a model. It is this result that underlies automated theorem proving and defines its
limitations: if the given formula is not valid the solver may never be able to prove it
so. So first-order theorem provers are at best semi-decision procedures for first-order
logic.

First-order proof calculi designed specifically for automation had their origin with
Robinson’s Resolution method in the early 60’s [Rob65b], followed by the introduc-
tion of the Paramodulation calculus [RW69], which introduced a dedicated inference
rule to deal with identity. Later refinements used orderings to restrict the proof
search; methods extending the Knuth-Bendix completion method to first-order logic
are known as Superposition calculi [BG98, NR01] and are generally considered to be
state-of-the-art when theorem proving over equational theories.

The resolution calculus comprises the following basic rules:

Resolution
L ∨ C ¬M ∨ D

(C ∨ D)σ

Factoring
L ∨ M ∨ D

Dσ

in both cases σ is a most general unifier of L and M.

These rules are applied to an input formula in conjunctive normal form (it is
well-known that all first-order formulas have an equivalent CNF formula, and that
such normal forms can be effectively found). Key properties that this calculus enjoys
are soundness: all conclusions of inference rules are logical consequences of their
premisses; and refutational completeness: if the input formula is a valid theorem then
the proof procedure will eventually confirm this. The calculus works in a refutational
setting, meaning that when given a theorem consisting of hypotheses and conjecture
to confirm the calculus demonstrates this by proving the unsatisfiability of the negated
conjecture given the hypotheses.
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Though meeting with some early success, it was soon recognised that resolution
had severe shortcomings when using theories involving equality. In particular, reso-
lution on the transitivity axiom and reflexivity axioms produce infinitely many new
clauses. The Paramodulation calculus was developed to deal more effectively with
equality. It adds a new inference rule to the resolution calculus, which encodes the
familiar ‘replace like by like’ rule for equality:

Paramodulation
C ∨ s ≈ t D[u]

(D[s] ∨ C)σ

where σ is the mgu of t and u

However, the Paramodulation calculus fell short of its goal– it was found that the
paramodulation rule still produced too many irrelevant clauses to be useful.

An approach that helped to push forward development of first-order theorem
proving is Knuth-Bendix completion [KB83]. Essentially, it is a method for trans-
forming a set of equations into a new, ordered set of equations which, when applied
non-deterministically, constitute a decision procedure for the word problem of the
original algebra.

This method was generalised from single ground equations to full first-order
clause logic, and the orderings used in the Knuth-Bendix method were found to
confer a strong enough restriction on the productivity of the paramodulation rule to
make it practically useful. This development is reviewed in Bachmair and Ganzinger
[BG98]. The combination of the paramodulation rule along with the ordering strategy
of Knuth-Bendix completion is known as Superposition.

Positive-Superposition
C ∨ s ≈ t D ∨ u[s′] ≈ v

(C ∨ D ∨ u[t] ≈ v)σ

where uσ 6� vσ and sσ 6� tσ, (s ≈ t)σ; (u ≈ v)σ are maximal in their respective

clauses,(s ≈ t)σ 6� (u ≈ v)σ and s′ is not a variable.

This is an example of the superposition rule, there is a corresponding rule for su-
perposition on negative equations, as well as rules for resolution with the reflexivity
axiom, and for factoring (as in the resolution calculus). The ordering � is extended
from terms, and must be invariant under substitution and under contexts (i. e. , ,s � t
implies u[s] � u[t] for any u). This is exactly the ordering used in Knuth-Bendix com-
pletion to ensure that the generated rewrite system is convergent. Several orderings
satisfy these criteria, and each exhibits different performance characteristics. Most
modern first-order theorem provers are based on this method, such as E [Sch04],
SPASS [WSH+07], Vampire [RV01], and Waldmeister [BH96].
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1.4.3 First-order theorem proving with Theories

It was recognised some time ago, that the efficiency of reasoning could be improved
by incorporating knowledge about existing theories into the reasoning process. Ini-
tially first-order theorem proving aimed to address the question of satisfiability of the
input formulas in full generality, though it is hardly useful when one is extending a
particular theory with a fixed interpretation– say that of lists or of linear arithmetic.
This approach would add theory axioms to the input and apply the proof procedure
to the extended set of formulas. The problem is then, that it allows non-standard
interpretations of the theory in question, and it is impossible when the theory is not
finitely axiomatizable.

Stickel [Sti85] describes Theory Resolution, which generalizes the resolution cal-
culus by allowing a resolution inference on clause literals which are possibly not
syntactic complements but are complements modulo the theory in question. For ex-
ample, 1 < x and x − 1 < 0 do not unify in the standard sense but together are
unsatisfiable in the theory of arithmetic. It is also shown that this is a generaliza-
tion of the Paramodulation calculus (theory resolution with the theory of uninter-
preted functions and equality). However, to admit this generalization one needs
the ability to compute all potential theory unifiers within the given theory– of which
there may be infinitely many. For example, unifying p(x + y) and ¬p(11) yields
[x 7→ 1, y 7→ 10], [x 7→ 2, y 7→ 9] . . ..

Bürckert [Bür94] gives a thorough treatment of this problem for the resolution
calculus. Theory literals are removed from clauses by a process of abstraction and
added to a constraint subclause. Effectively, each clause C is translated to a logically
equivalent formula D → E, where D is a conjunction of theory literals only, and E is a
disjunction of strictly non-theory literals. Resolution is performed on the non-theory
part of clauses, and constraints are accumulated until a (not-necessarily unique) con-
strained empty clause is derived. The constraint (a conjunction of non-ground theory
literals) is checked by an appropriate theory solver, and if the constraint is satisfiable,
the satisfying model is removed from consideration. Once all possible models have
been eliminated in this way, the proof search terminates. The advantage of this
approach is that all theory literals are excluded from the proof search, drastically
reducing the search space. A shortcoming is that too much is assumed of the theory
solver, in particular, when combining the theory of equality of uninterpreted func-
tions with other theories (the theory solver should be able to deal with any user
defined functions which range into the other theories). However, this is typically not
the case, as the theory of the solver is usually fixed.

A more workable approach is that of Bachmair et al. [BGW94], who use the
framework of Hierarchical Specifications to allow a Superposition calculus to con-
servatively extend fixed theories. This is the subject of Chapter 2.

Some inroads have been made to addressing the problem of incorporating spe-
cialised theory reasoning for first-order solvers, but the problem is far from solved.
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1.4.4 Satisfiability Modulo Theories

SMT-solvers combine SAT solving with dedicated theory decision procedures. An
introduction to SMT solvers can be found in Barrett et al. [BSST09], while a good
summary of the main decision procedures used in SMT solving is in Bradley and
Manna [BM07].

The decoupling of solvers is advantageous, as it allows both the SAT solver and
the theory solver to be pluggable. So a single SMT implementation can be updated
to use the latest SAT technology, as well as support multiple theories within a com-
mon reasoning framework. Theory decision procedures must decide satisfiability of
conjunctions of ground literals within the language of the theory. Classic decision
procedures include those for theories of Equality, Linear Integer Arithmetic, Arrays,
Lists and other inductive data types, and fixed-width bitvectors.

Commonly, verification tasks involve several of the above theories in combination.
The Nelson-Oppen procedure [NO79] is used to allow decision procedures for sepa-
rate theories to cooperate, together deciding satisfiability for conjunctions of ground
literals in the combined theory. This procedure requires that the signatures of the
background theories are disjoint, and may not be possible where one of the theories
is finite.

The restriction to ground formulas imposed by decision procedures for the indi-
vidual theories gives good performance guarantees, but means that quantified for-
mulas must be reduced to ground formulas by other means. In general, formulas
∀x. F[x] are successively ground instantiated with theory terms until an unsatisfiable
set of instances of F is found. Various methods [GBT07, GdM09, DNS03] have been
proposed that identify instances to use for instantiation, or quantified fragments of
theory languages which admit instantiation to a set of equi-satisfiable ground in-
stances. SMT solvers are normally used as part of larger verification environments
such as Isabelle/HOL or ACL2, or as part of specification languages which man-
age the translation of verification conditions into complete fragments. Examples of
such specification languages are Boogie [BCD+05] and Why3 [FP13], which sup-
port full-blown implementations of verification languages (e. g. , Dafny [Lei10] and
Frama-C [KKP+15], respectively), and interface with SMT solvers to discharge their
verification conditions.

Some work has been done towards using constraint solvers (particularly spe-
cialised propagators), as theory solvers with this method as well as applying more
general ideas from constraint solving to SMT and SAT. For example, Nieuwen-
huis [Nie10] suggests this, as well as using more general CP heuristics in the SAT
part of the SMT procedure. Conversely, it has been noted that CS problems are in-
stances of SMT problems, and so SMT techniques can be applied in that direction
too [NOT06, BPSV12]. First-order theorem provers have also been adapted to work
as theory solvers for SMT, in particular, superposition based methods are investi-
gated by Armando et al. [ABRS09] as theory solvers for many theories, with criteria
for combinations of theories also described.

More detail on SMT solving is given in Chapter 2.
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1.5 Summary

Theorem proving over bounded domains with arithmetic is a difficult problem class
with applications in bounded model checking, formal mathematics, and other verifi-
cation tasks. It can be translated from first-order logic to a constraint satisfaction or
SAT problem (for which efficient tools exist), however, a direct translation from one to
the other is often inefficient. SMT solvers may also encounter problems when instan-
tiating quantifiers in the original problem. A different approach is to take a first-order
solver based on the calculus given in Baumgartner and Waldmann [BW13b] and mod-
ify it to produce a decision procedure for the restricted case considered. While simple
cases have been treated (or fall under existing generalizations which have strong as-
sumptions), an important question still remains: how can new functions be added
to the theory without losing decidability (for finite domains), or completeness in the
general case? This is illustrated in the following simple example.

Example 1.5.1 (Loss of Completeness for Introduced Functions). Let f4 be a new
operator symbol that maps integers to integers. It will represent a permutation on
{1, 2, 3, 4} ⊂ Z. The assumption that this is a subset of integers will entail that the
elements are distinct. The following formulas assert that f4 is a permutation on the
appropriate set:

∀x : Z, y : Z. ((1 ≤ x ∧ x ≤ 4 ∧ 1 ≤ y ∧ y ≤ 4)⇒ ( f4(x) ≈ f4(y)⇒ x ≈ y))

∀x : Z. (1 ≤ x ∧ x ≤ 4)⇒ ∃y : Z. (1 ≤ y ∧ y ≤ 4) ∧ ( f4(y) ≈ x)

The goal will be to show that if 1 and 2 are members of 2-cycles and f4(3) = 3 then
f4(4) = 4, i. e. , f4 is (1, 2) in cycle notation. Formally, the solver must show that the
formula

( f4( f4(1)) ≈ 1 ∧ f4( f4(2)) ≈ 2 ∧ f4(3) ≈ 3) ∧ f4(4) 6≈ 4

is inconsistent relative to the above formulas and the integer theory. An implementa-
tion of the Superposition calculus for Hierarchic combinations of theories would fail
to derive a contradiction in this case. This is because the term f4(4) is not identified
with any integer ( f4(3) and f4( f4(1)) are, however). Thus, the surjectivity axiom does
not enforce f4(4) ∈ {1, 2, 3, 4}, and no contradiction follows.
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Chapter 2

Background and Related Work

2.1 Motivation

This chapter covers the definitions and lemmas required in each chapter of the the-
sis. Section 2.2 gives an account of first-order logic syntax and semantics, specifically
monomorphic (sorted) equational logic. Section 2.3 describes some logical theories.
The additive theory of integers is used as an interpreted theory in most examples
while the data structure theories are used as a source of problems and to provide
context for applications. Section 2.4 describes some common notions from saturation
based proof calculi, in particular definitions of terms, term algebras and substitu-
tions are used throughout. Section 2.5 describes a specific calculus for reasoning in
hierarchic combinations of theories. This calculus will form the basis for the imple-
mentation in Chapter 3 and will be the reasoning component used in other chapters
Section 2.6 describes other reasoners that use either integers or incorporate back-
ground reasoning in some way.

2.2 Syntax and Semantics

Throughout this thesis, the following standard account of first-order logic with equal-
ity will be used.

The logic is many-sorted: each term is assigned a sort. The type system employed
is monomorphic, all of the sorts are constant symbols with no internal structure.
Concretely, a many-sorted logic restricts the set of values that can be assigned to
variables and restricts both terms in an equation to have the same sort. Sorts are
assumed to be non-empty in every interpretation and distinct sorts are disjoint.

A signature Σ is a tuple (Ξ, Ω) consisting of a finite set of sort symbols Ξ =
{S1, . . . , Sn} and set of operator symbols Ω with associated arities over the sorts in Ξ,
written f : S1 × . . .× Sn → S for example.

All signatures are a assumed to have at least the Boolean sort Bool, as well as
the constant symbol true. Predicate applications, e. g. , p(x), are modelled by the
atomic equation p(x) ≈ true (where ≈ is the logical symbol for equality) and negated
predicate atoms ¬p(x) by p(x) 6≈ true. These are usually abbreviated to the non-
equational form in the text. Only predicates and true have the sort Bool, in particular

11
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there are no Bool-sorted variables.
A signature Σ is a sub-signature of another signature Σ′, written Σ ⊂ Σ′, if all sorts

and function symbols of Σ are included in Σ′, with the arities of the function symbols
unchanged. Then Σ′ is referred to as an extension of Σ. In most cases, the extension
signature adds function symbols only, e. g. , in Skolemization, and when the new
function symbol needs to be identified the extension signature will be written Σ ∪
{ f }, for example, abbreviating (ΞΣ, ΩΣ ∪ { f }).

Given a signature Σ, and a countable infinite set of variable symbols X , such
that for each S ∈ Ξ, X contains infinitely many variables of that sort (except Bool of
course), then the set of Σ-terms T(Σ,X ) is defined inductively as:

1. Any x ∈ X or 0-ary constant symbol c ∈ Σ

2. f (t1, . . . , tn) for all f : S1 × . . .× Sn → S ∈ Ω and all Σ-terms t1, . . . , tn having
sorts S1, . . . , Sn respectively.

Terms in T(Σ, ∅) are called ground terms.
Arbitrary variables appearing in the text will be written using x, y, z; constants

written a, b, c, d; and applications of function symbols f , g, h to terms: f (s, t), g(x),
for example. Terms in general are represented with letters l, . . . , t. Boolean terms are
called atomic formulas, or atoms for short.

Logical symbols include the usual Boolean connectives ∧ , ∨ ,¬,⇒; quantifiers
∀, ∃; and equality, denoted by ≈. Equality (≈) is not included in the signature as it is
a logical symbol. As such, it is always interpreted as an equivalence relation, so the
equality axioms (reflexivity, transitivity, symmetry and functional congruence) are
superfluous. The symbol = denotes identity of mathematical objects in meta-logical
statements.

That a term t has sort S, is indicated by t : S in variable lists of quantifiers or in
running text. To indicate the sort of a subterm in a formula or of both terms in an
equation, a subscript is used, e. g. , in a ≈S b both a and b have sort S.

Since sorts are assigned disjoint sets, terms in an equation must be of the same
sort; it is assumed that all well-formed formulas satisfy this requirement (well-
sortedness). The language of Σ is the set of all well-formed formulas made from
Σ-terms.

An interpretation I of a signature Σ consists of

• a domain DI = {ξ1, . . . , ξn} that interprets the sorts Ξ = {S1, . . . , Sn} of Σ, and

• an assignment which maps from function (and constant) symbols f : S1 × . . .×
Sn → Sk of Ω to n-ary functions f I : ξ1 × . . .× ξn → ξk.

It is required that the sorts are inhabited, i. e. , no ξi is empty and that they are
pairwise disjoint.

An interpretation defines a unique map from terms in T(Σ, ∅) to DI , the image
of a Σ-term under this map is I(t) for a Σ-interpretation I . An interpretation I
satisfies an equation s ≈ t iff I(s) = I(t). Satisfaction of Boolean combinations of
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ground equations is defined according to the usual truth tables. A valuation ν for
interpretation I is a map from X to DI . Valuations lift homomorphically to terms,
atoms, and formulas; simply replacing variables consistently in their contexts. Then,
an existential formula ∃x1, . . . , xk. F is satisfied if there is an interpretation I and
valuation ν over I such that I satisfies ν(F). It is assumed that universals abbreviate
negated existentials. (Note that Section 2.4 gives a slightly different semantics for
clauses).

Given Σ′ and sub-signature Σ, the Σ-reduct of a Σ′-interpretation is the unique
Σ-interpretation obtained by restricting the domain to just the sorts of Σ. Since the
function arities of Σ do not include sorts from Σ′, the interpretation of these symbols
does not change in the Σ-reduct.

A logical theory is simply a set of interpretations of the same signature, closed
under isomorphism. The theory axiomatized by a set of Σ-formulas (the axioms) is
the maximal set of Σ-interpretations that satisfy those axioms, again, closed under
isomorphism. Then, given a theory T with signature Σ, a Σ-formula is T-satisfiable if
some I ∈ T satisfies it, and T-valid if all I ∈ T satisfy it.

The entailment symbol ‘|=’ is used in several ways in this thesis. Assume φ is a
Σ-formula or clause, T is a theory with signature Σ, I is a Σ-interpretation, and N is
a set of Σ-formulas (or clauses), then |= can be used

• As shorthand for ‘satisfies’. If I satisfies φ, then I |= φ.

• To indicate logical entailment between formulas. N |= φ iff every interpretation
that satisfies all formulas of N also satisfies φ.

• To indicate entailment by a theory. T |= φ iff every I ∈ T satisfies φ.

• To indicate logical entailment relative to a theory. N |=T φ iff every I ∈ T that
satisfies N also satisfies φ.

The statements T |= ⊥, and T |= � (empty clause) are shorthand for T being unsat-
isfiable.

The quantifier-free fragment of a language is the subset of the language built with-
out quantifiers, where unbound variables are treated as if they were existentially
quantified. The quantifier-free conjunctive fragment is a sub-fragment of the above
which only contains conjunctions of possibly negated atoms. Some authors do not
make this distinction, since any decision procedure for satisfiability of formulas in
the quantifier-free conjunctive fragment can be made into a decision procedure for
satisfiability in the quantifier-free fragment by transforming a given formula to dis-
junctive normal form and testing each disjunct in turn.

2.3 First-Order Theories for Computation

This section is based on the presentation of the theories in Bradley and Manna [BM07],
however, the original axiomatization of arrays dates back to McCarthy [McC62]. The
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decidability results of Nelson and Oppen [NO80] have influenced the choice of ax-
iomatizations of recursive data structures.

2.3.1 Linear Integer Arithmetic

Presburger Arithmetic is the language of arithmetic over the natural numbers N with-
out multiplication. Though lacking in expressivity, Presburger formulas arise fre-
quently in software verification: simple while-loops can be modelled [BMS06], and
both integer valued linear programming problems and constraint satisfaction prob-
lems, can be expressed with Presburger Arithmetic formulas. Furthermore, the the-
ory allows quantifier elimination: each quantified formula is equivalent to a quantifier-
free (ground) formula, and so the first-order theory is decidable.

The decidability of Presburger Arithmetic was shown by M. Presburger [PJ91],
and the quantifier elimination procedure used today was given by Cooper [Coo72].
The latter procedure works in a language extended with multiplication and division
by constant coefficients, whose theory is equivalent to Presburger Arithmetic.

The signature of Presburger Arithmetic is ΣP = {0, s1,+2}, where 0 is a constant,
s1 is the 1-ary successor function and +2 is addition, written infix. The only sort apart
from Bool is SN, the sort of natural numbers. The axioms for Presburger arithmetic
are:

(1) s(x) 6≈ 0 (2) s(x) ≈ s(y)⇒ x ≈ y
(3) x + 0 ≈ x (4) x + s(y) ≈ s(x + y)
(5) (φ[0] ∧ ∀n. (φ[n]⇒ φ[n + 1]))⇒ ∀x. φ[x],

where φ is any ΣP-formula with one free variable.

The language of Presburger Arithmetic is too cumbersome for most applications
in software verification. More common is Linear Integer Arithmetic (LIA) which has
signature ΣZ = {. . . ,−2,−1, 0, 1, 2, . . . ,−1,+2,<2}; the sort of integers SZ is the
only sort. The axioms of LIA are those of a linearly ordered Abelian group where
{0,−,+,<} have their expected roles. Its canonical model is Z with the natural
addition function and order relation. The theory of LIA is equivalent to Presburger
arithmetic as ΣZ-formulas can be directly translated to ΣP-formulas [BM07].

In order to better support the combination with other theories, it is useful to
extend ΣZ with a countable infinite set Π of fresh constant symbols, called parameters.
The theory of LIA with parameters consists of interpretations in which the operators
in ΣZ have their canonical interpretation and parameters in Π are always interpreted
as members of Z. A formula with parameters is equivalent to a ΣZ-formula where
the parameters are replaced with existentially quantified variables. However, LIA
with parameters is non-compact: consider the infinite set of formulas {0 < α, 1 <
α, . . .} where α is a parameter. Every finite subset is satisfiable, but there is clearly
no interpretation satisfying the entire set in the theory of LIA with parameters, as α

must be interpreted as an integer. This fact will become important in Section 4.
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Cooper’s Algorithm: Cooper’s algorithm [Coo72] for quantifier elimination in LIA
(and therefore, for deciding TZ-validity of ΣZ-formulas) is well known. Although
formulas with arbitrary quantifier structure can be checked, the complexity of the
procedure is very high: Oppen [Opp78] gives an upper bound time-complexity of 22cn

for formulas of length n and some positive constant c, while Fischer and Rabin [FR74]
show that for most lengths n there is some formula which will take at least 22dn

steps
to check validity, for some constant d. Despite this, Cooper’s algorithm has the
advantage of being well understood, e. g. , optimizations are already described in
Reddy and Loveland [RL78], and implementations including various optimizations
are described elsewhere [Har09, PH15, BM07]. Moreover, it is advantageous to have
a single algorithm that can discharge proof goals of varying complexity. Consider
the use of Cooper’s algorithm in the Isabelle/HOL proof environment1: the well-
known proofs of correctness allow for a verified implementation and the algorithm’s
generality allows it to be used as a component solver in the proof assistant.

The relationship between complexity and quantifier structure for Peano Arith-
metic formulas has also been investigated. Reddy and Loveland [RL78] show that

for formulas of length n with m > 0 quantifier alternations, complexity is just 22cnm+4

for constant c > 0. More specifically, Haase [Haa14] shows that Presburger Arith-
metic formulas with fixed quantifier alternations are complete for respective levels of
the weak EXP hierarchy. Woods [Woo15] shows that sets described by Presburger
formulas are exactly those sets which have rational generating functions.

Cooper’s algorithm is by no means the only approach to checking validity of
Presburger Arithmetic formulas. Presburger Arithmetic formulas with fewer than
two quantifier alternations are already similar to integer linear programming prob-
lems, which are NP-hard, and NP, for one or no quantifier alternations respectively.
For quantifier-free problems, the Boolean structure of the formula has a large ef-
fect on performance. This can be addressed by specialized techniques that use SAT
solvers to break the formula down into conjuncts. These techniques include projec-
tion [Mon10] and abstraction [KOSS04]. Additionally, the Omega Test described by
Pugh [Pug91] can be used for efficient solving of quantifier-free Presburger Arith-
metic formulas. Yet further afield, Boudet and Comon [BC96] give an automata-
based method for solving Presburger formulas, and give tight performance bounds
(including for formulas with no quantifier alternations). Certain applications have
been described which take advantage of automata-based methods [SKR98, CJ98].

The combination of Presburger Arithmetic with various theories has also been in-
vestigated, and some combinations with data structure theories will be mentioned in
the next section. Such combinations need to be carefully managed: Downey [Dow72]
and, later, Halpern [Hal91] show that adding just one uninterpreted unary predicate
to ΣZ is sufficient to make the validity problem Π1

1-complete.

1http://www.isa-afp.org/entries/LinearQuantifierElim.shtml
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2.3.2 Theories of Data Structures

2.3.2.1 ARRAY

The theory of read-over-write arrays was first given by McCarthy [McC62]. The the-
ory presented here will be parameterized by index and element sorts I and E re-
spectively. The sort of arrays is ARRAY, and the signature of array theories is
ΣARRAY = {read : ARRAY × I → E, write : ARRAY × I × E → ARRAY}. What
follows is the extensional theory of arrays T=

ARRAY, where equality between arrays is
defined.

(1) read(write(a, i, e), i) ≈ e (2) (∀i. read(a, i) ≈ read(b, i))⇒ a ≈ b
(3) (i 6≈ j)⇒ read(write(a, j, e), i) ≈ read(a, i)

Note that the use of monomorphic sorts complicates the use of nested arrays.
This is because it is required for the sort ARRAY to be disjoint from the element sort.
It is possible to use only a single sort and add a predicate atomic which defines a
subset of arrays that never contain other arrays, then to add axioms for those atomic
arrays that define the element theory, though this method of theory combination is
rarely used.

The set of axioms without (2) defines the non-extensional theory of arrays TARRAY.
In that theory it is not possible to conclude from a 6≈ b that arrays a and b differ at
some index.

Both the extensional and non-extensional quantifier-free fragments are decidable,
although the full theory isn’t [BM07]. Armando et al. [ABRS09] show that the Super-
position calculus can decide satisfiability in the extensional quantifier-free fragment
after removing disequalities. Bradley et al. [BMS06] give a larger fragment of the lan-
guage of ΣARRAY called the array property fragment which permits guarded universal
quantification over array indices (both uninterpreted and in Presburger Arithmetic).

Definition 2.3.1 (Array Property Fragment). Given formulas of the form

∀i : Z. F[i]⇒ G[i] (2.1)

where

1. Any occurrence of i in G has the form read(a, i) for some constant a : ARRAY
and such terms never occur below other read operators.

2. F is a ΣZ-formula for which

• the only logical operators are ∧ , ∨ ,≈, and

• the only ΣZ predicate is ≤, and

• universally quantified variables i occur only as immediate subterms of ≤
predicates or equations and never in a linear term like 3i + a for example.
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Then, the array property fragment contains the existential closure of formulas (2.1)
and Boolean combinations thereof. Existentially quantified variables are permitted
in both F and G.

For the array property fragment TARRAY-satisfiability is decidable, that is, satis-
fiability with respect to the non-extensional theory of arrays. The decision procedure
for this fragment rewrites universal quantifiers by instantiating them over a finite
set of relevant indices (consisting of any existentially quantified Presburger terms in
the guard formulas as well as any other Z-sorted constants present), followed by the
application of a decision procedure for the quantifier-free fragment.

Ghilardi et al. [GNRZ07] extend ΣARRAY with extra functions, while preserving
decidability in the quantifier-free fragment. In particular, a dimension function is
introduced which returns the largest initialized index, i. e. , the size of the array. As
this is a function from ARRAY to SZ, the decidability of the satisfiability problem of
the extended theory does not immediately follow from classical theory combination
results.

Kapur and Zarba [KZ05] reduce decidability of the quantifier-free fragment of
TARRAY to a simpler theory of uninterpreted functions with equality. Such a reduc-
tion is necessarily exponential, as TARRAY-satisfiability is NP-complete, while satisfi-
ability in the quantifier-free uninterpreted fragment is O(n log n). Combinatory Array
Logic [dMB09] (also a fragment of the theory of uninterpreted functions) includes the
language of ΣARRAY, and admits a decision procedure for satisfiability in the ground
conjunctive fragment.

Ge and de Moura [GdM09] give some quantified fragments for which the satis-
fiability problem is decidable, also using finite quantifier instantiation. One of these
fragments properly generalizes the Array Property fragment above. Critically, this
paper describes a method for finding the set of instances required to instantiate the
universal quantifiers.

Ihlemann et al. [IJSS08] describe local theories which are equisatisfiable to some
finite set of ground instances. Local theory extensions are extensions of some base
theory with a local theory, such that the extension part can be reduced again to a
finite set of ground instances. It is shown that the Array Property fragment and
several others are in fact local theory extensions.

Armando et al. [ABRS09] give a method for deciding quantifier-free array for-
mulas with the Superposition calculus, in which a critical part is the elimination of
atoms involving the extensionality axiom.

2.3.2.2 LIST

This is the theory of LISP style lists over element sort E, with signature ΣLIST = {nil :
LIST, head : LIST → E, tail : LIST → LIST, cons : E× LIST → LIST}.

(1) x ≈ nil ∨ (cons(head(x), tail(x))) ≈ x (2) cons(x, y) 6≈ nil

(3) head(cons(x, y)) ≈ x (4) tail(cons(x, y)) ≈ y
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TLIST has a sub-theory TA
LIST of acyclic lists– lists which do not contain copies of

themselves at any depth. This sub-theory also satisfies the list axioms, however, there
is no finite set of axioms which can differentiate the general list theory from TA

LIST.
In general, reasoning in TA

LIST is simpler than in TLIST, hence decision procedures
operate w. r. t. the former theory. When reasoning using the axioms above, results
hold in the general theory TLIST.

Oppen [Opp80] shows that TLIST-satisfiability problem for the quantifier-free
acyclic fragment is linear in the number of literals, while validity in the full first-
order theory is decidable but non-elementary.2 Zhang et al. [ZSM04] give results for
quantifier-free formulas of lists with a length function (defined in Presburger Arith-
metic). Decidability of this combination is not immediate from the Nelson-Oppen
combination theorem, as that requires theory signatures to be disjoint.

As above, Kapur and Zarba [KZ05] describe a reduction from the theory of lists
to a simpler sub-theory of constructors only. Suter et al. [SDK10], inspired by func-
tional programming techniques, use homomorphisms on the term algebra of various
theories to reduce decidability problems in one theory to another. This reduction is
contingent on the property to be proved, for example, lists may be reduced to sets
when containment is in question. Also by Suter et al. [SKK11a] is a theorem proving
method that reasons ‘modulo recursive theories’ by taking an iterative deepening ap-
proach: interleaving model finding and expansion of recursive function definitions.
This naturally applies to the theory of lists and functions defined over lists.

2.3.2.3 Recursive Data Structures

The theory of recursive data structures TRDS is a natural generalization of the LIST
theory, and many of the results about TLIST apply to it. It has signature ΣRDS = {c :
S1 × . . .× Sn → Rc, p1 : Rc → S1, . . . , pn : Rc → Sn, atom : Rc → Bool}, where Rc is
the sort of data structures constructed by c.

(1) atom(x) ∨ c(p1(x), . . . , pn(x)) ≈ x (2) ¬atom(c(x1, . . . , xn))
(3.1) p1(c(x1, . . . , xn)) ≈ x1 . . . (3.n) pn(c(x1, . . . , xn)) ≈ xn

The symbol c is an n-ary constructor for the structure, and pi is a projection function
on the constructor tuple. Many common data structures are described by this theory,
in addition to lists, such as records, binary trees and rose-trees. The type of structure
is determined by selecting both the number and sort of constructor arguments. As
for lists, there is an acyclic sub-theory of TRDS in which no constructor term can
contain itself at any depth.

Typically, decision procedures for TLIST are implemented as decision procedures
for TRDS. Other approaches reduce ΣRDS-formulas to set, multiset, or list theories,
depending on the conjecture to be checked [SDK10]. Sofronie-Stokkermans [SS05]
shows that the theory of recursive data structures is covered by the local fragment.

2Although lists can be encoded as integers, this brings no advantage since cons is a pairing func-
tion [Opp80] and pairing functions are, at best quadratic polynomials. Therefore, they are not definable
in the language of Presburger arithmetic.
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However, exhaustive instantiation of the axioms is less efficient than the O(n log n)
decision procedure for acyclic data structures given by Oppen [Opp80].

2.3.3 Local Theories

Local theories are a semantically defined class of theories for which the satisfiability
of quantifier-free formulas is equivalent to the satisfiability of a ground instantiation
of the theory axioms with terms occurring in the quantifier-free formula.

Definition 2.3.2 (Local Theory). A local theory is a set of Horn3 Σ-clauses H such
that, given a ground Horn Σ-clause C, H ∧ C is satisfiable if and only if H[C] ∧ C is
satisfiable. H[C] is the set of ground instances of H in which all terms are subterms
of ground terms in either H or C.

Local theories can be generalized to the case of hierarchic theories, where a base
theory is extended with new operators and axioms which obey certain restrictions.
Let T0 be defined by a (possibly infinite) set of Σ0-formulas, and T0 ⊂ T1 be a set of
Σ1-formulas where Σ0 ⊆ Σ1. A partial interpretation is a Σ1-interpretation in which
some operators (except those in Σ0) may be assigned partial functions. A ground
term is undefined w. r. t. a partial interpretation if its argument lies outside of the
domain of its assigned function, or if any of its arguments are undefined. Partial
interpretations can model clause sets, with an appropriately modified definition of
satisfiability: a weak partial model of a set of ground clauses is a partial interpretation
such that every clause has either a satisfied literal (in the usual sense of satisfaction)
or at least one literal which contains an unknown subterm. Non-ground clause sets
are satisfied (weakly) if all of their ground instances are satisfied as above.

Definition 2.3.3 (Local Theory Extension). Let T1 = T0 ∪ K, where K is a a set of
clauses defining the extension to theory T0. For every set G of ground Σ1-clauses
T1 ∪ G |= ⊥ iff T0 ∪ K[G] ∪ G has no weak partial model in which all terms among
the ground instances of K and G are defined.

These results and other refinements of locality in hierarchic theorem proving are
given in Sofronie-Stokkermans [SS05].

Theories in the local fragment include lists, arrays, and other data structures,
as well as monotone functions and free functions over certain base theories. Fur-
ther results show how to combine local fragments [ISS10], and also describe meth-
ods for proving the locality of a clause set using saturation theorem proving tech-
niques [HSS13].

2.4 Saturation Based Proof Calculi

This section gives basic definitions for proof calculi used throughout later sections,
as well as common operations on terms and clauses that will be used to describe

3universally quantified disjunctions with at most one positive literal
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applications of the proof calculi. Definitions will follow Baader and Nipkow [BN98]
for term definitions, and Nieuwenhuis and Rubio [NR01] for calculi definitions.

Superposition is a calculus for equational reasoning in first-order clausal logic.
This calculus will be assumed as the basis for the reasoning methods described
later. It developed from the Paramodulation calculus, which was a version of the
classical Resolution calculus for first-order logic extended with the Lebniz rule for
equality (i. e. , ‘like-replaces-like’). A major advance was the removal of the depen-
dence on axioms for reflexivity by Brand [Bra75]. The Knuth-Bendix completion
algorithm [KB83] suggested the use of a term order to restrict the orientation of
equations and allowed eliminating inferences below variables [BG94]. Though the
main calculus used here is based on the Superposition calculus, these definitions are
common to other saturation based calculi (mainly precursors of the Superposition
calculus): Resolution calculi and Paramodulation calculi.

The main data structure used by first-order theorem provers is the clause: a uni-
versally quantified disjunction of possibly negated atomic formulas. The equisatisfia-
bility of general first-order formulas to conjunctions of clauses (i. e. , to clause normal
form) is well-known. Due to the associativity and commutativity of disjunction,
clauses are usually considered to be multisets of literals and the universal quantifier
prefix is left implicit. The empty clause is written � and is false in all interpretations.

A substitution is a map σ : X → T(Σ,X ) such that σ(x) 6= x for only finitely
many variables x. In a many-sorted language substitutions can only map variables
to terms of the same sort. The domain and range of a substitution σ are defined
respectively Dom(σ) = {x ∈ X : σ(x) 6= x} and Range(σ) = {σ(x) : x ∈ Dom(σ)}.
Substitutions are often represented as finite lists of bindings from variables to terms,
e. g. , σ = [x1 7→ t1, . . . xn 7→ tn], in that case σ(xi) = ti for 1 ≤ i ≤ n and σ(x) = x
otherwise. The identity substitution ε is the identity map on X .

A substitution σ has a unique homomorphic extension to terms, clauses and for-
mulas; the application of this to a term is denoted by writing σ in postfix position.
The term tσ is called an instance of t. An instance is proper where tσ 6= t and ground
where tσ has no free variables. A substitution σ is renaming when Range(σ) consists
only of variables and σ is a bijective map.

A matching of s to t is a substitution µ such that sµ = t. A unifier of s and t is
a substitution σ such that sσ = tσ. Given substitutions σ1 and σ2, σ1 is more general
than σ2 if there is a non-renaming substitution σ such that σ2 = σ1 · σ, (where ·
is functional composition). Given two terms s, t there always exists an idempotent,
(i. e. , σ · σ = σ), most general unifier, denoted mgu(s, t). This is unique up to renaming
of variables.

Specific subterms are identified by square brackets, i. e. , t[s] indicates that t has a
proper subterm s at some position. The outer term is the context, formulas and clauses
may also be contexts. Where the same context is used twice with different subterms,
it indicates a single replacement at the position of the first subterm. If all terms
are replaced, both will be written in the brackets: t[r\s] is the result of replacing r
everywhere by s.

Superposition calculi are parameterized by a well-founded order ≺ on T(Σ,X ).
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This term ordering must be closed under substitution s ≺ t ⇒ sσ ≺ tσ, and closed
under contexts s ≺ t ⇒ r[s] ≺ r[t]. An order that satisfies these properties is called
a reduction order. All Superposition calculi require the term order to be a reduction
order that is total on ground terms.

Typically, this order is implemented as either a Knuth-Bendix or Lexicographic
order, both parameterized by a total precedence on symbols of Σ [Der82]. Knuth-
Bendix orders also assign a weight to each symbol in Σ, which is factored into the
ordering.

The term order ≺ is extended to an order on equations, literals and clauses using
multiple applications of the multiset extension [BN98]. Specifically, equations l ≈
r become the multiset {l, r}, negated equations become {l, l, r, r} (by convention,
negated equations sort higher than their positive forms), and clauses L1 ∨ L2 ∨ . . .
become {L1, L2, . . .}. An order on multisets ≺m can be constructed from an existing
order ≺ (namely, the term order) by setting S1 ≺m S2 if and only if S1 6= S2, and if
there are more of some e in S1 than S2, then there is a larger (relative to ≺) e′ for
which there is more of e′ in S2 than in S1. If ≺ is well-founded and total, then so is
≺m.

A proof calculus consists of rules that describe a map from sets of premise clauses
to sets of conclusion clauses.

Definition 2.4.1 (Calculus Rule). An rule

P

R
if Cond

consists of multisets P and R of schematic clauses4, the premises and conclusions
respectively. Cond is an optional condition that restricts which clauses satisfy the
schematic clauses in P and R.

There are two types of rules, differentiated by their action on a clause set: inference
rules which only introduce a single clause, and simplification rules which may remove
or alter clauses in a clause set.

Definition 2.4.2 (Application of Calculus Rules). For an inference rule with premises
P, conclusion {C} and condition Cond, the application of the rule to clause set N is
possible iff P′ ⊆ N is an instance of the clause schema P that satisfies Cond, and the
result is N ∪ {C′}, where C′ is the corresponding instance of schema C.

For a simplification rule with conclusion R, assuming P′ ⊆ N satisfies Cond as
for inference rules, the result is N \ P ∪ R′, with R′ an instance of schema R.

A calculus is sound w. r. t. the usual logical consequence relation |=, if for any rule
with premises P and conclusion set R, for each C ∈ R, P |= C. A calculus is refutation

4A clause whose variables range over arbitrary terms, literals and clauses. They are common in the
literature, and their function will be clear when concrete inference rules are given, so a full definition
is omitted.



22 Background and Related Work

complete, if any clause set that is closed w. r. t. the calculus rules and that does not
contain � is satisfiable.

A derivation is a sequence of clause sets N0,N1, . . . such that Ni+1 is the result
of the application of some rule to Ni. Where both inference and simplification
rules are used, a notion of redundancy is needed to ensure that looping behaviour
is avoided. A ground clause C is made redundant by a set of ground clauses N when
for {C0, . . . , Cn} ⊆ N such that Ci ≺ C, {C0, . . . , Cn} |= C. Then, a non-ground
clause is redundant w. r. t. clause set N if the set of ground instances of C is redun-
dant w. r. t. the ground instances of N and if C ∈ N , then C is redundant w. r. t. N .
An inference is redundant if the conclusion is redundant w. r. t. clauses smaller than
the maximal premise.

Then, redundant inferences need not be performed, and redundant clauses can
safely be deleted by simplification rules.

Given a derivationN0,N1, . . . the set of persistent clauses (also called the saturation
of a clause set w. r. t. a calculus) is defined as N∞ =

⋃
0≤i

⋂
i≤jNj. Lastly, there is a

restriction on the order of inferences: a derivation N0,N1, . . . is fair with respect to
a set of inference and simplification rules CALC, if for every inference π of I with
premises in N∞ there is a j ≥ 0 for which π is redundant with respect to Nj. In other
words, no necessary inference is postponed indefinitely.

Definition 2.4.3 (Refutation Complete). A calculus is refutation complete iff from any
unsatisfiable clause set N every fair derivation contains �.

2.5 Superposition for Hierarchic Theories

Superposition for hierarchic theories (briefly: Hierarchic Superposition) [BGW94,
BW13b], is a modification of the standard Superposition calculus for reasoning in
a hierarchic combination of first-order equational logic and some interpreted theory.

A specification consists of a signature Σ and a set B of Σ-interpretations that is
closed under isomorphism; called the base or background theory. A hierarchic specifi-
cation (Σ, (ΣB,B)) has a base (or background) specification (ΣB,B), and an extended
signature Σ ⊃ ΣB.

In this section it is assumed that interpretations in the specification are term-
generated, i. e. , all members of the domain of an interpretation are the image of some
term of the language. By the Löwenheim-Skolem theorem, term-generated interpre-
tations are sufficient to model any infinite first-order theory, so long as the language
contains a countable infinity of terms. If it does not (e. g. , it has no non-constant
function symbols), an infinite set of constants can be added to the signature.

For a given background specification B, GndTh(B) is the set of all ground for-
mulas in the language of ΣB satisfied by all interpretations in B.

The most common base specification will be LIA with parameters as defined
in Section 2.3.1, however, any decidable theory can be used (this could be weak-
ened to semi-decidable theory, as the overall goal is just refutation completeness).
A feature of theories that admit quantifier elimination is that their joint theory also
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admits quantifier elimination, and for that reason the background theory is viewed
as indivisible. The background theory need not be arithmetic or numerical either.
A formula is satisfiable w. r. t. a specification (Σ, (ΣB,B)) if it is satisfied by a Σ-
interpretation whose ΣB-reduct is in B.

Example 2.5.1. A first-order logic formula in clause normal form is in the effectively
propositional fragment (EPR) iff its literals are composed of only predicates, variables,
and constant symbols. The validity problem for the effectively propositional frag-
ment is NEXP-time complete. Consider a hierarchic specification (Σ, (ΣB,B)), where
B is the set of all ΣB-interpretations, ΣB has only predicates, and there are no func-
tions in Σ whose result sort is a base sort. Then ΣB-clauses are in the EPR fragment,
and, by results later in this section, the combination of the Superposition calculus
with a solver complete on the EPR fragment (e. g. , iProver or Darwin) is refutation
complete.

Less obvious is the fact that EPR solvers can also be used when the sorts of ΣB

and Σ are non-cyclic (i. e. , for every sort S in Σ, there are no S sorted terms which
have S sorted subterms), see Korovin [Kor13]. That generalizes EPR in the sense
that functions between sorts of ΣB are permitted, so long as they meet the non-cyclic
condition.

Certain base specifications have a distinguished set of constants called domain
elements. These are abstractly characterized as the largest set of ground ΣB-terms
that are pairwise distinct in all models of the background specification, and minimal
w. r. t. the term order. The set of domain elements for a particular specification is
written Dom(ΣB), e. g. , Dom(ΣZ) = {. . . ,−2,−1, 0, 1, 2, . . .}.

The calculus requires that operators in ΣB have a lower precedence than any in
Σ \ ΣB.

In Bachmair et al. [BGW94] substitutions, in particular unifiers and instantia-
tions, were restricted by only allowing ΣB-terms to be substituted for background
sorted variables. By restricting substitutions, the number of possible inferences is
greatly reduced and thus prover efficiency should increase. In Baumgartner and
Waldmann [BW13b] this restriction was made sharper by restricting substitutions so
that for a subset of background sorted variables only domain elements could be sub-
stituted in. These variables are known as abstraction variables, any other variables are
general variables. The set of variables is divided: X = X A ∪ X G, where X A are the
abstraction variables. For this section only, abstraction variables will be written capi-
talized, while general variables will be lower-case. In other sections the distinction is
usually unnecessary.

Any term in T(ΣB,X A) is a pure term. A substitution σ where every X ∈ X A σ(X)
is pure is a simple substitution. An important consequence is that only pure terms
can be substituted into pure terms. A simple instance of a term or clause is formed by
the application of a simple substitution. The set of simple ground instances of a term
(clause) t is denoted sgi(t). The set sgi(X), for abstraction variable X consists of just
domain elements or ground ΣB-terms which, by definition, are always equivalent
to a domain element. Then abstraction variables can be seen as placeholders for
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domain elements. For non-ground terms s, t s ≺ t only if for all instances s′, t′ of the
respective terms s′ ≺ t′. Since the only possible instances of abstraction variables are
domain elements, for any non-pure term t and any abstraction variable X, it follows
that X ≺ t.

The set of simple ground instances is critically important for understanding the
completeness result of the Hierarchic Superposition calculus. Essentially, the calcu-
lus works by simulating, in a certain technical sense, a derivation from the ground
instances of a clause set and the (typically infinitely many) ground theorems of the
base specification GndTh(B). For efficiency, the simulation uses simple ground in-
stances only then, for every model M of the full set of ground instances of clauses
C it is required that M,B |= C ⇔ sgi(C). Furthermore, any model of the simple
ground instances when reduced to the signature ΣB must be in the base specification
model class. Specifically, the cardinalities of the carrier sets for the base sorts must
agree with an actual model of the base specification. This can be broken into two
considerations: no confusion and no junk; confusion is where elements of a base sort
are incorrectly equated, junk refers to extra elements included in the carrier set of an
interpretation that do not appear in a base interpretation.

Although confusion is prevented by including GndTh(B), (implemented as a
check to a theory solver) junk elements may appear when they are never identified
as some member of the base sort in the course of a derivation. Thus, preventing
junk (as a prerequisite for refutation completeness) requires an extra assumption on
clause sets– the sufficient completeness property.

Definition 2.5.1 (Sufficient Completeness w. r. t. Simple Ground Instances). A clause
set N has sufficient completeness (w. r. t. simple ground instances) iff for every first-
order model M (not necessarily extending the base specification B) of sgi(N ) ∪
GndTh(B) and any base sorted ground term t in sgi(N ), M |= t ≈ e for some
ground ΣB-term e.

In the following, ‘sufficient completeness w. r. t. simple ground instances’ will be
abbreviated to just ‘sufficient completeness’. This property is undecidable for general
clause sets, as it can be reduced to the non-ground rewrite rule termination problem.
It is also loosely connected with the idea of first-order definability: any clause set
in which all the base-sorted free operator symbols are defined w. r. t. ΣB will have
sufficient completeness, although the reverse does not hold. Completeness will be
discussed further in Section 2.5.3.

2.5.1 Calculus Rules

The Hierarchic Superposition calculus consists of the rules Equality Resolution,
Superposition,Negative Superposition,Factoring,Close described below. The original cal-
culus had a version including equality factoring and merging paramodulation, how-
ever those rules do not work with weak abstraction [BW13b].
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Equality Resolution
l 6≈ r ∨ C

Cσ

if (i) neither l nor r is a pure ΣB-term, (ii) σ = mgu(l, r) is simple, (iii)
(l 6≈ r)σ is maximal5 in Cσ

Superposition
l ≈ r ∨ C s[l′] ≈ t ∨ D

(s[r] ≈ t ∨ C ∨ D)σ

if (i) neither l nor l′ is a pure ΣB-term, (ii) l′ is not a variable, (iii) σ =
mgu(l, l′) is simple, (iv) lσ 6� rσ, (v) (l ≈ r)σ is strictly maximal in Cσ,
(vi) sσ 6� tσ, (vii) (s ≈ t)σ is strictly maximal in Dσ

Negative Superposition
l ≈ r ∨ C s[l′] 6≈ t ∨ D

(s[r] ≈ t ∨ C ∨ D)σ

if (i) neither l nor l′ is a pure ΣB-term, (ii) l′ is not a variable, (iii) σ =
mgu(l, l′) is simple, (iv) lσ 6� rσ, (v) (l ≈ r)σ is strictly maximal in Cσ,
(vi) the first premise does not have selected literals, (vii) sσ 6� tσ, and
(viii) (s 6≈ t)σ is maximal in Dσ.

Factoring
l ≈ r ∨ s ≈ t ∨ C

(r 6≈ t ∨ l ≈ t ∨ C)σ

if (i) neither l nor s are pure ΣB-terms, (ii) σ = mgu(l, s) is simple, (iv)
lσ 6� rσ, (iv) sσ 6� tσ, (v) (s ≈ t)σ is maximal in (l ≈ r ∨ C)σ.

Close
C1 · · · Cn

�

if C1, . . . , Cn are ΣB-clauses and {C1, . . . , Cn} is
unsatisfiable w. r. t. (ΣB,B).

The main differences between these rules and those of the standard Superpo-
sition calculus[BG94]: the use of simple unifiers; the requirement that the literals
selected for inferencing are never pure terms from the base signature; and the fact
that abstraction must be performed after every inference (omitted in the rules).

The original Hierarchic Superposition calculus included an undecidable maximal-
ity condition based on the existence of a simple grounding substitution. Specifically,
each rule except constraint refutation requires that there be a simple substitution ψ

such that (u ≈ v)σψ is a maximal occurrence of an equation in the relevant ground
instance of the premise (e. g. , (C ∨ u 6≈ v)σψ for Equality Resolution). The authors
note that it can be replaced by ‘(u ≈ v)σ is maximal and non-base’, but that this
is weaker, because f (x) ≈ f (x) and f (t) ≈ f (t) are incomparable when x is not a
subterm of t for example, meaning two applications of the rule will obtain. However,
f (x) ≈ f (x) is smaller when substitutions are restricted to domain elements. This

5i. e. , maximal in the set of literals making up the clause Cσ
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case is partly covered by the introduction of abstraction variables, and by ordering
abstraction variables strictly less than any impure terms.

The notion of redundancy in Hierarchic Superposition is only slightly modi-
fied from the definition of redundancy for the regular Superposition calculus. A
clause C is redundant w. r. t. a set of clauses N if each clause in sgi(C) is redundant
w. r. t. (sgi(N ) ∪ GndTh(B)) under the usual Superposition calculus (i. e. , is entailed
by smaller clauses). Similarly, inferences from N are redundant if all simple ground
instances of the conclusion are redundant w. r. t. (sgi(N ) ∪ GndTh(B)).

The inference system consisting of the above rules and a non-deterministic sim-
plification rule which removes any clause as long as it is redundant, is referred to as
HSP. Soundness of HSP follows from soundness of each of the rules:

Theorem 2.5.1 ([BGW94, BW13b]). If the set of persisting clauses N∞ in a SUP≺ deriva-
tion from clause set N does not contain �, then N is satisfiable.

2.5.2 Abstraction

Abstraction is a technique for transforming a clause which contains literals over the
mixed signature Σ = ΣB ∪ ΣF into an equivalent clause in which each literal is over
either just ΣB or just ΣF. This is done by the following transform on a clause C:
Where t is a ΣB-term and f 6∈ ΣB:

replace C[ f (. . . , t, . . .)] with C[ f (. . . , x, . . .)] ∨ x 6≈ t

and similarly, where f ∈ ΣB and t is a ΣF-term. This is repeated until all literals are
either over ΣB or over ΣF. For clause C, the limit of this process is denoted abstr(C)
and the result is called the (fully) abstracted form of C.

An advantage of full abstraction is that conclusions of inferences in the Superpo-
sition calculus never need abstraction when the premises are abstracted. Abstraction
also allows for a limited form of theory unification below FG operators, i. e. , given
terms s, t find substitution σ such that T |= sσ ≈ tσ for theory T.

Example 2.5.2. Let C = f (g(c) + 10) 6≈ f (20), then

abstr(C) = f (w1) 6≈ f (w2) ∨ w1 6≈ w3 + 10 ∨ w2 6≈ 20 ∨ w3 6≈ g(c)

The conclusion of an equality resolution inference with σ = [w1 → w2]:

w2 6≈ w3 + 10 ∨ w2 6≈ 20 ∨ w3 6≈ g(c)

Abstraction greatly increases the number of possible inferences, because it re-
moves structure inside terms. In the previous example, abstraction of the subterm
f (20) to f (w2) means that paramodulation with, e. g. , f (w) ≈ 0 ∨ w 6≈ 10 is possible.
While abstraction allows some necessary inferences, it also allows many spurious in-
ferences such as the above6, not all of which can be shown to be trivial as easily.

6This fact, and difficulties guaranteeing completeness are cited as the reason for the decoupled
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Then, any restriction of abstraction which does not affect the completeness of the
calculus would bring performance improvements.

The original presentation of the Hierarchic Superposition calculus [BGW94] used
full abstraction, which actually makes the calculus incomplete on certain clause
sets [BW13b].

Example 2.5.3 (Full Abstraction Destroys Sufficient Completeness). Consider the
clause set { f (1) < f (1),¬( f (1) < f (1))}. Since it has no first-order models it has
sufficient completeness (trivially). The fully abstracted form is: {x1 < x2 ∨ x1 6≈
f (1) ∨ x2 6≈ f (1),¬(y1 < y2) ∨ y1 6≈ f (1) ∨ y2 6≈ f (1))}. No inference rules in HSP
apply, as the complementary literals (x1 < x2),¬(y1 < y2) are base and all non-base
literals are negative, so HSP is unable to produce a refutation of the abstracted clause
set.

Instead, Baumgartner and Waldmann [BW13b] propose two solutions: weak ab-
straction, which limits abstraction to only necessary subterms while preserving suffi-
cient completeness, and abstraction variables, which only stand for domain elements.
Using abstraction variables limits the number of instances a clause can produce,
while allowing more terms to be ordered (since an abstraction variable sorts lower
than any non-background or non-pure term).

Definition 2.5.2 (Weak Abstraction [BW13b]). A term t ∈ T(ΣB,X ) that is neither a
variable nor a domain element, is a target term in clause C if t occurs in a subterm of
C having the form:

1. f (. . . , t, . . .), for f ∈ Σ \ ΣB.

2. g(. . . , t, . . . , s), for g ∈ ΣB and s 6∈ T(ΣB,X ).

As in full abstraction, target terms t are abstracted out using fresh abstraction vari-
ables: C[t] becomes C[X] ∨ X 6≈ t if t is pure or C[x] ∨ x 6≈ t otherwise. The weak
abstraction of C, weak(C) is the limit of this process; weak(C) is equivalent to C and
contains no target terms.

Example 2.5.4. Continuing Example 2.5.2, weak(C) = f (g(c) + 10) 6≈ f (20) and so
no equality resolution inference is possible. Now consider the unsatisfiable clause
set {C, g(c) ≈ 10}. A derivation beginning from {abstr(C), abstr(g(c) ≈ 10)} yields
the TZ-unsatisfiable clause

w2 6≈ w3 + 10 ∨ w2 6≈ 20 ∨ w3 6≈ 10

by paramodulation into the final clause of Example 2.5.2.

approach taken by SPASS+T [WP06]
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A derivation from the weakly abstracted clause set {C, g(c) ≈ 10}:

f (10 + 10) 6≈ f (20) by paramodulation

f (w1) 6≈ f (20) ∨ w1 6≈ 10 + 10 by weak abstraction

20 6≈ 10 + 10 by equality resolution

� constraint refutation

Note that the first clause in the derivation was not weakly abstracted; unlike full
abstraction, weak abstraction is not preserved by superposition inferences in general.

Though the same inference steps were performed in both cases, the clauses in
the latter derivation were much smaller. This is advantageous given the super-
exponential time complexity of Cooper’s algorithm.

Apart from the performance improvements illustrated above, the ultimate aim of
weak abstraction was to avoid incompleteness caused by the abstraction procedure:

Theorem 2.5.2 (Prop. 5.2 of [BW13b]). Clause set N has sufficient completeness if and
only if weak(N ) does.

This follows because sgi(N ) and sgi(weak(N )) have the same first-order models.

Example 2.5.5. Let N = { f (1) < f (1),¬( f (1) < f (1))}. Then weak(N ) = N as 1
cannot be abstracted being a domain element, and f (1) cannot be abstracted as it is
not in T(ΣB,X ).

Theorem 2.5.3 ([BW13b]). Let I ∈ B be a term-generated ΣB-interpretation and let N
be a set of weakly abstracted Σ-clauses. If I satisfies all ΣB-clauses in sgi(N ) and N is
saturated w. r. t. HSP, then NI (i. e. . N reduced by I) is saturated with respect to the
standard Superposition calculus.

2.5.3 Completeness

Bachmair et al. [BGW94] give two requirements for the refutational completeness of
Hierarchic Superposition. The first is sufficient completeness, as defined above. The
second requirement is compactness of the base specification. A specification is called
compact, if every set of formulas that is unsatisfiable w. r. t. the specification has a
finite unsatisfiable subset. This is required because only finite cardinality clause sets
can be passed to a reasoner for the base specification.

Note that sufficient completeness must be proven for each input clause set, while
compactness is a general property of the base specification. Further, if a base spec-
ification is not compact, the consequence is that certain proofs will not terminate.
For example, the LIA specification with parameters is not compact as the set of unit
clauses {(0 < α), . . . , (n < α), . . .} is unsatisfiable w. r. t. the specification, but every
subset is satisfiable.7 A derivation for which the set of persisting clauses includes

7The specification for LIA without parameters is compact, however parameters are necessary to
recover sufficient completeness later.
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the set above cannot be finite in length, as Close will never apply. There are language
fragments on which Hierarchic Superposition is refutation complete, but whose spec-
ifications are not compact.

Theorem 2.5.4 (Complete but Non-Compact fragment [BW13a]). The Hierarchic Su-
perposition calculus is refutationally complete w. r. t. TZ for finite sets of Σ-clauses in which
every Z-sorted term is either (i) ground, or (ii) a variable, or (iii) a sum x + k of a variable x
and a number k ≥ 0 that occurs on the right-hand side of a positive literal s < x + k.

On the other hand, a derivation from a clause set without sufficient complete-
ness may terminate without deriving an empty clause, yet B-satisfiability cannot be
concluded.

Example 2.5.6. Consider the set of unit clauses

x < g(x) g(y) < 100

The clause set is unchanged by weak abstraction as all base terms are variables or
domain elements. No default Hierarchic Superposition rules apply8 so the clause
set is saturated. Clearly it is not TZ-satisfiable, but it also does not have sufficient
completeness as g can be arbitrarily interpreted in models of sgi(x < g(x), g(y) <
100) ∪ GndTh(TZ). So the calculus is excused from finding a refutation in this case.

Sufficient completeness cannot be decided for general clause sets.9 For certain
classes of Σ-clause sets it is possible to establish a variant of sufficient completeness
automatically [KW12, BW13b]. Essentially, if all base sorted non-base terms in the
input are ground, it suffices to show that every such term in the input is equal to some
ΣB-term. This can be achieved automatically by adding a definition t ≈ αt for every
base sorted non-base term t occurring in a clause C[t], where αt is a new parameter
(base sorted constant); afterwards C[t] can be replaced by C[αt].

Clauses in which all base-sorted terms are ground are said to be in the Ground
Base-sorted Term (GBT) fragment.

Theorem 2.5.5 (GBT fragment [BW13b]). Any clause set from the GBT fragment has
sufficient completeness.

2.5.4 Definitions and Sufficient Completeness

The action of adding definitions for terms that possibly break sufficient completeness
can be generalized to a calculus rule:

De�ne
C[s]

s ≈ αs

8Unsatisfiability could be concluded by an application of chaining to the LIA inequalities, see
Chapter 3

9There are decidability results in the literature on algebraic specifications [KNZ87], however, those
are usually restricted to positive equations only.
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where s is a ground base-sorted term not already defined and αs is a fresh base-sorted
constant.

By construction, s ≈ αs always reduces C[s] to C[αs], as well as any other occur-
rences of s in the clause set. So an application of De�ne is usually combined with an
immediate application of rewriting simplification.

For the GBT fragment, the define rule is applied in a pre-processing phase which
transforms the clause set to an equivalent one with sufficient completeness. The rule
can also be applied eagerly in other cases, as even sufficient completeness of a subset
of clauses can result in a successful proof.

Bachmair et al. [BGW94] note that, where all base sorted non-base operators have
a finite range, e. g. , a binary valued function into Z:

f (x) ≈ 0 ∨ f (x) ≈ 1

the clause set will have sufficient completeness. In Chapter 6 a generalization of this
is given for operators defined by linear polynomials, or projection functions in non-
integer theories. Also in that chapter is a discussion of sufficient completeness of the
various theories described in Section 2.3

It was observed [BGW94] that if a relational encoding is used for free base-sorted
operators (i. e. , n-ary function symbols are replaced by (n + 1)-ary predicates and
functionality axioms), a clause set without any base sorted non-base terms is pro-
duced. However, totality axioms for relational encoded functions

∀x∃y : B. p f (x, y)

always result in a base-sorted Skolem function after CNF transformation, so these
axioms are omitted. As a result, if N ′ is a copy of clause set N in which free base-
sorted operators are relational encoded (and their instances appropriately translated),
then any model of N ′ is possibly only a partial model of N , in the sense that some
free base-sorted operators may be interpreted as partial functions.

If it is known a priori that all partial models of N ′ can be extended to total
models, then satisfiability of N follows. This criterion (embeddability) was shown to
be equal to locality of a theory [SS05].

Lemma 2.5.1. A finite saturation of a clause set which is a relational encoding of a local
theory extension (of the base specification) implies satisfiability w. r. t. the base specification.

However, relational encodings typically degrade the performance of solvers using
the Superposition calculus.

Theorem 2.5.6 (Refutational Completeness of HSP). If the base specification (ΣB,B) is
compact, then HSP is refutationally complete for Σ-clause sets N with sufficient complete-
ness.

Proof. Let N∞ be the limit of a fair derivation from weak(N), specifically N∞ is sat-
urated w. r. t. HSPBase and RH. If � /∈ N∞, then Close does not apply meaning there
are no finite B-unsatisfiable subsets of N∞. By compactness of (ΣB,B), there is a
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ΣB-interpretation M that satisfies the ΣB-clauses in sgi(N). Then, by Thm. 2.5.3,
(N∞)M reduced by the rewrite system defined byM is saturated w. r. t. the standard
superposition calculus and so there is a Σ-interpretation M′ satisfying (N∞)M. It
must be shown that this is B-extending. Since N has sufficient completeness, sgi(N)
is equivalent to the set of ground instances of N in the interpretationM′. By defini-
tion of (N∞)M, it follows thatM′ satisfies each equation and disequation entailed by
M. Further, sufficient completeness implies that M and the ΣB-reduct of M′ have
identical cardinalities. Thus the ΣB-reduct of M′ is isomorphic to M, and in the
model class B, meaningM′ is B-extending.

An interesting modification is to make the choice of modelM′ externally, by the
theory solver for example. Then compactness is not a problem– as there is a single
model in the specification, and free base-sorted terms must be equal to ΣB-terms
only in the chosen model (sufficient completeness). If the latter condition is met,
then saturation under HSPBase immediately implies B-satisfiability, specifically there
is a model extending the chosen one. However, unsatisfiability is contingent on the
choice of model; to conclude global unsatisfiability, all possible models in B must be
excluded. This is conceivable where the class B is finite. This idea will return in later
chapters as a basis for a hierarchic satisfiability procedure.

It is possible to prove sufficient completeness using a smaller set than sgi(N ), the
following definitions capture that set10. A very-simple ground instance of a clause C is
a ground clause Cσ such that for all x ∈ vars(C), all base sorted subterms of the term
xσ are pure ΣB-terms. The set of all very-simple ground instances of a clause (set) C is
denoted vsgi(C). Notice that the essential difference between simple and very-simple
instances is that the latter requires base sorted subterms in all substituted terms to
be ΣB-terms, rather than only terms directly substituted for base sorted variables. A
term t is a relevant term forN , iff t is among the free base sorted subterms of vsgi(N ).
The set of all relevant terms for N is rel(N ).

Definition 2.5.3 (Local Sufficient Completeness). N has local sufficient completeness iff
for every Σ-model µ of sgi(N ) ∪ GndTh(B) and every term s ∈ rel(N ) there is a
ground ΣB-term t such that µ |= s ≈ t.

Theorem 2.5.7. If the base specification (ΣB,B) is compact and if the clause set N has local
sufficient completeness for rel(N ), then HSPBase is refutationally complete for abstr(N ). 11

Proof. (Sketch) TransformM′ from Thm. 2.5.6 into a term-generated Σ-interpretation
nojunk(M′) without extra elements (specifically those not in Dom(ΣB)) in base sorts
in two steps: In the first step, obtain M0 from M′ by deleting all additional ele-
ments from SM

′
where S is a base sort, also redefining M′( f ) arbitrarily whenever

M′( f (a1, . . . , an) is not in Dom(ΣB). In the second step, take the Σ-interpretation
nojunk(M′) to be the term-generated sub-interpretation ofM0.

10Due to Baumgartner and Waldman. Publication pending.
11Baumgartner, Waldmann Unpublished draft, 2015
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In the last stage of the proof of Thm. 2.5.6, sufficient completeness is used to
show that satisfying simple ground instances of N is equivalent to satisfying normal
ground instances. So the ΣB-reduct of the interpretation is in the base specification.

Then the important properties of J = nojunk(M′) for the proof are:

1. Every ground instance of a term (or clause) is equal in J to some very-simple
instance of the same term (clause), and this preserves truth value of clauses.

2. J and its ΣB-reduct are term-generated interpretations, and J’s ΣB-reduct sat-
isfies the entailed equations and disequations of the original ΣB-interpretation
M.

3. Very-simple instances of terms and clauses evaluate to the same element under
M′ and J.

Item 2) ensures the ΣB-reduct of J is a member of the base specification and items 1)
and 3) show that J satisfies all ground instances of N .

2.6 Other Reasoners with Interpreted Theories

2.6.1 SUP(LA)

Althaus et al. [AKW09] describe an instantiation of Hierarchic Superposition for the
theory of linear rational arithmetic, which is called SUP(LA).

They claim a more modular approach than other applications of hierarchic the-
orem proving to rationals, such as in Korovin and Voronkov [KV07]. Specifically,
Althaus et al. describe techniques for clause simplification specific to reasoning in
rational arithmetic (using Farkas’ lemma) which enables efficient tautology deletion
and subsumption between clauses with rational components.

In contrast to the method described above, SUP(LA) does not allow shared pa-
rameters with the base theory, which gives compactness (as there is a single theory
in the specification). This is at the cost of restricting the fragment which SUP(LA)
can accept, however. The problems due to complete abstraction are also found in this
calculus.

The paper also mentions applications to timed automata, some of which can be
described using first-order formulas equivalent to a clause set with sufficient com-
pleteness. Additionally the authors prove that data structure theories over their back-
ground theory are sufficiently complete. A similar result is given in a later chapter.

2.6.2 SMT

The Satisfiability Modulo Theories (SMT) approach has become popular in recent
years [BSST09]. It provides a way to both leverage the performance advances found
in SAT solvers while providing efficient theory-specific reasoning capability at the
same time.
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SMT solvers use one of two complementary approaches for theory reasoning:
the ‘eager approach’ in which the input formula is translated to an equisatisfiable
propositional formula using relevant theory axioms, then discharged by a SAT solver.
Research in this area focuses on the translation step for particular theories and is
particularly effective for fixed-width bitvector arithmetic theories. The other main
approach– ‘lazy encoding’, has the SAT solver work on an abstracted ‘propositional
skeleton’ and (one of many) theory solvers testing sets of ground theory literals
entailed by the current assignment. The propositional skeleton is made by simply
replacing ground theory literals uniformly with new propositional variables. For
example a formula (5 + a 6≈ 7 + y ∨ a 6≈ y) ∧ (a ≈ x) could be abstracted to (¬A ∨
¬B) ∧ A where A and B are propositional variables. If the propositional skeleton is
unsatisfiable, then the formula as a whole is unsatisfiable. On the other hand, the
SAT solver could find an assignment to theory literals that satisfies the propositional
skeleton– this produces the conjunction of theory literals for the theory solver. If
satisfiable, the problem overall is satisfiable w. r. t. the theory, otherwise a different
assignment must be found.

The decoupling of solvers is advantageous as a single SMT implementation can
be updated to use the latest SAT technology as well as support many theories (any
theory for which the satisfiability of conjunctions of ground theory literals is de-
cidable), including such theories as Linear Integer Arithmetic, the theory of Arrays,
Lists and other recursive data structures, theory of fixed width bitvectors and many
others.

However, many verification tasks contain operators, terms and literals in sev-
eral of the above theories simultaneously, possibly with non-disjoint signatures. A
method that is commonly used to circumvent this problem is the Nelson-Oppen
procedure for combining theories [NO79]. It is restricted to combinations of theo-
ries which have disjoint signatures (mixed signature literals are allowed), and for
which any formula with a finite model has an model with an infinite universe. Many
refinements to the original restriction have been proposed, e. g. , Jovanović and Bar-
rett [JB11], most of which weaken the latter criterion.

Given that most decision procedures are over ground fragments of their respec-
tive theories, SMT solvers require extension to deal with quantified formulas. Meth-
ods proposed for quantifier reasoning fall into two categories: instantiation or finite
model finding.

The key problem when instantiating quantifiers is finding relevant instances to
check. E-matching, described in Detlefs et al. [DNS03], addresses this problem by
finding subterms in the input formula which match with the context of the quantifier
to be instantiated. For example, if ∀x. L[t[x]] ∧ φ is to be instantiated and there are
terms s ≈E t[r] in φ, then [x → r] is used to produce a new instance. The process can
be tuned by using a larger or smaller subset of the available contexts, called ‘triggers’,
or these can be given by the user.

Ge and de Moura [GdM09] give a refinement to instantiation which guarantees
completeness for certain universally quantified formulas. Specifically all quantified
variables must occur as direct subterms of uninterpreted (i. e. non-theory) function
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symbols. This approach is related to certain, theory specific, extensions of decidabil-
ity to quantified fragments, such as the array properties fragment.

In the finite model finding camp, Reynolds et al. [RTGK13, RTG+13] give methods
for finding finite models for formulas in which quantifiers range over uninterpreted
types. This is distinct from the purely instantiation based method above, as it can
find models for formulas which do not strictly fall into any completely instantiable
fragment.

2.6.3 Princess

The Princess solver [Rüm08] operates in LIA extended with uninterpreted predicates.
Specifically, it implements a free-variable sequent calculus with constraints; the con-
straints are discharged via the Omega test. Since only predicates are supported,
all function symbols are relationally encoded with functionality and totality axioms
added. All predicates are regarded as sets of integer tuples.

For this reason, the issue of sufficient completeness does not arise; the only first-
order models under consideration are those which properly extend LIA. This does
not immediately imply that Princess is complete in more cases, for example, Princess
treats Skolemization differently than reasoners operating on clauses: it can introduce
a new constant at any time for a nested existential, but may need to do this more
than once for the same quantifier. Thus, some problems which Hierarchic Superpo-
sition would saturate but report ‘unknown’ due to a lack of sufficient completeness,
Princess would not terminate on, as it attempts to define the whole range of the
undefined terms.

In general, as for Hierarchic Superposition, Princess is complete on both pure
first-order and pure arithmetic formulas. It is also complete for prenex normal form
formulas with only universal or only existential quantifiers in the mixed signature.

Instead of abstracting formulas at the beginning of a proof, complementary in-
stances of a predicate produce a LIA formula which must be checked, as follows:

¬p(s1, s2, s3) ∧ p(t1, t2, t3) yields s1 ≈ t1 ∧ s2 ≈ t2 ∧ s3 ≈ t3

where si, ti are pure ΣZ-terms and p is an uninterpreted predicate.
Princess also uses E-matching for quantifier instantiation, as used in SMT solvers.

Although the calculus is complete without it, the use of user-defined trigger terms is
an advantage [Rüm12].

Princess has performed well in CASC competitions [Sut15, Sut14], and also is
used as a back-end for model checking applications.

2.6.4 SPASS+T

Waldmann and Prevosto [WP06] describe an extension of the SPASS solver (which
implements saturation based reasoning using a Superposition calculus) that uses
an SMT solver to implement theory reasoning. The two solvers are not as tightly
integrated as in the case of Hierarchic Superposition: the first-order solver simply
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passes to the SMT solver any clauses that it can handle (typically ground clauses with
free function symbols and arithmetic symbols). The proof search terminates if either
solver deduces a contradiction from its respective clause set. For some fragments
(see note), all base formulas are guaranteed to be ground, and SPASS+T is complete
in that case. For other fragments, the paper introduces an instantiation rule meant
to generate the necessary ground clauses for the SMT solver. In addition, specialized
arithmetic simplification rules are integrated in SPASS, either by input as axioms or
hard coded rules.

Fore example, the integer ordering expansion rule:

IEO
C ∨ s ≤ t

C ∨ s ≈ t ∨ s ≤ t− 1 C ∨ s ≈ t ∨ s + 1 ≤ t

is related to a rule used for recovering sufficient completeness described in Chapter
3. Prevosto and Waldmann note that it is obviously very productive but can be
restricted to only apply to clauses with a single positive literal.

Although capable of proving unsatisfiability of problems (especially ground prob-
lems) over mixed theories, the combination is incomplete, and so a saturation does
not guarantee the existence of a counter-example.

2.6.5 Nitpick

Nitpick [BN10] is a counter-example finder for higher-order logic (HOL), mainly
used together with the Isabelle/HOL proof assistant. It translates HOL formulas to
first-order relational logic (FORL), an extension of FOL with relational calculus op-
erators, such as product, union and transitive closure. This language is implemented
by Kodkod[TJ07], which in turn translates the problem to SAT.

In order to translate from HOL to FORL types in the HOL formula are restricted
to finite cardinalities, called scopes. This applies also for arithmetic theories encoded
in HOL which are treated specially by Nitpick. Specifically, only finite prefixes of
N are used, the successor function is interpreted as a partial function (relationally
encoded) as are functions which range over naturals. Partiality is soundly approx-
imated in the translated formula, however, quantifiers ranging over naturals might
not be disprovable. There is a mode in which such quantifiers are bounded, produc-
ing only hypothetical counter-examples.

Nevertheless, Nitpick is effective as a counter-example generator, and forms an
important part of Isabelle’s automation tool suite along with Sledgehammer and
Quickcheck, which have complementary roles.
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Chapter 3

Beagle – A Hierarchic
Superposition Theorem Prover

3.1 Motivation

This chapter describes Beagle , an automated theorem prover for first-order logic
modulo built-in theories. Beagle implements the Hierarchic Superposition calculus
as described in Bachmair et al. [BGW94], Baumgartner and Waldmann [BW13b],
and Chapter 2. Theory reasoning support is implemented for linear integer and
linear rational arithmetic. Beagle features new simplification rules for theory rea-
soning and well-known ones used for non-theory reasoning. It also implements
calculus improvements like weak abstraction [BW13b] and a method for determin-
ing (un)satisfiability w. r. t. quantification over finite integer domains. (Originally de-
scribed in Baumgartner et al. [BBW14], this addition will be described in Chapters 5
and 6). Beagle is a test-bed implementation for those ideas.

Beagle is written in Scala and includes an implementation of a background rea-
soner for deciding fully quantified LIA formulas. Existing SMT solvers can be
employed as background reasoners as well, via a textual SMT-LIB interface. Bea-
gle accepts problem specifications written in the Typed First-order Formula (TFF)
format (the typed version of the Thousands of Problems for Theorem Provers (TPTP)
problem specification language) and in the SMT-LIB format [BST10].

This chapter describes the above features in more detail and reports on Beagle ’s
performance on benchmarks from the TPTP problem library [Sut09] and SMT-LIB1. It
updates the previous system description [BBW15] with new results and descriptions
of some new features.

Section 3.2 describes Beagle ’s background reasoning components in general terms,
giving an overview of how they relate to the first-order logic reasoning component.
It also describes a generic minimization procedure used for dependency-directed
backtracking when an unsatisfiable set of BG clauses has been found. Section 3.3
provides a detailed description of the Beagle ’s LIA reasoner. Since most arithmetic
problems found in the software verification domain use only LIA, this reasoner was
chosen as the target of most of the optimization work. Performance results are given

1http://smtlib.cs.uiowa.edu/benchmarks.shtml
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on a range of parametric problems in the pure LIA theory. The section also describes
a novel solution extraction technique for Cooper’s algorithm, that has the ability to
return representative values for existentially quantified variables in satisfiable for-
mulas. Section 3.4 describes the overall proof procedure insofar as it applies to the
first-order parts of clauses. Finally, Section 3.5 describes Beagle ’s performance on the
TPTP and SMT-lib benchmark libraries, as well as reporting results from the yearly
CASC competitions.

In this chapter ‘BG clause’ refers to a clause over one of the background theories
TZ, TQ or TR, and similarly for ‘BG formula’. ‘BG prover’ refers to any of the built-in
decision procedures for BG clauses, while ‘proof procedure’ refers to the Superposi-
tion based calculus.

A BG variable is either abstraction or general, it will be described as such if the
distinction is important. Capital letters {X, Y, Z} denote abstraction variables, and
lower case letters {x, y, z} denote ordinary variables.

There is a trade off between abstraction and ordinary variables: while ordinary
variables enable ‘more complete’ theorem proving, they often lead to a larger search
space. For example, the clause set {p(x), ¬p(c)}, where c is in the FG signature, is
(B-)unsatisfiable by virtue of the instance p(c) of the first clause, and the prover will
detect this. However, {p(X), ¬p(c)} is B-satisfiable, as the abstraction variable X is
never instantiated with the FG constant c when forming the equivalent set of ground
instances.

Although the usage of abstraction and general variables within a derivation is
fixed, the implementation can choose either kind for BG variables in input formulas.
Some proofs can only be found using general variables in input formulas, typically
these problems do not have sufficient completeness. On the other hand, many proofs
can be found using only abstraction variables in the input, and this strategy is much
more efficient overall. Beagle supports both configurations, and switching between
the two is a key step in the ‘auto mode’ described later.

3.2 Background Reasoning

Background reasoning is represented in Beagle as theory specific modules, ‘solvers’,
that implement a specific interface (Fig. 3.2). This section describes the capabilities
and uses of Beagle ’s solvers.

At minimum, a theory solver must implement the Close inference rule given
above, that is, it must decide the B-satisfiability of sets of BG clauses. Hence, the
solver must at least decide B-satisfiability for the EA-fragment. If the BG clauses do
not have free (BG-sorted) constants, they can be checked by a theory solver for the
quantifier-free fragment. This case is rare however, so it is preferable to be able to
decide B-satisfiability in the EA-fragment to fully support quantified reasoning.

If the background theory admits quantifier elimination (QE), then problems in
the EA-fragment can always be reduced to the universally quantified fragment and
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// Implemented by individual solvers

def QE(cl: Clause): List[Clause]

def check(cls: Iterable[Clause]): SolverResult

// Compute a set of ground clauses that is equivalent

// to cl over the background domain.

def asSolverClauses(cl: Clause): (List[Clause], List[Clause])

// Implemented globally

def minUnsatCore(cls: Iterable[Clause]): List[Int]

def simplify()

def subsumes(cl1: Clause, cl2: Clause): Boolean

Figure 3.1: The Solver interface

checked with an efficient decision procedure, or can be discharged with a second
round of quantifier elimination.

The Close check is used within Beagle ’s proof procedure whenever a new BG
clause is retained. This is an incremental process: the new clause is added to a set of
BG clauses that is guaranteed to be B-satisfiable. QE algorithms, such as Cooper’s
algorithm and Fourier-Motzkin, are not known to support incremental reasoning,
though many decision procedures for the quantifier-free fragment do. Instead, a
version of Cooper’s algorithm is described in Section 3.3.2, which stores the bindings
used in the outermost QE step. When applied to a valid EA-formula, this returns an
assignment to the BG sorted constants in a model of the BG clauses. Re-applying this
assignment before the next call to Close can produce a simpler, often trivially true,
formula.

3.2.1 General Components

This section describes BG reasoning components common to all BG solvers used by
Beagle . Examples will be assumed to be in extensions of TZ.

Quantifier elimination. Quantifier Elimination (QE) can be used for eliminating
variables that only occur in BG literals of a non-BG clause. For example, the clause
p(x)∨¬(x < y)∨¬(y < 3) becomes p(x)∨¬(x < 2) by QE of y from the subformula
∀y. ¬(x < y) ∨ ¬(y < 3). The general form of this transformation is

QE-general
∀x. C[x] ∨ ∀y. D[x, y]

∀x. C[x] ∨ D′[x]

where D is a disjunction of BG literals, and D′ follows from QE of the tuple of BG
variables y from D.

However, using QE like this for clause simplification may destroy refutational
completeness, since in general the result can be larger (under the clause ordering)
than the clause being simplified. A special case is where the conclusion is C ∨ >, as
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then the clause C ∨ D can safely be removed2. Checking all clauses with BG literals
can be expensive, and is not necessary when all clause literals are pure BG.

Overall, this improvement does not make a large difference; the slight improve-
ments in performance are balanced by losses elsewhere. In isolated cases where large
clauses with trivial BG parts are deleted it can make a drastic improvement, but this
also depends on other parameters being set correctly. For example, SWW598=2 shows
a 20s improvement, while SWW619=2 shows a 25s loss in performance with this form
of checking. Hence this optimization is disabled by default. Otherwise, Beagle uses
this simplification only during preprocessing, which does not affect refutation com-
pleteness.

Splitting. Beagle optionally splits BG clauses into variable disjoint subclauses. If QE
is available, then a version of each BG clause with the shared quantifiers instantiated
is added to the current clause set, which is split exhaustively into unit clauses by
Beagle ’s splitting rule. For example,

Example 3.2.1. Take the clauses below, where N does not contain any further BG
clauses.

0 ≥ −3x + y ∨ 0 ≈ x− 5 ∨ 0 > z,N

The variable x shared between literals of the first clause can be eliminated using
Cooper’s algorithm. First, the clause is negated and literals with x are normalised:

¬(∃z, y, x. (3 | x ∧ 0 < −x + y ∧ 0 6≈ x− 15 ∧ 0 ≤ z))

The equivalent elimination formula:

¬(∃z, y.
3∨

j=1

(3 | (15 + j) ∧ 0 < −(15 + j) + y ∧ 0 6≈ (15 + j)− 15 ∧ 0 ≤ z))

Removing the outer negation:

∀y, z. (0 < −16 + y ∨ 0 > z) ∧ (0 < −17 + y ∨ 0 > z)

Then splitting and simplification yields three clause sets:

0 < −16 + y,N
0 < −17 + y,N

0 < z,N

Note that each has only unit BG clauses.

This is used only when the BG decision procedure only accepts ground unit
clauses (equivalently, conjunctions of ground theory literals) as input.

2This is like the tautology deletion rule for SUP(LA) described in Chapter 2.
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Simplification. Like with inference rules, simplification rules are prevented from
applying to BG terms, e. g. , the unit clause a+ 5 ≈ b+ 2 would not be used to rewrite
inside another clause. BG simplification is useful in other cases, as, for example
a + 5 ≈ a + 2 can be shown to be unsatisfiable using cancellation rather than QE.

Beagle employs demodulation by BG tautologies and other forms of syntactic sim-
plification for BG terms during a proof. These techniques must satisfy the usual
conditions for simplification in the Hierarchic Superposition calculus to ensure com-
pleteness. However, as is often the case, incomplete strategies yield large performance
gains.

In Beagle , simplification rules and strategies are classified as cautious and aggres-
sive, the distinction being that cautious strategies preserve both sufficient complete-
ness and refutation completeness, while aggressive ones may not. Cautious rules typ-
ically evaluate ground terms or eliminate obvious tautologies. Aggressive rules may
eliminate double (arithmetic) negation or do algebraic cancellation, both of which
may prevent future (necessary) inferences. The actual level of simplification (cau-
tious or aggressive) can be set by the user or controlled internally.

Beagle also has a hard-coded set of theory specific simplification rules which act
on arithmetic terms and literals. Unlike lemmas, BG simplification rules do not
appear as part of the clause set. The following subsections describe theory specific
simplification rules.

Beagle removes disequations of certain forms from clauses by unabstraction. This is
effectively the inverse of an abstraction step, although the abstracted term may have
been modified since it was abstracted, e. g. , by demodulation to a domain element.
The general form of the unabstraction rule is:

Unabstract
C ∨ x 6≈ t

C[x → t]

where x is BG-sorted and does not occur in t.
This is similar to the usual equality resolution rule from the Superposition cal-

culus, however it applies only to BG sorted literals of a specific form, therefore is
classified as a form of BG reasoning.

Unabstraction has cautious and aggressive variants: for example, if cautious sim-
plification is chosen, literals of the form x 6≈ d are removed by unabstraction only if
d is a concrete number.

Aggressive unabstraction allows t to be any term, including FG terms. It can break
completeness, since there is no guarantee that the unabstracted clause is smaller than
all possible simple ground instances of the abstracted clause.

Example 3.2.2. Let C = f (x) ≈ 0 ∨ x 6≈ a+ 5 where a is a parameter, then C produces
f (a + 5) ≈ 0 by unabstraction. The clause f (0) ≈ 0 ∨ 0 6≈ a + 5 is in sgi(C) and since
0 ≺ a + 5 in the term ordering it follows that f (0) ≈ 0 ∨ 0 6≈ a + 5 ≺ f (a + 5) ≈ 0.
So the result of unabstraction does not make the original clause redundant in this
case .
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As for other simplification rules, the specific level of unabstraction is controlled
internally and, typically, only the results of cautious unabstraction are kept. Ag-
gressive unabstraction is used to derive unit clauses which may demodulate other
clauses, but only those demodulation results are used, not the unit clauses result-
ing from unabstraction. In general, clauses (unit or otherwise) produced by unab-
straction are never directly added to the set of retained clauses, but can be used in
satisfiability checks.

Lemmas. For common, but undecidable, extensions to BG theories (non-linear arith-
metic in particular), Beagle uses lemmas and built-in operators to provide best-effort
support. Non-linear arithmetic terms x · y are translated by replacing the product
operator with a new uninterpreted (FG) operator prodZ. Axioms are included to de-
fine prodZ in terms of BG operators 0, 1,+Z, while simplification rules replace any
linear prodZ-terms with their BG equivalent. Extra lemmas about prodZ are also in-
cluded, e. g. , the usual distribution and commutation laws, most of which can only
be proven by induction on the definitions. All of the prodZ lemma formulas used are
listed below:

(1) prodZ(0, x) ≈ 0 (2) prodZ((1 + x), y) ≈ y + prodZ(x, y)
(3) −prodZ(x, y) ≈ prodZ(−x, y) (4) prodZ(x, y) ≈ x ⇔ (x ≈ 0 ∨ y ≈ 1)
(5) (0 < x ∧ 0 < y)⇒ 0 < prodZ(x, y)
(6) prodZ(x, (y + z)) ≈ prodZ(x, y) + prodZ(x, z)
(7) prodZ(x, y) ≈ prodZ(y, x)

Formulas (1) and (2) define prodZ, (6) and (7) give basic algebraic properties only
provable via induction and (3)-(5) are useful algebraic simplifications also difficult
to prove otherwise. The associative law was left out due to severe performance
degradation on many examples.

‘Lemma’ in this context simply denotes a valid formula which is treated specially
by the proof procedure; as for the set-of-support strategy in resolution solvers, in-
ferences between lemma clauses are disallowed. Unlike set-of-support, there is no
expectation that the set of lemmas is saturated, they are simply extra clauses which
might help in a derivation, but might otherwise be needlessly over-productive (e. g. ,
associativity and commutativity). An advantage of this arrangement is that lem-
mas subsume identical clauses in the input, providing the user with a way to prune
over-productive clauses.

Solvers. Beagle implements solvers for linear integer arithmetic (LIA) and linear ra-
tional arithmetic (LRA). It also accepts linear real arithmetic, but the differences are
merely syntactic. Alternatively, existing SMT solvers can be coupled via a textual
SMT-LIB interface. In addition, Beagle can make use of minimal unsatisfiable cores,
that can be produced by SMT solvers such as Z3 [dMB08]. Unsatisfiable cores can be
exploited for dependency-directed backtracking, described in the next section.



§3.2 Background Reasoning 43

3.2.2 Minimal Unsatisfiable Cores

When the Close rule applies to a set of BG clauses D, Beagle determines a minimal
unsatisfiable subset of D (a minimal unsatisfiable core (MUC)). This core is used for
dependency-directed backtracking of split levels.

A split level is a set of clauses whose derivation includes the left conclusion of
a split inference. Each split conclusion corresponds to a branch in the proof search
space.

Definition 3.2.1 (Split Level). Split level S0 is the set of input clauses. Split level Sn+1

consists of the left conclusion of a split inference on a clause in split level Sn and any
conclusion of an inference whose premises contain a clause in Sn+1.

When Sn |= � is concluded, the proof procedure can backtrack to Sm where
m < n, by removing any clauses in split levels higher than m from the current clause
set and then adding the right conclusion of the last split.

The unsatisfiable subset is minimal w. r. t. unsatisfiability, i. e. , any proper subset
is satisfiable. Then, by backtracking to the level before the split that produced the
maximal split level in the unsatisfiable set, the new split level will not contain the
same BG clauses that caused unsatisfiability of the clause set before backtracking.

Currently, minimal unsatisfiable subsets are found by applying a simple mini-
mization algorithm to the unsatisfiable BG clause set, or by using the built-in unsat-
isfiable core algorithm in the Z3 SMT-solver [dMB08].

An unsatisfiable clause set can have multiple minimal unsatisfiable cores. For
example, let unit clauses P, Q be in S0, ¬P ∈ S1 and ¬Q ∈ S2. The clause set
S0 ∪ S1 ∪ S2 has two minimal unsatisfiable cores: {P,¬P} and {Q,¬Q}. Depending
on which is selected, either S1 or S0 might be backtracked to. Of course, backtracking
to S1 is not helpful as this still derives the unsatisfiable set {P,¬P}. Therefore, the
maximal split level of clauses in the unsatisfiable core should also be minimized,
otherwise the heuristic will not be effective.

Lemma 3.2.1. Given an unsatisfiable set of BG clauses N , the algorithm minUnsatCore

finds a MUC T ⊆ N such that the maximal split level of any clause in T is less or equal to
the maximal split level in any other MUC of N .

Proof. Assume the contrary, that some MUC S ⊆ N is returned whose split level
(i. e. , the largest split level of any clause in M) is larger than the split level of some
other MUC T ⊆ N . By assumption, both S and T are non-empty, and so the maximal
c ∈ S w. r. t. split level has higher split level than any clause in T. It is an invariant
that the list cs remains sorted after all removals. Therefore, c has a lower index in
cs than every clause in T, and so a clause set including T but excluding c is checked
before any clause of T can be removed. Since this clause set contains the MUC T, it
is unsatisfiable, and so the clause c is removed from cs. Then S is not returned by
minUnsatCore.

Testing on TPTP-v6.1.0 shows that this heuristic provides generally good results.
The best performance improvement was 44s, while the worst degradation was only
2.8s.
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1 algorithm minUnsatCore(cls: List[Clause]):
2 if (check(cls) is SAT):
3 Nil
4 else:
5 let i = 0
6 let cs = sortDescSplitLevel(cls) //the working clause set
7 while (i < cs.size):
8 if (check(cs.drop(i)) is UNSAT):
9 cs = cs.drop(i)

10 i = 0
11 else i += 1
12

13 return cs //no more removals possible

Figure 3.2: Pseudocode for MUC algorithm

Figure 3.3: Run time in seconds of Beagle with and without MUC
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Figure 3.2.2 shows the performance of Beagle (wall-clock time in seconds) on all
Typed First-order Arithmetic (TFA) problems in the TPTP-v6.1.0 library. The verti-
cal axis measures run time with the MUC optimization enabled and the horizontal
shows run time without. Both axes are logarithmic.

Of the 954 LIA problems tested, 837 problems showed no performance change
either way (these problems are typically solved without backtracking), and 117 prob-
lems showed a performance difference (a shift of more than 0.5s). Roughly half (59)
performed better, and 58 performed worse with MUC enabled. However, many of the
problems which showed improved performance with MUC enabled outperformed
the regular version by at least ten seconds, while the worst performers lost no more
than 3 seconds. The best improvement was 45s on NUM860=1, while NUM862=1
and SWW650=2 showed significant improvement. As a result, MUC is enabled by
default.

3.2.3 Other Arithmetic Features

Linear Rational Arithmetics. The solver for LRA comprises a Fourier-Motzkin3

style QE procedure for eliminating BG variables. This eliminates variables from DNF
TQ-formulas by replacing si ≤ x with si ≤ tj for each literal x ≤ tj appearing in the
same disjunct as si ≤ x. The variable x is eliminated from a particular disjunct after
all such pairs are added. However, this leads to a worst case double exponential
growth in the size of formulas [Mon10], so once the formula has been reduced to
a single quantifier alternation (i. e. , of the form ∃. F) a Simplex solver is used to
eliminate the final varaibles.

This solver is an off-the-shelf implementation of the Simplex algorithm4. In order
to support literals with strict inequalities, an extra variable is introduced. For exam-
ple, ax + by + cz > k for a, b, c, k ∈ Q and variables x, y, z, becomes ax + by + cz ≥
k + d assuming d > 0, where d is a new variable. The new variable d is reused for
all inequalities, and to satisfy the constraint d > 0 the value of d is maximized by the
Simplex algorithm. If a solution exists but d ≤ 0 after maximizing, then the problem
is unsolvable (TQ-invalid), otherwise it is TQ-valid.

The cautious simplification rules for LRA evaluate arithmetic subterms, and the
aggressive simplification rules rewrite sub-terms towards a flat structure by exploit-
ing AC-properties of the operators as for LIA. Syntactic differences between concrete
numbers aside, linear real arithmetic is treated by additional lemmas that are valid
in real arithmetic. Overall, the LRA solver is not as advanced as the LIA solver.

Non-linear Arithmetic. Beagle features a simplistic treatment of non-linear arith-
metic. During preprocessing, every occurrence of a non-linear multiplication sub-
term s · t is replaced by prod(s, t), where prod is a dedicated foreground function

3Due to J. Fourier, 1824. A description of the method’s application as a decision procedure is in
Monniaux [Mon10]

4Part of the Apache Commons math library. See http://commons.apache.org/proper/commons-
math/
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symbol of the proper arity. As soon as s or t in prod(s, t) is replaced by a concrete
number, the resulting term is turned into a (theory) multiplication term again. There
are dedicated lemmas for each of the theories TZ, TQ, TR, that define multiplication in
terms of repeated addition and specify other difficult to prove properties of multipli-
cation. See the previous section on lemmas in Section 3.2.1. An alternative, described
in Chapter 4, is to attempt to prove that the input formula φ is B-unsatisfiable (as
opposed to proving ¬φ unsatisfiable). If φ contains no uninterpreted terms other
than non-linear product terms, then the fact that ¬φ is B-valid follows from the un-
satisfiability of φ and the satisfiability of the axioms defining the product operator.
This observation was useful in the competition, see Section 3.5.3, but requires some
care to apply correctly.

Chaining. The optional chaining inference rules apply the transitivity property of
<. One of them is positive chaining:

Positive chaining
s < t ∨ C u < v ∨ D

abstr((s < v ∨ C ∨ D)σ)

if σ is an mgu of t and u.
Other chaining rules deal with negative inequations ¬(u < v) in the right premise.

Currently, the only restriction is that the literals selected for inferencing are not pure
BG.

A variation on the chaining rule can be used to recover sufficient completeness in
certain cases. Consider a problem of the form:

Example 3.2.3. Let x, y be Z-sorted variables, a some Z-sorted constant, and f : Z→
Z.

(1) a < f (x) (2) f (x) < a + 4
(3) (0 ≤ x ∧ x ≤ 3)⇒ f (x) < f (x + 1)

The set of (1), (2), and (3) is inconsistent, since (1) and (2) allow f to take at most
three distinct values, while (3) requires four.

Unsatisfiability can be demonstrated in the Hierarchic Superposition calculus by
introducing either of

(4.1) f (x) ≈ a + 1 ∨ f (x) ≈ a + 2 ∨ f (x) ≈ a + 3

(4.2) { f (0) < f (1), f (1) < f (2), f (2) < f (3)}

Adding (4.1) to the clause set recovers sufficient completeness, as then any model
must satisfy f (t) ≈ a + 1, f (t) ≈ a + 2, or f (t) ≈ a + 2 where t is ground. On the
other hand, adding (4.2) does not immediately give sufficient completeness, but it
adds new instances of f to the clause set which may not otherwise occur. These
instances enable the derivation of the required contradiction.

The reasoning in the above example can be formalized by an inference rule that
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generalizes the LIA theorem

∃a : Z. (a < t ∧ t < a + k)⇔
k−1∨
j=1

t ≈ a + j (3.1)

where k > 1 ∈N, and t is any integer sorted term.
There are two forms of this rule, corresponding to the left and right directions of

(3.1).

Inst-Right
r < s ∨ C t < u ∨ D

(s ≈ r + 1 ∨ . . . ∨ s ≈ r + (k− 1) ∨ C ∨ D)σ

Inst-Left
¬(r < s) ∨ ¬(t < u) ∨ C

(s 6≈ r + 1 ∨ C)σ, . . . , (s 6≈ r + (k− 1) ∨ C)σ

where σ = mgu(s, t); (u − r)σ ≈Z k ∈ N, k > 1; both r < s and t < u are not
pure-BG.

Sufficient completeness (of a subset of clause instances) is recovered in the special
case where both C and D are empty in the premises of Inst-Right. As with the De�ne

rule, Inst-Right is best applied eagerly in a derivation. The Inst-Left rule does not
recover sufficient completeness, although it does introduce clause instances which
could be useful in a derivation, as seen in the example.

This illustrates an interesting overlap of theory reasoning and sufficient complete-
ness. Where a clause set has sufficient completeness already, Inst-Right and Inst-Left

are not necessary, as all clauses with free BG sorted terms are eventually equivalent
to some BG clauses. On the other hand, for clause sets without sufficient complete-
ness rules that implement theory reasoning for free BG terms can allow derivations
which would otherwise not be possible. Theory reasoning, as a strategy for dealing
with a lack of completeness, has the advantage of being applicable to all clause sets
extending that particular background theory.

3.3 Linear Integer Arithmetic

As previously mentioned, the solver for the LIA theory in Beagle is a custom imple-
mentation of Cooper’s algorithm. Satisfiability in the EA-fragment of ΣZ is decided
by two rounds of QE.

A high level description of the essentials of Cooper’s algorithm as implemented
in Beagle , following Harrison [Har09], is given below:

Let ∃x. F be a formula in negation normal form, where F is quantifier-free. The
aim of any QE algorithm is to produce from F some quantifier-free formula G that is
equisatisfiable w. r. t. the given theory, TZ in this case. Note that, in general, universal
quantifiers are presumed to be eliminated using the equivalence ∃x. F ⇔ ¬∀x. ¬F.
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The following assumes primitive operators ≈,<, 6≈, |, so all literals of F must be
translated to one of these, e. g. , s ≥ t becomes t < s ∨ t ≈ s. Every literal of F is
assumed to be normalized into either of the forms

1. 0 ./ c1x1 + . . . + cnxn + k, where ./∈ {≈,<, 6≈} or,

2. d | c1x1 + . . . + cnxn + k, for d ∈ Z and possibly negated.

where the coefficients ci and k are concrete integers whose greatest common divisor
is 1

Definition 3.3.1 (Cooper’s Algorithm). To eliminate x from ∃x. F[x], do the following:

1. Let l be the lcm of all x coefficients in F and replace literals as follows

• replace 0 ≈ cx + t with 0 ≈ x + (l/c)t

• replace 0 < cx + t with 0 < x + |l/c|t, or 0 < −x + |l/c|t if c is negative

• replace d | cx + t with d | x + (l/c)t

Similar for negated versions of literals. Let unitx(F) = F′ ∧ l | x, where F′ is F
with all literals transformed as above.

2. Let F−∞[x] be the formula that results from replacing literals 0 ≈ x+ t, 0 < x+ t
with ⊥, and replacing literals 0 < −x + t, 0 6≈ x + t with > in unitx(F).

3. Let Bx be the set such that

(a) −t ∈ Bx if either 0 < x + t or 0 6≈ x + t occurs in unitx(F), and

(b) −(t + 1) ∈ Bx if 0 ≈ x + t occurs in unitx(F)

Let FB[j] :=
∨

b∈Bx
unitx(F)[b + j] for a fresh variable j.

4. Let D be the lcm of all of the literals d | x, or ¬(d | x) in unitx(F), or 1 otherwise.
Cooper’s theorem establishes that

∃x. F[x]⇔
D∨

j=1

(F−∞[j] ∨ FB[j]) (3.2)

The right-hand formula in the equivalence (3.2) is called the elimination formula
for x.

Example 3.3.1. Consider the elimination of x from

F = ∃y, x. 0 < −3x + y ∧ 0 6≈ y− 5
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Note that F is already in normal form.

unitx(F) = 3 | x ∧ 0 < −x + y ∧ 0 6≈ y− 5

lx = 3

FB = ⊥, since Bx = ∅

F−∞ = (3 | j ∧ >) ∧ 0 6≈ y− 5

Then

F ⇔ ∃y.
3∨

j=1

(3 | j ∧ 0 6≈ y− 5)

Quantifier elimination. The built-in LIA solver is based on Cooper’s algorithm as
given above, and includes improvements as introduced in Cooper [Coo72]. It accepts
arbitrary BG formulas, in particular conjunctions of clauses. The code roughly fol-
lows the algorithm described in Harrison [Har09]. The LIA solver is used for both
deciding satisfiability of sets of BG clauses (Close rule) and for the elimination of
variables as described above (QE-general rule).

The implementation includes several improvements to Cooper’s algorithm to
make it more practical:

• conjunctions such as x < 5 ∧ x < 3 are replaced by x < 3, a limited form of
subsumption.

• variables that admit unbounded (above or below) solutions are eliminated, e. g. ,
∃x. x 6≈ 0 ∧ F where x does not occur in F, is equivalent to F.

• elimination of equations x ≈ t where x does not occur in t, is accomplished by
substitution of t for x.

Furthermore, if a conjunction contains the atomic formulas s1 < α, . . . , sm < α and
α < t1, . . . , α < tn, given that α does not occur elsewhere, then α can be removed
by exhaustive resolution. (Resolution of s < α and α < t yields s + 1 < t.) If α

does occur somewhere else, then this form of resolution can still be used to prove
unsatisfiability when s + 1 < t is false. This is similar to the first step of the Omega
test for deciding Presburger arithmetic [Pug91].

The improvements mentioned above often help to solve problems much faster.5

However, most are effective only on conjunctions of literals. To maximize their util-
ity, the implementation deviates from the standard Cooper algorithm by multiplying
out disjunctions in the RHS of (3.2). This can avoid deeply structured ‘or-and’ for-
mulas and, as a special case, disjunctive normal form is preserved by solving and
multiplying out the conjunctions separately.

Specifically, input to the algorithm is assumed to be a disjunction F0 = ∃x. G0 ∨
G1 ∨ . . . ∨ Gk where each Gi is a conjunction. Each disjunct Gi is treated separately,

5E.g., the GEG-problems in the TPTP problem library.
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this well-known block-elimination enhancement reduces the lcm of the x coefficients.
The simple elimination tests are applied first (for all variables, not just x), then the
elimination formula for Gi is produced. Assume Gi = Gx

i ∧ G′i such that G′i does
not contain x and that the result of (3.2) is H0 ∨ H1 ∨ . . . ∨ Hl , then Gi = (H0 ∨
H1 ∨ . . . ∨ Hl) ∧ G′i . This is the formula that is multiplied out, and Cooper is called
recursively on (H0 ∧ G′i) ∨ . . . ∨ (Hl ∧ G′i).

The final step of Cooper’s algorithm involves instantiation over representatives
of congruence classes of solutions for the target variable, which quite often leads to
prohibitively large formulas. Using an improvement suggested in Harrison [Har09],
Beagle occasionally defers this instantiation (based on the expected number of in-
stances) until a later round of quantifier elimination. This is done by substituting a
fresh variable and terms that describe the solution range, as occasionally a shorter
proof of satisfiability/unsatisfiability can be found using a different variable.

Simplification and arithmetic terms normalization. The cautious simplification
rules for LIA comprise evaluation of arithmetic terms, e. g. , 3 · 5, 3 < 5, α + 1 < α + 1
(equal LHS and RHS terms in inequations), and rules for TPTP-operators, e. g. ,
$to_rat(5), $is_int(3.5). For aggressive simplification, integer sorted subterms are
brought into a polynomial-like form and are evaluated as much as possible. For ex-
ample, the term 5 · α + f(3 + 6, α · 4)− α · 3 becomes 2 · α + f(9, 4 · α). BG formulas
always produce proper polynomials, which can be used directly by the QE procedure
without further conversions.

Aggressive simplification does not always preserve sufficient completeness. For
example, in the clause set N = {p(1 + (2 + f(x))), ¬p(1 + (x + f(x)))}, the first
clause is aggressively simplified, giving N ′ = {p(3 + f(x)), ¬p(1 + (x + f(x)))}.
Notice that both N and N ′ are TZ-unsatisfiable, sgi(N ) ∪ GndTh(TZ) is unsatisfi-
able, but sgi(N ′) ∪ GndTh(TZ) is satisfiable, since 1+ (2+ f (2)) ≈ (1+ 2) + f (2) is
not a theorem of GndTh(TZ). Thus, N is (trivially) sufficiently complete while N ′ is
not.

Aggressive simplification also includes heuristics for normalizing equations and
inequations. Inequations are normalized by first eliminating the operators >, ≥ and
≤ in terms of <. The QE procedure treats < as a primitive, so this is a natural
choice. Then, the monomials of the LHS and RHS polynomials are moved around so
that only positive signs and only addition of monomials (not subtraction) results. The
rationale is to normalize terms by removing unnecessary operators. Similar heuristics
apply for equations, which attempt to produce orientable equations. For example,
f (x) + 1 ≈ g(y) + 2 is not orientable, but f (x)− g(y) ≈ 1 is, as 1 is smaller that any
FG term in the term order. Normalizing (in)equations may remove or install sufficient
completeness and destroy refutational completeness. Yet, experiments showed that
aggressive simplification is far superior to cautious simplification in practice, hence
it is enabled by default.



§3.3 Linear Integer Arithmetic 51

3.3.1 Performance

Although there are many high-level descriptions of Cooper’s algorithm implementa-
tions, there are few descriptions of actual implementation details, for example Phan
and Hansen [PH15] describe an implementation optimized for parallelism. For test-
ing their implementation, the authors used a parametric form of the pigeon hole
problem encoded in Peano Arithmetic.

This section describes a selection of parametric problems in the language of ΣZ

and the performance of Beagle ’s Cooper solver on them. There are five problem
classes, one of which is encoded in two ways. Table 3.1 reports the results of Bea-
gle and CVC4 (version 1.4) on the problem instances, along with the parameters used
and the problem’s satisfiability status. The following sections describe each problem
class along with the meaning of their parameters. In general, the problems instances
reported in Table 3.1 were chosen to show points where the performance of either
solver changed, or to illustrate an apparent relationship between some parameter
and the solving time.

These experiments were carried out on a Linux desktop with a quad-core Intel i7
chip running at 2.8 GHz, with 8GB of RAM, although the host JVM6 was configured
with maximum heap size of 4GB (relevant for Beagle ). The CPU time limit was
60 seconds soft (solver’s heuristic target time) and 65 seconds hard (unresponsive
processes killed).

The values in the status column reflect the expected result of a proof attempt, based
on the construction of the problem. They have the following meanings:

• “Theorem/Counter-Sat” results indicate that the formulas have a designated
conjecture formula which will be negated by the solver.

• “Satisfiable/Unsatisfiable”, have no designated conjecture.

• “?” indicates that status of the problem is unknown.

The rationale behind comparing with CVC4 is that CVC4 implements projection
style BG reasoning []. As can be easily observed from the table, CVC4’s implementa-
tion is far more sophisticated than that of Beagle , however, the class of problems for
which QE is suited is not completely subsumed by projection style reasoning.

Systems of Linear Equations. Given equations

a00x + a01y + a02z ≈ 0

a10x + a11y + a12z ≈ 0

a20x + a21y + a22z ≈ 0

for fixed integer coefficients aij, check if there exists an assignment to the variables
that satisfies all equations. There can be either no solution, a single solution or in-
finitely many solutions, depending on the choice of coefficients. Cooper’s algorithm

6OpenJDK v.1.8
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Problem Parameter Status Cooper CVC4
Frobenius S = {7, 8} Satisfiable 1.31 -

S = {17, 18} Satisfiable 1.11 -
S = {34, 35} Satisfiable 3.14 -

S = {11, 17, 25} Satisfiable 5.60 -
S = {53, 24, 27} Counter-Sat 4.74 -
S = {179, 89, 90} Satisfiable - -
S = {3, 11, 17, 25} Satisfiable - -

nQueens n = 3 Unsatisfiable 0.1 0
n = 4 Satisfiable 1.29 0.01
n = 8 Satisfiable 31.91 0.03

Subset-sum | S |= 2, n = 111, k = 5 (1) Theorem 0.1 0.01
| S |= 2, n = 111, k = 5 (3) Counter-Sat 1.1 0.01
| S |= 3, n = 13, k = 3 (1) Counter-Sat 0.93 0
| S |= 5, n = 55, k = 7 (1) ? - -

Pigeon-Hole Ex. p = 5, h=6 Satisfiable 0.88 0
p = 7, h=6 Unsatisfiable 10.15 0.62
p = 10, h=9 Unsatisfiable - -
p = 10, h=11 Satisfiable 1.78 0.01

Pigeon-Hole Rel. p = 5, h=6 Satisfiable 2.87 0
p = 7, h=6 Unsatisfiable 12.96 0.1
p = 10, h=9 Unsatisfiable - 1.33
p = 10, h=11 Satisfiable 8.17 0.8

Linear Equations n=3 Satisfiable 0.78 0
n=3 Satisfiable 11.98 0
n=3 Satisfiable - 0
n=3 Unsatisfiable 0.79 0
n=3 Unsatisfiable 25.1 0
n=5 Unsatisfiable - 0

Table 3.1: Cooper performance on representative instances of problems

is especially sensitive to the size of coefficients, hence choosing larger coefficients
provide good test cases for the instantiation phase.

Run time is proportional to the lcms of the coefficients, and it doesn’t appear to
matter whether it is satisfiable or unsatisfiable. The exception is where one equation
is a constant multiple of another, this case can be easily detected.

CVC4 has a built-in linear Diophantine equation solver, which likely explains the
excellent performance on this problem set.

Frobenius problem. Given a set of k positive numbers {a1, . . . , ak} whose gcd is 1,
find the maximum number that cannot be expressed as a sum a1x1 + . . . + akxk for
positive xi. For set {11, 17, 25}, the problem is equivalent to showing the following
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formula is satisfiable:

∃y. (∀k1, k2, k3.

((0 ≤ k1 ∧ 0 ≤ k2 ∧ 0 ≤ k3)⇒
y 6≈ 11 · k1 + 17 · k2 + 25 · k3))∧

∀x. (∀k1, k2, k3.

((0 ≤ k1 ∧ 0 ≤ k2 ∧ 0 ≤ k3)⇒
x 6≈ 11 · k1 + 17 · k2 + 25 · k3))⇒ x ≤ y))).

The difficulty of the problem can be adjusted by changing k or the values ai in the
set {a1, . . . , ak}.

Problems in the table simply check the formula above with the set of coefficients
given. The final problem is counter-satisfiable (i. e. , the negation of the above formula
is satisfiable), as the parameters do not have gcd 1.

There are analytic solutions for k = 2 and k = 3. The performance of Cooper
grows with the Frobenius number, which at least for k = 2 and k = 3 is proportional
to a1 × . . .× ak. However, the instance {3, 11, 17, 25} has Frobenius number 19 yet it
is not solved, suggesting that the difficulty also scales with k.

Subset sum game. Consider a two player game, where given a set of non-zero
numbers S and number n, each player alternately subtracts a value in S from n until
0 is reached. Values in S are not removed during play. A player wins when they reach
exactly 0, and loses if forced to subtract a value making the running sum negative.
Hence, a player can also win if they force the other player to make a losing move.
The problem is to show that given a fixed set S and positive numbers n, k there is a
winning strategy for the first player in k steps. Expressed as a first order formula, for
S = {1, 3, 4} and n = 11, k = 3:

∃x1. (((x1 ≈ 1 ∨ x1 ≈ 3 ∨ x1 ≈ 4) ∧ 11− x1 ≥ 0)∧
∀y1. ((y1 ≈ 1 ∨ y1 ≈ 3 ∨ y1 ≈ 4) ∧ (11− x1 − y1) ≥ 0))⇒
∃x2. ((x2 ≈ 1 ∨ x2 ≈ 3 ∨ x2 ≈ 4) ∧ (11− x1 − y1 − x2) ≈ 0)

Although there are other, more effective algorithms for proving the existence of win-
ning strategies, the value in this problem lies in the fact that the number of quantifiers
can be adjusted by setting the number of steps k.

Problem instances listed above have parameters |S|, n, k, where values in S are
chosen from the range [1, bn/2c] and k must be odd. Instances are allowed to be
infeasible, e. g. , if k ·max(S) < n.

Problem difficulty appears to scale with the number of possible move sequences,
roughly |S|k. For example, where both |S| and k are small, the problems are easily
solved regardless of the size of n. (In fact if n is too large then the problem is always
infeasible). Conversely, if both |S| and k are large, then problems become difficult,
even if n is small.
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SAT problems. Boolean SAT problems can be encoded, simply by replacing each
Boolean variable x with the literal x′ ≥ 0, or by x′ ≈ 1 and then adding x ≈ 0 ∨ x ≈ 1.
Checking satisfiability of the SAT problem is equivalent to checking satisfiability of
the existential closure of the ΣZ-formula. Certain common SAT problems have more
efficient encodings. The test problems include two encodings of the pigeon-hole
problem. The first uses integer-sorted variables one for each ’pigeon’, and restricts
the values each variable may take to be in [0, h− 1] (h is the number of holes). The
variable takes the value of the hole the pigeon is in. This is the existential (Ex.)
encoding in the table. The second encoding uses a simple Boolean encoding where
each Boolean variable (px,y means pigeon x is in hole y) is replaced with x ≥ 0. In
the table, parameter p is the number of pigeons and h the number of holes.

There is also an encoding of the n-queens problem with integer-sorted variables,
where the ith variable represents the column position of the queen in the ith row.

All such SAT problems are limited to a single quantifier. The only adjustable
parameter is the number of variables and possible assignments.

The results show better performance of the Cooper solver on the existential en-
coding with faster run times for each given parameter. As typical for pigeon-hole
problems, satisfiable instances are solved much more easily than unsatisfiable ones
for similar parameter values. It is interesting to note the performance degradation of
the SMT solver on the p = 10, h = 9 instance of the existential encoding compared to
the Boolean encoding.

Summary. It is encouraging to see that the provers have a somewhat complemen-
tary capability. Problems solved were in line with predictions made from an un-
derstanding of the search styles of the two algorithms: Cooper eliminates variables
by considering the values of literals modulo divisibility constraints, this means it
is strongly affected by coefficient values and only weakly by Boolean structure (i. e. ,
depth of formulas, size of disjuncts/conjuncts). The CVC4 solver appears to be based
on a projection method (a version of the Omega test), which operates on conjunctions.
This requires a conversion to DNF, which can be accomplished more efficiently using
a SAT solver working on the propositional abstraction of the LIA formula. The result
is that more ’Boolean-like’ problems are dealt with efficiently, such as the relational
encoded pigeon hole problem, while more ’LIA-like’ problems suffer somewhat. This
is mitigated by component solvers which allow solving, e. g. , linear systems of equa-
tions efficiently.

This suggests that the encoding must be taken into account when using the above
theory solvers: ’Boolean-like’ encodings will work better when sent to projection style
solvers, while arithmetic encodings will work better with Cooper.

3.3.2 Solution Extraction in Cooper’s Algorithm

Beagle uses QE in the theory TZ as a test for satisfiability of BG clauses that have been
saturated w. r. t. the calculus derivation rules (i. e. , it tests whether the inference rule
Close applies). For most derivations the set of retained BG clauses increases mono-
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tonically. Therefore, using a solver that supports incremental satisfiability checking
would improve performance. An incremental solver is able to use the result of the
previous satisfiability check when a new clause is added, perhaps by extending a
model of the retained clauses. As mentioned above, there are no known incremental
versions of Cooper’s algorithm.

This section develops a version of Cooper’s algorithm that, for a ΣZ-formula
∃x. F[x] either returns an integer s such that F[s] is TZ-valid, or concludes that
∃x. F[x] is TZ-unsatisfiable. The solution s can be used in the next BG formula
generated by the proof procedure, which typically has the form ∃x. (F[x] ∧ G[x]).
The substitution [x → s] can make the new formula trivially TZ-valid, or at least
simplify the formula to G[s]. Also, solutions produced from a saturated clause set
provide some information about possible counter-examples.

A quick note on semantics: in the following all parameters in ΣZ-formulas are
replaced with existentially quantified variables. Hence, the only relevant interpreta-
tion of ΣZ (without parameters) is the standard model of arithmetic. Similarly, valid
usually means TZ-valid and unsatisfiable means TZ-unsatisfiable.

Cooper’s algorithm replaces ∃x. F[x] with an equivalent finite disjunction (the
elimination formula). If the original formula is valid, there must be a subset of valid
disjuncts in the elimination formula. After all variables are eliminated from F, the
disjuncts of the elimination formula are ground, and so are either TZ-valid or not.
Then, for a valid input formula there is always at least one TZ-valid disjunct in the
final (ground) elimination formula. The simplest case is where the valid disjunct is
in the FB part of the elimination formula, since each disjunct in FB is the result of
replacing x with some possibly non-ground term. Composing substitutions for each
eliminated variable gives a concrete integer value s to substitute for x. It is more
complicated where there are no valid disjuncts in the FB part, however a constraint
can be derived by guessing solutions. The following will show how both types of
solutions can be extracted during a run of Cooper’s algorithm.

It is common to equate formulas over free variables with the set of (tuples of) el-
ements that satisfy the formula in a given model, i. e. , F[x1, . . . , xn] = {(x1, . . . , xn) ∈
Dn | T |= F[x1, . . . , xn]}. From this perspective, the problem addressed in this section
can be phrased: given a valid ΣZ-formula ∃x. F[x] find a member of the (non-empty)
set described by F[x]. Moreover, this should be done during a run of Cooper’s al-
gorithm; simultaneously establishing the validity of the formula and returning a
satisfying tuple of integers for the outer existential quantifiers.

A solution for x in F[x] is some ΣZ-term t not containing x, such that F[t] is
equivalent to ∃x. F[x]. The application of a solution t for x to F is written as for
substitutions: F[x → t] denotes replacing all occurrences of x in F by t. Since t does
not contain x, F[x → t] does not contain x either.

Because of the validity preserving property of solutions they can be safely com-
posed:

Lemma 3.3.1. If t is a solution for x in ∃y, x. F and s is a solution for y in ∃y. F[x → t],
then ∃y, x. F ⇔ F[x → t][y→ s], that is, [x → t[y→ s], y→ s] is a solution.
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In the following l will be the lcm of all x coefficients in F. This is the same l
as used in constructing unitx(F) from F. The following lemma shows that to get a
correct solution it is necessary to undo the normalization step by removing the factor
of l in the solution.

Lemma 3.3.2. If [x → t] is a solution for unitx(F), then [x → t/l] is a solution for F.

Proof. Since [x → t] is a solution unitx(F)[x → t] is valid. By definition, unitx(F) =
F′ ∧ l | x, and so l | t is valid, implying that t/l is an integer. Given any literal, such
as c(t/l) + s < 0, in F[x → t/l] there is a validity preserving transformation back to
the literal in F′, e. g. , to t/l + |l/c|s < 0 by multiplying both sides by |l/c|. Hence,
each literal in F[x → t/l] has the same validity status as the corresponding literal in
unitx(F)[x → t], and so [x → t/l] is a solution for F.

From the presentation in Harrison [Har09], it is clear that solutions to FB are also
solutions to F. Assume FB :=

∨D
j=1

∨
b∈Bx

unitx(F′)[b + j] is valid. Then unitx(F′)[b + j]
is valid for some b ∈ Bx and j ∈ [1, D]. Therefore, b + j is a solution for x in FB
and also to unitx(F′). By the previous lemma, b/l + j/l is a solution to F, where l is
the lcm generated in producing unitx(F). Note that b/l is the term (c1/l)x1 + . . . +
(cn/l)xn + k/l for b = c1x1 + . . . + cnxn + k

Lemma 3.3.3. If unitx(F′)[b + j] is valid for some b ∈ Bx and j ∈ [1, D], then b/l + j/l is
a solution for x in F.

If F is valid but FB is invalid, then it must be that F−∞[j] is valid for some j. This
means that for some sufficiently large and negative x′ congruent to j modulo D (the
lcm of values d in literals of the form d | x + s) F[x′] is valid. Rather than an exact
solution, this produces a constraint on possible solutions.

In order for the solution to produce the same truth values for literals in F as for
the corresponding literals in F−∞, the concrete value of x must be below a certain
threshold. Specifically, any solution must falsify literals of the form 0 ≈ x + t, 0 <
x + t, and must satisfy literals of the form 0 < −x + t, 0 6≈ x + t. Construct from
unitx(F′) the set of terms UB by taking:

1. −t if 0 ≈ x + t or 0 6≈ x + t is in unitx(F′)

2. −t + 1 if 0 < x + t is in unitx(F′)

3. t if 0 < −x + t is in unitx(F′).

If some element s satisfies s < t, then 0 < −s + t is valid; if s < −t + 1, then 0 < s + t
is invalid and similarly where s < −t. So the literals of unitx(F)[s] will have the
appropriate sign. Therefore, if s ≡ j mod D for some j such that F−∞[j] is valid,
then s is a solution for x in F−∞ and in unitx(F′). As above, if l is the lcm, then s/l is
a solution for the original F.

Lemma 3.3.4. If F−∞[j] is valid for some j, and s is a domain element which satisfies both
s ≡ j mod D and s < t for all t ∈ UB, then [x → s/l] is a solution for F.
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The set of solutions implied by the above constraints is non-empty by construc-
tion. However, the set UB can contain non-ground terms, meaning that it may not
be possible to evaluate the constraint until other variables are eliminated. Once all
terms in UB are ground, the constraint can be solved by finding the least n such that
j− nD is less than every term in UB.

A similar analysis also works for the dual transformation, using F∞ (F−∞ with
replacements reversed) and FB, where B consists of upper bounds for x.

3.3.2.1 Constructing Solutions

Solutions are constructed by building the elimination formula for just a single dis-
junct at a time, rather than the formula as a whole. For example, given ∃x∃y. F[x, y],
y is eliminated producing ∃x. G1 ∨ G2 ∨ G3 say, then x is eliminated from each of
∃x. Gi individually. Effectively, this is a depth-first search of all possible disjuncts,
where each disjunct (state) has a chain of selected solutions for the variables pre-
viously eliminated. Clearly, once all variables are eliminated, the final disjunct is
either valid or invalid and, if valid, all of the solutions associated with the state have
ground constraints that can be evaluated.

The following algorithm implements such a search, returning either a solution or
⊥ where the input is not valid.

Let F be a ΣZ-formula, xs a list of variables to be eliminated and σ an existing
solution which may be empty. It is assumed that all free variables in F appear in xs.
The cooper sub-procedure expands a formula to the equivalent elimination formula
for the given variable. The complete sub-procedure fills in the parameteric values in
a partial symbolic solution, justified by Lemma 3.3.6.

Solutions are constructed by collecting sets of constraints on solutions and eval-
uating them as more quantifiers are eliminated. These constraints are called symbolic
solutions to emphasize that they are possibly non-ground representations of solutions.
There are the two types of symbolic solutions possible for a variable: assignment so-
lutions and bound solutions, written assign and bound in the code above.

A symbolic solution is closed if it has no variables in t, for assign(t), and no vari-
ables in any term in UB for bound. Closed symbolic solutions can always be replaced
by a solution (an assignment to a concrete integer).

Example 3.3.2. Using F−∞ and FB, as in Example 3.3.1. Every disjunct of F−∞ is
invalid except where j = 3. So the symbolic solution for x is bound(3, 3, {y}).

Next eliminate y from G = 0 6≈ y− 5.

unity(G) = G

ly = 1

GB = 0 6≈ (5 + 1)− 5,

where By = {5}, b = 5 and j = 1

G−∞ = >
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1 algorithm getSymbolicSolution(F,xs,σ):
2 if xs.isEmpty:
3 if F = > return σ

4 else return ⊥
5

6 foreach disjunct D in cooper(F, xs):
7 if D = FB[b + j]:
8 let solution := σ · [x->assign(b+j/l)]
9 else if D = F−∞[j]:

10 let solution := σ · [x->bound(j,D,UB(unit(F)))]
11

12 if D = >:
13 return complete(solution, xs)
14 else if D != ⊥:
15 let s := getSymbolicSolution(D, y, solution)
16 if s != ⊥:
17 return complete(s, xs)
18

19 //nothing is valid
20 return ⊥

Figure 3.4: Creates the symbolic solution resulting from eliminating all of xs from F.

There is one valid disjunct in GB, and this gives the symbolic solution for y:
assign((5 + 1)/1). After applying the solution for y, the symbolic solution
bound(3, 3, {6}) for x is closed and can be evaluated to x = 3. Since lx was 3, the
final solution is x = 1. So the solution for F is {x → 1, y → 6} and, as a final check,
0 < −3 · 1 + 6 ∧ 0 6≈ 6− 5 is valid.

Lemma 3.3.5. F has a closed symbolic solution iff it is valid

Proof. By Lemmas 3.3.4 and 3.3.3, solutions to closed symbolic solutions are solutions
to F. Conversely, a valid F has at least one valid disjunct in its elimination formula.
The algorithm getSymbolicSolution must eventually find it, as the final elimination
formula for F has a finite number of disjuncts.

The algorithm in Figure 3.3.2.1 can terminate before eliminating all variables in
xs and return a symbolic solution. This can happen when a disjunct contains a
subset of xs. The result is not a closed solution for F, as the remaining variables are
not assigned values. The following lemma shows that free variables in a symbolic
solution returned by getSymbolicSolution can be filled in arbitrarily and still yield a
solution for F. In the code this is done by the call to sub-procedure complete on lines
13 and 16.

Lemma 3.3.6. A symbolic solution for F can always be evaluated to a solution α for F.

Proof. There are two cases: either all symbolic solutions are closed or some are open.
When all solutions are closed, the solution can be evaluated (i. e. , solutions to bound
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constraints can be found using Lemma 3.3.4). When a solution is open, then that
solution depends on variables that were not eliminated. This happens when elimi-
nation produces, e. g. , F ⇔ ∃y. F′[y] ∨ >. It must be shown that using an arbitrary
solution for variables in open solutions does not affect the validity of F. Assume
variables γ = {x1, . . . , xk} are not eliminated from vars(F) = {y1, . . . , yl , x1, . . . , xk}
and that there is a symbolic solution for each variable yi. The Cooper expansion of
∃y1, . . . , yl , x1, . . . , xk. F is ∃x1, . . . , xk.>, since a solution exists. Let [x1 → c1, . . . , xk →
ck] be a hypothetical solution for arbitrary integers ci. A representation of this solu-
tion can be added to the original F like so:

∃y1, . . . , yl , x1, . . . , xk. (F ∧ x1 ≈ c1 ∧ . . . ∧ xk ≈ ck)

Since no variable in γ is eliminated in the Cooper expansion of this formula, the
result of the elimination procedure is ∃x1, . . . , xk. (> ∧ x1 ≈ c1 ∧ . . . ∧ xk ≈ ck),
which remains valid. Therefore, extending a symbolic solution for a valid formula
with arbitrary values for open solutions produces a valid closed solution.

For example, x + y ≈ 0 has Bx = {−(y + 1)} and symbolic solution σ = [x →
−y, y → y]. The corresponding disjunct is ∃y. 0 ≈ 0 (substitution with b = −(y +
1), j = 1). Adding a guessed solution y = c, ∃x, y. (x + y ≈ 0 ∧ y ≈ c), results in the
same Bx and the same σ. However, the final formula is ∃y. (0 ≈ 0 ∧ y ≈ c).

3.3.2.2 Performance of Caching in Beagle

The solution extraction method is implemented in Beagle as above. It is integrated in
the main proof search in a straightforward way: each time a BG clause is retained
the solver checks for a solution. (This is the same place the Cooper solver is usually
called). If there is a solution, then it is applied to the entire set of retained BG clauses,
and these are simplified. If any variables remain in the simplified clauses, then the
remaining variables are eliminated using the solution extraction method. This yields
either a new solution, or a ‘false’ result. In the latter case, or if the application of
the stored solution produces a ‘false’ result, then the algorithm is restarted with an
empty solution.

When a non-deterministic split occurs, the current solution is stored with the
decision level, before entering a new decision level. When a split is backtracked to,
the corresponding solution from that decision level is reinstated.

As described below, the solution extraction algorithm has some built-in inefficien-
cies which may or may not balance the advantages offered by caching.

In tests on arithmetic (also including uninterpreted symbols) problems from the
TPTP-v6.4.0 library, just 27 problems were solved significantly faster. Two of these:
ARI659=1 and SWW619=1, were not solved when caching was disabled. However,
97 problems suffered a greater than 1s performance reduction (although most had
less than 10s degradation) and 577 saw no change at all. Problems which showed
any improvement were 4s faster on average, while those that showed performance
reduction were 8s slower on average. This is indicated by Figure 3.3.2.2.
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Figure 3.5: Run time in seconds of Beagle with and without Cooper solution caching
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In general, most arithmetic problems in the TPTP are discharged quickly by
Cooper without requiring ‘deep’ arithmetic reasoning. It seems that the accumulated
inefficiencies of many small calls do not counter the advantage of stored solutions,
except in a few cases.

Future work Monniaux [Mon10] divides arithmetic quantifier elimination proce-
dures into two classes: those which, like Cooper, substitute an infinite disjunction
∃x. F[x] for a finite disjunction

∨
i F[x → xi], where xi are terms over the free vari-

ables of F; and those which project conjunctions of atoms, e. g. , Fourier-Motzkin for
LRA and the Omega test for LIA. There are QE methods similar to Cooper’s for Ra-
tionals and Reals, e. g. , Ferrant and Rackoff’s, or Loos and Weispfenning’s for Reals.
Perhaps a similar analysis could be applied to obtain solution caching methods for
those theories too.

There is a collection of enhancements made to the standard Cooper implemen-
tation which have not been applied to this version yet. These enhancements either
short circuit the usual Cooper expansion, e. g. , elimination of equations, or reorga-
nize it internally, e. g. , multiplication of disjuncts after a variable elimination. The
short-circuiting enhancements could easily be added as a filter before using solution-
extracting Cooper.

The algorithm given above is less efficient than the usual Cooper algorithm be-
cause it specifically avoids the case where F is proven valid by finding a non-singleton
set of valid disjuncts, e. g. , (x ≈ t) ∨ (x 6≈ t). The intuition behind choosing only
disjuncts in the FB subformula of the elimination formula was that more specific so-
lutions would apply to more formulas later on, though this is not necessarily the
case. It could be possible to have a version of Cooper’s algorithm which simply
records the sets of symbolic solutions and chooses a representative one once a valid
subformula is found, rather than using the depth-first search given here.

Otherwise, the solution extracting version could be used asynchronously: when
the usual Cooper algorithm reports a formula valid, the solution extracting version
can be called to find a solution while the proof search continues. As soon as a solu-
tion is found, it can be tried, working on the assumption that solutions for subsets
of BG clauses are likely to be solutions for the whole set. However, if BG clauses
are generated too quickly, then each solution may end up being discarded, with no
positive effect at all.

Stored solutions to the inner quantifier in an unsatisfiable EA-formula may be
seen as witnesses to unsatisfiability of the overall formula. Specifically, a stored so-
lution after elimination of y in ∃x∀y. φ[x, y] is a map m(x) such that ∀x. ¬φ[x, m[x]]
is valid. In the lucky case that some bounds formula disjunct is shown valid imme-
diately after elimination of y, then that map is simply a linear polynomial term. For
example, elimination of y from ∃x∀y. y > x yields a bounds formula 0 ≈ 0 ∨ 0 < 0
after substituting y = x, and clearly that fulfils the role of m above. The case where
validity is not immediate or follows from the φ−∞ formula is less clear.
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3.4 Proof Procedure

This section provides a summary of Beagle ’s proof procedure. The proof procedure
follows standard techniques, but treats BG formulas separately on some occasions.

Preprocessing. Beagle accepts input formulas in two alternate syntaxes, TPTP-TFF
[SSCB12] and SMT-LIB version 2.0 [BST10]. The SMT-LIB language is richer than
the TPTP-TFF language due to its support for polymorphic sorts and functions. The
SMT-LIB also features predefined theories such as arrays and lists as described in
previous chapters. Beagle automatically monomorphizes sorts and function symbols,
and it includes data structure theory axioms as needed when processing SMT-LIB
files.

Both TPTP-TFF and SMT-LIB provide syntax for full first-order logic (not just
clausal logic). Beagle has two translators into clause normal form (CNF), a standard
one and a Tseitin-style translator which introduces definitions for ‘complex’ subfor-
mulas. The default is the standard CNF translator, because it gave better results
overall on the problems in the TPTP. However, the Tseitin transformed CNF was
needed for many SMT-LIB problems, to support the let keyword and to reduce the
size of large ground problems.

CNF transformation includes Skolemization of existentially quantified variables
and treats existentially quantified integer variables in a special way, by removing
them with QE instead of Skolemization, if possible. For example, the input formula
∀x : Z. p(x) ∨ ∃y : Z. y 6≈ x + 1 becomes ∀x : Z. p(x), whereas Skolemization would
have given ∀x : Z. p(x) ∨ f(x) 6≈ x + 1. In particular, if the input formulas are all
BG formulas over the integers, no Skolem functions are introduced, and so Beagle is
a decision procedure for that class.

Main loop and simplification. Beagle ’s main loop is the well-known ‘Discount
loop’. It maintains two clause sets: Old and New. Old is initially empty, while New is
initialized with the input clauses. At each iteration, a selected clause is removed from
New and simplified using clauses from Old and New. The simplified clause is then
added to Old and all possible inferences between it and clauses in Old are performed.
The resulting clauses are simplified by clauses in Old and added back to New again,
closing the loop. If any result is a BG clause, the BG solver is called with the new set
of BG clauses. Lemmas are treated specially and are added to Old at the beginning of
a derivation. This allows only inferences and simplifications between lemma clauses
and input clauses, never between lemma clauses.

Simplification techniques include standard ones: demodulation by unit clauses,
proper subsumption deletion, and removal of positive literals L from a clause in the
presence of a unit clause that instantiates to the complement of L. All clauses in Old

are mutually simplified, and backward simplification is optional.
By default, a split rule is enabled that breaks clauses into variable-disjoint sub-

clauses and branches out correspondingly. Dependency-directed backtracking (Fig-
ure 3.2.2) is used to avoid exploring irrelevant cases.
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The default term ordering is LPO if BG theories are present, otherwise it is KBO.
See Baumgartner and Waldmann [BW13b] for properties of the LPO specific to Hier-
archic Superposition.

Fairness. Fairness is achieved by a combination of clause weights and clause deriva-
tion age. It can be tuned by setting the ‘weight-age-ratio’ parameter, a non-negative
number relating how many lightest clauses are selected before the oldest clause is
selected. Clause weights are computed in such a way that selection by weight alone
would be a fair strategy. The default weight-age-ratio value is five.

Auto mode. Beagle includes a simple auto mode that switches between several strate-
gies. When on, Beagle first tries the default flag setting. If there is no result within
one third of the given time limit, Beagle restarts using aggressive simplification and
unabstraction settings. As described above, these are incomplete, though a contra-
diction derived using such rules remains valid. If no contradiction is derived after
two-thirds of the allocated time has elapsed, the final strategy is used whereby BG
variables in the input may be instantiated with BG-sorted FG terms rather than only
with BG terms. Specifically, all abstraction variables in the input are replaced by gen-
eral variables. As previously mentioned, this is ‘more complete’ but creates a larger
search space. No part of the previous run’s state is kept between restarts.

Proof Output Successful proofs can be output as a TFF formatted7 derivation of
either an empty clause or an unsatisfiable set of BG clauses. This can be used to
interface with other tools that support the format, such as the Isabelle proof assistant.
Presently, CNF transformation and refutation of BG clause sets is not documented
in the derivation, though some BG simplifications are described. Derivations are
reconstructed by keeping a derivation record with each clause which points to the
premise clauses in an inference that derived the clause.

3.4.1 Implementation

Beagle implements support for both the TPTP-TFF and SMT-LIB input languages us-
ing Scala’s parser combinator library. Beagle ’s internal formula representation fol-
lows TFF, so to support the SMT-LIB standard it must perform sort monomorphiza-
tion and add axioms for predefined theories like ARRAY. Parsing of SMT-lib files is
done with the help of the separate SMTtoTPTP library [Bau15]. Also, Beagle includes
an implementation of a sort un-erasure algorithm [CS03], which lifts unsorted first-
order formulas to many-sorted logic. This may improve performance on unsorted
first-order problems, but as this translation is incomplete in general, it is disabled by
default.

Beagle uses a simple term-indexing scheme which is essentially top-symbol hash-
ing. This is used to retrieve term positions eligible for superposition or demodulation

7Format described at http://wwww.tptp.org

http://wwww.tptp.org
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within clauses. Discrimination-tree indexing is used for forward simplification, in-
cluding both demodulation and subsumption by unit clauses.

Scala specific features. Beagle makes heavy use of many built in Scala data struc-
tures, primarily List, Vector and Map. Not only are the implementations well op-
timised, but they also provide powerful abstractions allowing for simple and main-
tainable code.

Scala’s declarative style encourages the use of immutable values, which mini-
mizes data duplication. Scala also provides a lazy evaluation feature, which is ex-
tremely useful for caching data: e. g. , the computation of maximal literals in a clause
can be deferred until the clause becomes eligible for an inference, it may never be
computed if the clause is simplified first. The Scala REPL interpreter is an invaluable
tool for debugging: for example, one could take the (usually large) result of an in-
valid derivation and programmatically investigate it using functional operators like
map or filter.

The simple structure of logic formulas and clauses is a good fit for property
based testing, using libraries such as scalacheck8, which use grammars to generate
random test data. These data are used as input for properties given as universally
quantified predicates.

3.5 Performance

3.5.1 TPTP

This section reports results of running Beagle on the first-order problems from the
TPTP–v6.4.0 problem library [Sut09] that involve some form of arithmetic, including
non-linear, rational and real arithmetics.

The experiments were carried out on a Linux desktop with a quad-core Intel i7
cpu running at 2.8 GHz, with 8GB of RAM, although the host JVM9 was configured
with maximum heap size of 4GB. The CPU time limit was 60 seconds soft (solver’s
heuristic target time) and 65 seconds hard (unresponsive processes killed).

Of 1161 total problems, Beagle returned the correct result on 869 problems, within
the time limit. For some problems Beagle produced a saturated clause set (saturated
under the inference rules of the Hierarchic Superposition calculus), but was not able
to conclude B-satisfiability due to the presence of free BG-sorted operators10. Table
3.2 summarizes the global statistics for this test.

The automatic strategy selection heuristic was used for this run. After a pre-
determined time, this restarts the proof using incomplete (strong) simplification and
later, weakens restrictions on variable substitutions by setting all BG-sorted variables
in the input clause set to be ‘general’ variables. In total, the default strategy was used

8http://scalacheck.org/
9OpenJDK v.1.8

10Non-linear multiplication is included in this category for this experiment.

http://scalacheck.org/
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Solved Unknown Timeout Total

Theorem 835 16 221 1072
Non-theorem 34 24 30 88

Total 869 40 251 1161

Table 3.2: TPTP statistics

875 times, the second strategy 4 times (3 theorems found), and the last strategy 37
times (5 theorems found, 30 ‘unknown’ results).

Table 3.3 summarizes the results per category, and Table 3.4 displays the same
results against their TPTP difficulty rating. In the TPTP problem library, problem
ratings are given as a real number between 0 and 1. Problems receive a rating of 0
if all theorem provers (specifically all systems entered in the relevant category of the
most recent CASC) can solve it, and a rating of 1 if none of those solvers can solve it.

By TPTP problem category, Beagle ’s best performance was on ARI, DAT, GEG
and NUM. These are characterized by smaller problem sizes with an arithmetic rea-
soning component. GEG problems were largely solved by optimizing simplification
inside the Cooper solver. On the other hand, performance was much worse on those
problems which involve large problem sizes, specifically HWV problems (large EPR
encodings of bounded model-checking). This is due to the size of the formulas and
emphasis on boolean reasoning. A typical trace from an HWV problem shows all
of the time spent performing superposition inferences (technically the inferences are
simple resolution inferences) and simplifications via subsumption. It is quite likely
that well-known enhancements like feature vector indexing [Sch13] for subsump-
tion and hyper-resolution [Rob65a] would significantly improve performance for this
problem class.

The remaining easy (rated < 0.1) problems that Beagle failed to solve involved
multiplication operators and several HWV problems.

The three solvable problems with a rating of 1.0 are ARI635=1, ARI636=1 and
ARI633=1.

The same problems were tested using Z3 [dMB08] as the background solver for
each of the integer, rational and real theories. Using Z3 Beagle was able to solve just
one additional problem: SWW609=2. Overall, Beagle with Z3 performed better on
60 problems and worse on 12 problems, with an average time difference of 0.15s
faster than the default solver. The problems on which Z3 performed better ranged in
difficulty from 0 to a maximum of 0.57, with the majority of the improvement found
for problems with difficulty 0.14. Table 3.5 shows these distrubtions. Each row
counts problems which showed at least a 1s performance improvement in favour of
the respective BG solver configuration. The top row lists difficulty ratings for those
problems.

It is possible that this performance could be improved by using a programmatic
inferface to the SMT solver, or by fine-tuning the settings that are used for the SMT
solver. Previous results showed little difference in performance whether case based
reasoning (i. e. , applications of the Split rule) on BG clauses was carried out by the
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Theorem Non-Theorem
Category Total Solved Total Solved

ARI 642 572 25 16
DAT 100 95 5 0
GEG 5 5 0 0

HWV 88 1 12 0
MSC 3 3 0 0

NUM 42 41 24 17
PUZ 1 1 0 0
SEV 4 2 2 0

SWV 2 2 2 0
SWW 181 111 18 0

SYN 1 0 0 0
SYO 3 2 1 1

Total 1072 835 88 34

Table 3.3: Beagle performance on the TPTP arithmetic problems by category.

Rating 0 0.14 0.17 0.29 0.33 0.43 0.5 0.57 0.67 0.71 0.83 0.86 1

Total 521 266 17 32 22 50 21 35 33 47 3 30 84
Solved 511 262 15 25 5 24 12 8 4 1 0 1 3

Table 3.4: Beagle performance on the TPTP arithmetic problems by problem rating.

foreground solver or the background solver and this applied to both Cooper and Z3.
To put Beagle ’s performance in context with similar automated reasoning tools,

we reproduce here the results of the CASC-J8 competition. In the competition, the
provers were run on standardised hardware with preset configurations given by their
designers. Full competitions details are available in the proceedings [Sut16]. Prob-
lems in the Typed first-order division reported in Table 3.6 were drawn from TPTP-
v6.4.0 (as for previous result tables), consisting of just theorems. Solvers can option-
ally provide a proof of the hypothesis (the solutions row) and ’New Solved’ refers to
problems which were not publically available prior to the competition.

Table 3.7 shows results on arithmetic problems which are counter-satisfiable. In
this case a solution describes a model for the counter-example; a difficult problem
given that these often have infinite domains. The asterisk in the first result row

0 0.14 0.29 0.43 0.5 0.57

Z3 5 43 6 2 1 3
Default 7 4 1

Table 3.5: Performance distribution (count of problems solved in faster time) for different BG
solver configurations
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System Vampire VampireZ3 CVC4 Beagle Princess
Version 4.1 1.0 TFF-1.5.1 0.9.47 160606

Solved 419/500 380/500 343/500 300/500 342/500
Av. CPU Time (s) 13.39 9.15 5.72 18.76 17.59

Solutions 419/500 380/500 343/500 300/500 271/500
New Solved 3/6 3/6 0/6 5/6 5/6

Table 3.6: CASC-J8 Typed First-order theorem division.

System CVC4 Beagle CVC4 Princess
Version TFN-1.5 SAT-0.9.47 TFN-1.5.1 160606

Solved 10/50* 10/50 9/50 8/50
Av. CPU Time (s) 32.27 3.11 0.02 1.44

Solutions 0/50 0/50 9/50 0/50
New Solved 1/7 0/7 2/7 0/7

Table 3.7: CASC-J8 Typed First-order non-theorem division.

indicates that the results reported here differ from those available online 11, as it was
later discovered that there was a bug in that version of CVC4. Beagle then won the
category with a lower average time per problem.

3.5.2 SMT-LIB

This section reports the performance of Beagle 12 on the 2014 release of SMT-LIB
benchmarks13 focusing on the logics with an arithmetic component. Specifically
these were ALIA, AUFLIA, UFLIA, UF_IDL (integer difference logic) and the cor-
responding quantifier-free problem sets, including QF_LIA. (The LIA category was
ignored as it contains only problems from the TPTP). Only those problems indicated
as unsatisfiable in the problem description were selected. Beagle was run with auto-
matic strategy selection (as described above). We found a mix of results: Beagle was
able to solve a few problems unsolved by SMT solvers14 yet there were also quite a
few problems that were marked as ‘trivial’ (all SMT solvers in the SMT-Eval 2013 can
solve them in under five seconds), which Beagle could not solve. Table 3.5.2 describes
problems solved by category, where QF refers to the quantifier-free fragment of the
logic to its left.

In total Beagle solved 89 problems not solved by SMT solvers. Those problems are
summarized in Table 3.5.2, the listed categories are subcategories of ‘UFLIA/sledge-
hammer’:

There were many problems which Beagle could not parse, as it is not optimized
for large problem sets. In total there were 1, 391 trivial problems not solved by Beagle .

11http://www.cs.miami.edu/ tptp/CASC/J8/WWWFiles/ResultsSummary.html
12version 0.9.25
13http://smtlib.cs.uiowa.edu/benchmarks.shtml
14For this we used the difficulty ratings given for SMT-Comp 2014.

http://smtlib.cs.uiowa.edu/benchmarks.shtml
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Logic ALIA QF AUFLIA QF UFLIA QF UFIDL QF QF_IDL QF_LIA

Total 41 72 4 516 6602 195 62 335 694 2610
Solved 31 40 4 205 1736 155 42 29 24 28

Table 3.8: SMT-lib theorems solved by category.

Category Arrow_Order FFT FTA Hoare StrongNorm TwoSquares

Solved 17 2 34 20 2 14

Table 3.9: Difficult SMT-lib theorems and their categories.

It was not possible to draw broad conclusions about which categories Beagle is
best suited to. For example, all of the hardest problems Beagle solved were among
the UFLIA benchmarks, but there were also at least 200 trivial problems from that
category were unsolved (in the ‘simplify’ and ‘simplify2’ subcategories). Also it
was hypothesised that Beagle would perform much worse in the quantifier-free frag-
ment, and that was the case for QF_IDL and QF_LIA, but not so for QF_UFLIA and
QF_AUFLIA.

3.5.3 CADE ATP System Competition (CASC)

Beagle was a regular participant in the annual CASC event, in which provers com-
pete to solve randomly selected TPTP benchmarks. The benchmarks are divided into
categories such as arithmetic, pure first-order, large-theory base, and non-theorems.
Provers are ranked based on number of problems solved, whether a proof was out-
put, and general efficiency. This section summarizes results from the three most
recent events from oldest to newest (CASC-J8).

CASC-J7. [Sut15] Beagle was entered in the TFA division (Typed First-order Arith-
metic theorems). For this division, the problem set consists of typed first-order
problems with an arithmetic component over integers, rationals, or reals, of which
roughly half were previously unseen by competitors.

Other solvers entered in the TFA category were CVC4 [BCD+11], SPASS+T
[WP06], Zipperposition [Sut15], and Princess [Rüm08]. In terms of overall problems
solved, Beagle placed third equal with 173/200 solutions, only three fewer than the
winning solver CVC4. Beagle performed quite well in terms of mean efficiency (so-
lutions per second multiplied by number of solutions); it was outperformed by only
CVC4 15.

CASC-25. [SU16] This saw the introduction of the TFN (Typed First-order arith-
metic Non-theorem) division. Beagle solved 6 of 20 problems in that division, com-
ing second equal. The winning solver, CVC4, solved just 10. Beagle had no specific

15For an explanation of how mean efficiency is computed see the CASC-J7 proceedings [Sut15].
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strategy for solving such problems, simply relying on saturation via Superposition.
Soundness issues due to a lack of sufficient completeness were avoided by reporting
‘unknown’ for problems with free BG sorted symbols.

In the TFA division, Beagle solved 131 of 200 problems, the lead was taken by the
improved Vampire solver [KV13], which previously dominated the pure first-order
division. As observed above, Beagle struggled to solve larger problem instances with
involved boolean reasoning, as found in the SWW and HWV problem sets.

CASC-J8. [Sut16] Both TFA and TFN categories were expanded to 500 and 50 prob-
lems respectively. Using the negation disproof strategy for multiplication solving
as described in Chapter 4 allowed Beagle to win the TFN division, solving 10 of 50
problems. CVC4 was a close second, solving 9 problems.

In the TFA category Beagle solved 300 problems, coming in fourth place. A major
help was the inclusion of a comprehensive set of lemmas for BG reasoning (see Sec-
tion 3.2.1), as well as a partial instantiation heuristic for finite sorts. This helped to
eliminate many over-productive clauses from the input. Although returning fewer
solutions, Beagle outperformed Princess by returning more proofs. Again Vampire
took the lead, with 419 solutions; a testament to years of research and implementa-
tion improvement.

3.6 Summary

Beagle implements the Hierarchic Superposition calculus with weak abstraction, an
enhancement that sets it apart from other implementations of the HSP calculus, such
as SPASS(LA). It also has an optimized implementation of Cooper’s algorithm for
quantifier elimination in TZ, and uses an off-the-shelf Simplex solver for reasoning
in TQ and TR. The capability for fast reasoning on ΣZ-formulas with multiple quan-
tifiers is exploited to allow the inclusion of parameters in the BG theory, and pure
ΣZ-formulas can be discharged without invoking the Superposition procedure at all.

A method for extracting example values for existentially quantified variables in
satisfiable ΣZ-formulas was given. Though it did not improve performance when
used to generate cached solutions during a proof search, it remains a useful capabil-
ity.

The performance of the Cooper solver was measured on several classes of prob-
lems parameterized both in the number of variables and number of quantifier alter-
nations. For one problem class, a state of the art SMT solver was unable to solve
any instances, while the Cooper solver could. Also, two different encodings of the
pigeon-hole problem illustrate a sensitivity to ‘Boolean-like’ encodings: the SMT
solver performed relatively better on the latter, while Cooper performed better on an
encoding that used the inherent structure of TZ.

Beagle ’s performance on the latest version of the TPTP was given, as well as
reports from recent year’s CASC events. In the latest, Beagle won the typed non-
theorem category using a technique suggested in Chapter 4.
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3.6.1 Availability

Beagle is available at https://bitbucket.org/peba123/beagle under a GNU General Pub-
lic license. The distribution includes the Scala source code and a ready-to-run Java
jar-file.

https://bitbucket.org/peba123/beagle


Chapter 4

Definitions for Disproving

4.1 Motivation

This chapter addresses the problem of automatically disproving invalid conjectures,
CON, over data structures such as lists and arrays over integers (axiomatized by
AX), in the presence of additional hypotheses, HYP, over these data structures. Such
invalid conjectures come up frequently in applications of automated reasoning to
software verification or in goals produced by interactive theorem provers.

The disproving problem is to show that AX ∪ HYP does not entail a sentence
CON. The obvious approach to disproving is to show satisfiability of AX ∪ HYP ∪
{¬CON} by means of a complete theorem prover. Unfortunately, current theorem
proving technology is of limited usefulness for disproving: finite model finders can-
not be used because the list axioms do not admit finite models; SMT-solvers are
typically incomplete on quantified formulas and face the same problem; and theo-
rem provers based on saturation often do not terminate on satisfiable input, and are
incomplete when background theories are present.

Nevertheless, refutation complete theorem provers should be able to tackle the
case where CON is contradictory with AX ∪ HYP, rather than simply non-entailed. In
that case the set AX ∪ HYP ∪ {CON} is unsatisfiable. The usual application of refu-
tation complete provers concludes AX ∪ HYP |= CON when deriving a contradiction
from AX ∪ HYP ∪ {¬CON}. Similarly, the situation described above proves that
AX ∪ HYP |= ¬CON. But this does not mean that AX ∪ HYP 6|= CON, since we as-
sume, pessimistically, that only AX is satisfiable a priori. It may be that AX ∪ HYP is
itself unsatisfiable, and so CON is entailed ex falso. In summary, to show AX ∪ HYP 6|=
CON requires showing both that AX ∪ HYP |= ¬CON and that AX ∪ HYP is satisfi-
able.

The specific approach to be described consists of first assuming that AX is satisfi-
able, then providing templates for HYP that are guaranteed to preserve satisfiability
of AX ∪ HYP. Disproving is attempted simply by proving that AX ∪ HYP entails
¬CON, i. e. , that AX ∪ HYP ∪ {CON} is unsatisfiable.

Section 4.2 gives a general characterization of satisfiability preserving formulas
HYP, called admissible definitions, and introduces a simple classes of formulas that
are admissible. These classes do not include recursive functions however, excluding
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many interesting examples. Section 4.3 provides a way around this by giving a fixed
syntactic template for some recursive functions, especially those over lists. Templates
are given for both predicate and function definitions (which require an extra check) as
well as a method inspired by functional programming for instantiating higher-order
TLIST functions to produce new admissible functions without resorting to mechanical
checks. Finally, Section 4.4 describes some uses and occurrences of those syntactic
patterns in applications, as well as giving a practical demonstration that the method
of proving non-entailment increases the set of problems which can be solved using
both saturation-based reasoners and SMT solvers.

4.1.1 Assumed Definitions

This chapter deals with formulas rather than clauses, so semantics using valuations
is assumed (see Section 2.2 in Chapter 2). There is no division of the signature into
hierarchic specifications, however, all signatures including integers must have TZ-
extending interpretations.

Tuples of terms are written s, and ∀ denotes universal closure.
Recall that Σ ∪ { f } denotes the addition of the operator f to the signature Σ.

As this is short for (ΞΣ, ΩΣ ∪ { f }), it is implicit that the arity of f is over sorts in
ΞΣ. A Σ-interpretation is extended to a (Σ ∪ { f })-interpretation by the addition of
an interpretation for f ; the domain of the new interpretation is the same as that of
the existing interpretation. A Σ-interpretation is extended by a formula ψ f if it can
be extended to a (Σ ∪ { f })-interpretation that satisfies ψ f , again, keeping the same
domain.

The theory T=
ARRAY is used in the examples in Section 4.4, it includes an extra

operator init : Z 7→ ARRAY, defined by the extra axiom:

read(init(x), i) ≈ x

So a term init(t) represents an array that is initialized everywhere with t.
The satisfiability of the list axioms is well known and can be determined auto-

matically using a Superposition based calculus [ABRS09]. Using hierarchic specifica-
tions, for example when using integers form the element theory, the theorem prover
Beagle [BW13b] in a complete setting and after adding the axioms ∃dZ. head(nil) ≈ d
and tail(nil) ≈ nil, will terminate on AXLIST. Because the axioms have sufficient com-
pleteness (see Chapter 6), there is a model for AXLIST.

4.2 Admissible Definitions

In typical applications, HYP consists of definitions for new operators which extend the
signature of AX, and also appear in the conjecture. New functions f and predicates
p are defined relative to an existing signature Σ that does not contain either f or p,
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using first-order formulas with the following forms:

∀x, y. f (x) ≈ y⇔ φ f [x, y] (4.1)

∀x. p(x)⇔ φp[x] (4.2)

where φ f and φp are Σ-formulas. It is clear already that any extension with a pred-
icate p and definition formula (4.2) is immediately satisfiable; the new predicate is
just an alias for a formula that is completely specified in the existing interpretation.
Since p and f are not present in Σ, it is not possible to include contradictory formula
such as p(x) ≈ true and p(x) 6≈ true in φp, for example.

Example 4.2.1 (Extensional Set Definitions). An extensional set definition describes
a set by listing exactly the elements it contains, e. g. S = {a, b, c} is described by
ψ[x] = x ≈ a ∨ x ≈ b ∨ x ≈ c. The set can be named by introducing a new symbol:
∀x. s(x) ⇔ ψ[x], and this is in form (4.2) above, assuming all of a, b, c are in Σ. Then
a Σ-interpretation I is extended to a (Σ ∪ {s})-interpretation I′ by assigning sI to
{d ∈ DI | I |= ψ[d]}, where DI is the domain of I.

Definitions of new function symbols, as in (4.1), require the Σ-interpretation to
satisfy totality,

∀x∃y. φ f [x, y],

and functionality,

∀x, y1, y2. (φ f [x, y1] ∧ φ f [x, y2])⇒ y1 ≈ y2

for φ f , in order to be extensible by f . Both of these properties are testable in the
initial Σ-interpretation, by virtue of the fact that φ f is a Σ-formula.

When automating the test for consistency of a function definition, the solver does
not have access to an interpretation, usually only the axioms AX are given. Testing
totality and functionality w. r. t. AX only provides a sufficient condition for consis-
tency, as it is not always the case that every model of AX can be extended to satisfy
definitions φ f . In other words, an automated test for consistency could fail although
AX ∪ φ f is consistent. The test for totality can be circumvented by only taking the
⇐-direction of (4.1). This helps with disproving only, as it rules out the trivial case
where no models exist of AX ∪ HYP.

The following definition will be used for proving the consistency of definitions
extending a specific initial interpretation, without reference to the syntactic form of
the definition. This is necessary in order to include recursive definitions, which are
not covered by (4.1) and (4.2). The definition aims to capture first-order definitions
which just identify existing structures in an interpretation (such as sorted lists or
arrays with positive values), rather than adding new values or sorts.

Definition 4.2.1 (I-Admissible Definition). Let Σ be a signature, I a Σ-interpretation,
and f /∈ Σ an operator with an arity over sort(Σ). A set of (Σ ∪ { f })-sentences ψ f
is an I-admissible definition of f iff I can be expanded to a (Σ ∪ { f })-interpretation I′

such that the domain of I′ is the same as that of I, and I′ |= ψ f .
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IfM is a class of interpretations (e. g. all first-order models of the set AX), then ψ f
is M-admissible if it is I-admissible for all I ∈ M. If a set ψ f is admissible w. r. t. all
Σ-interpretations, it is Σ-admissible or just ‘admissible’ for brevity.

Example 4.2.2 (Basic Flat Definitions). Given f /∈ Σ such that the arity of f is over
sorts of Σ, then {∀x. f (x) ≈ t[x]}, where t[x] is a Σ-term, is an admissible definition.

Basic flat definitions are useful because they do not need to be checked for
totality or functionality– these properties follow from the interpretation function
I : T(Σ, χ) 7→ DI of the Σ-interpretation I. Basic flat definitions can also be writ-
ten in the form (4.1): ∀x, y. f (x) ≈ y⇔ y ≈ t[x].

Example 4.2.3 (Inadmissible Function). Let Σ = {c} and take M to be the class
of all Σ-interpretations of cardinality 1. Let f : D 7→ D and define ψ f = ∀x :
D. f (x) 6≈ f ( f (x)). Then ψ f is not M-admissible as no (Σ ∪ { f })-interpretation
satisfies ∀x : D. f (x) 6≈ f ( f (x)) while preserving domains.

Although the definition of admissibility is meant to include recursive definitions,
it is not a precise account of ‘acceptable’ recursive functions. Roughly, a recursive
definition is well-founded if the recursive application of the definition for any argu-
ment value terminates after finitely many steps.

Example 4.2.4. Take a ∈ Σ and f 6∈ Σ. Then {∀x. f (x) ≈ f ( f (x))} is admissible
although the formula defining f is not well-founded. The function f can always be
interpreted as f (x) ≈ a.

Definitions which depend on other definitions are admissible when the set of
definitions can be decomposed into a chain of definitions, each of which depends
on a smaller set of definitions down to the base signature. Cyclic definitions are
therefore not admissible, although they may be satisfied by some extension of the
base signature.

Lemma 4.2.1. Let (Ax, Defop1 , . . . , Defopn) be an extension of Ax. Suppose there is a Σ0-
model I |= Ax. If Defopi is an I-admissible definition of opi for all 1 ≤ i ≤ n, then there is
a Σn-interpretation I′ such that I ′ |= Ax ∪ ⋃

1≤i≤n Defopi .

Proof. By induction over the length n of extensions, using the given model I in the
induction start and using admissibility in the induction step.

Example 4.2.5 (Use of Lemma 4.2.1). Boolean combinations of extensional set defini-
tions (corresponding to intersection, union and complement of sets) are admissible,
as are Boolean combinations of admissible predicates, so long as there are no cyclic
dependencies among the definitions, i. e. the definitions must be able to be decom-
posed into a chain of admissible definitions, defined in terms of previous definitions
as per Lemma 4.2.1.
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As hinted at in the example, Lemma 4.2.1 excludes cyclic dependencies in defi-
nitions. This also excludes mutual recursion, e. g. , even : Z 7→ bool, odd : Z 7→ bool
defined by:

{even(0) ∧ ∀xZ. (even(1 + x)⇔ odd(x)),

¬odd(0) ∧ ∀xZ. (odd(1 + x)⇔ even(x))}

4.3 Templates for Admissible Recursive Definitions

In the previous section some simple classes of admissible definitions were given. This
section describes classes of admissible recursive definitions, which are a necessity
when AX axiomatizes recursive data structures, for example. To avoid termination
analysis, the admissibility criterion is applied to formulas with specific syntactic form
over a fixed theory. Although admissibility is only with respect to models of that
theory, such models are common enough to make the syntactic categorization useful.

4.3.1 Admissible Relations

Recursive definitions of relations are admissible when recursive applications of the
definition take smaller arguments according to some well-founded order. A consis-
tent interpretation for the defined predicate can be built up by assigning values to
the defined predicate in reverse order, from smallest to largest.

Example 4.3.1. The definition p(xZ)⇔ [(x ≥ 1⇒ p(x− 1)) ∧ (x < 1⇒ ¬p(x + 1))]
is inadmissible. Simplification of the definition when x = 0 yields p(0)⇔ ¬p(1), but
when x = 1 the definition entails p(1)⇔ p(0).

Of course some definitions with non-terminating expansion are also satisfiable.

Example 4.3.2. p(x) ⇔ ¬p(x − 1) can be satisfied by either {x ∈ Z : 2 | x} or its
complement.

Example 4.3.3. p(x)⇔ φ ∧ p(t) can always be satisfied by pI = ∅ regardless of both
t and whether the right-hand side has a terminating expansion.

Definition 4.3.1 (Relativized Definition [Den00]). A relativized definition w. r. t. a strict
well-founded order < on the domain of the Σ-interpretation is a definition of a pred-
icate p:

∀x, y. p(x, y)⇔ φ[x, y]

such that any p(z, s) in φ appears in the scope of a subformula of the form ∀z. (z <
x ⇒ φ′) or ∃z. (z < x ∧ φ′).

This differs from the definition given in Denecker [Den00] by restricting to the
well-founded case only and by assuming a fixed interpretation to be extended.
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Example 4.3.4. In the theory of arrays a definition formula in which all index vari-
ables (i. e. variables in the second position of read-terms) are guarded by literals that
fix a lower bound can be formalized using relativized definitions. For example, to
test if an element x is present in the first n indices of an array:

contains(a, x, nZ)⇔ [n > 0⇒ (read(a, n) ≈ x ∨ ∃iZ. i < n ∧ contains(a, x, i))]

Substituting n− 1 for i yields a simpler equivalent formula:

contains(a, x, nZ)⇔ [n > 0⇒ (read(a, n) ≈ x ∨ contains(a, x, n− 1))]

Theorem 4.3.1 (Admissibility of Recursive Predicate Definitions). Let Σ-interpretation
I have a well-founded order < on sort S. Let p /∈ Σ be a predicate symbol whose arity is over
sort(Σ). Then a relativized definition for p

∀. p(x, x1, . . . , xn)⇔ φ

where sort(x) = S is I-admissible.

Proof. Assuming a Σ-interpretation I in which DS is the carrier set for sort S, an
interpretation for p can be constructed by induction on DS. If d ∈ DS is minimal
w. r. t.<, then in φ[d] all subformulas containing instances of p are guarded by z < d,
and so they are equivalent to Σ-formulas. Thus p(d, a1, . . . , an) can be assigned a
truth value for any ai.

Assume for d′ ∈ DS that for all d < d′, p(d, a1, . . . , an) are assigned truth values
for any ai. Then in φ[d′] every subformula ∀z. (z < x ⇒ φ′) or ∃z. (z < x ∧ φ′)
with an instance of p can be evaluated relative to already existing instances of p, by
construction.

Example 4.3.5. Following Example 4.3.1, this definition is not admissible by Theorem
4.3.1, as x + 1 appears as an argument of p, yet is not smaller for any valuation of x.

In general, the defined predicate can also appear in the form p(t[x], a1, . . . , an),
where t[x] is a term such that t < x in the appropriate order. For example, t could be
x− 1 in TZ. To justify this, suppose such a term t is in φ[p(t[x])], such that t[x] < x is
true in the Σ-interpretation I. By abstraction, ∀z. (z = t[x] ⇒ φ[p(z)]) is equivalent
to the original formula. Similarly, ∀z. (z = t[x] ⇒ z < x) is obtained by abstraction
of t[x] < x. Then ∀z. (z < x ⇒ (z = t[x] ⇒ φ[p(z)])) is equivalent to φ[p(t[x])] and
it has the required form for a relativized definition.

Lemma 4.3.1. Given an interpretation I with well-founded order <, as in Definition 4.3.1,
a definition of a predicate p:

∀x, y. p(x, y)⇔ φ[x, y]

such that, for any instance p(t, s) in φ and any valuation ν, I |= ν(t) < ν(x) is relativized.

The following example applies this lemma to TLIST.
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Definition 4.3.2 (Sublist Order). Define the order <LIST on list constructor terms
cons(s, t) as the transitive closure of {(l1, l2) | ∃x. l2 = cons(x, l1)}. For all acyclic
models of the list axioms this order is well-founded.

Example 4.3.6 (Relativized List Predicates). Let Defp be a formula of the form

∀lLIST, s. p(l, s)⇔
l ≈ nil ∧ B[s] (P1)

∨ ∃hZ, tLIST. l ≈ cons(h, t) ∧ C[s, h, t] (P2)

where B is a Σ ∪ {p}-formula not containing p, and C is a Σ ∪ {p}-formula possibly
containing p(t, s′), but not p(cons(h, t), s′).
Since l ≈ cons(h, t) implies t <LIST l, the relativized form of (P2):

∃tLIST. t <LIST l ∧ ∃hZ. l ≈ cons(h, t) ∧ C[k, h, t]

is equivalent to (P2) as above. Therefore DefP formulas are relativized formulas.

This can also be extended to theories of acyclic recursive data structures.
As for lists, the sub-structure relation <RDS defined as the transitive closure of

{(r1, r2) : r2 = c(. . . , r1, . . .)}, is well-founded for acyclic models of AXRDS. Therefore,
predicates defined similarly to Defp for ΣRDS are admissible.

In Armando et al. [ABRS09] it is observed that Superposition calculi with an
appropriate term order can finitely saturate the theory of records (i. e. TRDS without
recursion in the arguments to the constructor function).

4.3.2 Admissible Functions

For functions, not only must the recursion be well-founded, but the defining formula
must be functional and total also. Now that the defining formula possibly contains
the symbol being defined, these properties cannot simply be evaluated in the inter-
pretation that is being extended. This section applies the criteria for a relativized
definition to the case of function definitions and also gives specialized descriptions
for the case of lists.

Replacing the predicate definition on the left side of the relativized definition
formula gives a condition for admissible function definitions w. r. t. a well-founded
order:

Definition 4.3.3 (Relativized Function Definition).

f (x) ≈ y⇐ φ[x, y]

where occurrences of f (s) in subformula G of φ are of the form ∀z. z < x ← G[z] or
∃z. z < x ∧ G[z], and < is interpreted as a well-founded order.

The check for totality is avoided by using φ as a sufficient condition only, i. e. an
implication not an equivalence. In practice, this means that if a formula does not
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completely specify the new symbol, then it is completed arbitrarily for the unspeci-
fied values. Functionality must still be shown i. e.

∀x, y1, y2. φ[x, y1] ∧ φ[x, y2]⇒ y1 ≈ y2 (4.3)

must hold in the extended interpretation, if it is to satisfy the relativized definition.
The test for (4.3) can be partially automated by testing whether a stronger property is
satisfied by all models of AX ∪ HYP. The stronger property is arrived at by replacing
all subterms of the form f (s) in (4.3) with fresh variables. This new formula does
not contain the symbol f and can be checked by a theorem prover for validity. If
it is valid, then it holds for all models and all values of the substituted variables,
specifically (4.3) is satisfied in the extended interpretation. For some definitions it
might not be the case that the stronger property is satisfied in all models.

Theorem 4.3.2 (Admissibility of Recursive Function Definitions). Given Σ-interpretation
I with a with a well-founded order < on sort S, let f /∈ Σ be a function symbol whose arity
is over sort(Σ). Given a definition

f (x1, . . . , xi, . . . , xn) ≈ y⇐ φ

where sort(xi) = S and φ is a formula in which any occurrence of a term f (r1, . . . , ri, . . . , rn)
is such that νx(rS) < νx(xi) for any valuation νx of xi. Let φ′ be φ in which every subterm
f (r) is replaced by a fresh variable. If I |= ∀(φ′[y/y1] ∧ φ′[y/y2]) ⇒ y1 ≈ y2, then the
definition of f is I-admissible.

Example 4.3.7. Integer multiplication can be defined in terms of addition by using
recursion:

x ∗ y ≈ z⇐
(y ≈ 0⇒ z ≈ 0)∧
(y > 0⇒ z ≈ x ∗ (y− 1) + x)∧
(y < 0⇒ z ≈ x ∗ −y)

A definition of integer multiplication is clearly P-admissible, where P is the
standard interpretation of Presburger arithmetic.

This is useful because first-order solvers, such as Beagle , typically have theory
reasoners only for Presburger arithmetic, as that theory is decidable. Multiplication
is modelled by adding axioms from the example above to input formula sets that
require multiplication. Quite often counter-satisfiable conjectures using multiplica-
tion are easily proven contradictory, while their negation is not: for example, the
conjecture ∀x, y. x ∗ x ≈ y (easily shown unsatisfiable) becomes ∃x, y. x ∗ x 6≈ y when
negated. The latter form is satisfiable, and so termination of proof search is unlikely.

Theorem 4.3.2 provides the general case description for admissible recursive func-
tions. It is applied to specific sets of interpretations by using properties of the well-
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founded order found in the target interpretations. For recursive data structures the
sequence of constructor applications gives the order, and so order predicates can be
replaced appropriately. This is illustrated in the following examples.

Example 4.3.8. Given an acyclic model IA of AXLIST, it is possible to extend with the
definition Nlength:

length(lLIST) ≈ yZ ⇐ [(l ≈ nil→ y ≈ 0) ∧ (l 6≈ nil→ y ≈ 1 + length(tail(l)))]

For lists l in a ΣLIST-interpretation tail(l) <LIST l, and for IA this is well-founded.
Functionality follows from the extensionality axiom for cons. Therefore, Nlength is
IA-admissible. In general, Nlength is not ΣLIST-admissible, as it is never admissible in
a cyclic model of lists.

Example 4.3.9. Consider another definition Nrep:

rep(x) ≈ y⇐ cons(x, rep(x)) ≈ y

This is not a relativized definition, since the argument to the recursive term rep(x)
does not decrease relative to <LIST. Given an acyclic model IA of AXLIST, then Nrep

is not IA-admissible, however it is IC-admissible where IC is a model of AXLIST with
cyclic lists.

The general form Theorem 4.3.2 can be specialized to TLIST by replacing the gen-
eral well-founded order with <LIST. Typical applications of the list theory usually
assume acyclicity, so we introduce a schema for admissible LIST functions which ex-
cludes definitions of cyclic lists such as Nrep above, which would prevent using TZ as
an element theory.

Let Σ ⊇ ΣLIST be a signature, S ∈ sort(Σ) and f /∈ Σ a function symbol with arity
Z× LIST 7→ S. Let Def f be a set of (implicitly) universally quantified formulas of the
form below, where k is a tuple of non-list variables h is Z-sorted and t is LIST-sorted:

f (k, nil) ≈ b[k]⇐ B[k] (f0)

f (k, cons(h, t)) ≈ c1[k, h, t, f (k, t)]⇐ C1[k, h, t, f (k, t)] (f1)
...

f (k, cons(h, t)) ≈ cn[k, h, t, f (k, t)]⇐ Cn[k, h, t, f (k, t)] (fn)

where B is a Σ-formula. All of Ci and ci are (Σ ∪ { f })-formulas and terms respec-
tively, as they all contain f . Each definition must contain a base case ( f0) in order to
be well-founded.

Lemma 4.3.2. Let IA be a Σ+-interpretation that satisfies the acyclic property on ΣLIST. If
for all 1 ≤ i < j ≤ n the formula

∀kZ hZ tLIST xs. (Ci[k, h, t, x] ∧ Cj[k, h, t, x])⇒ ci[k, h, t, x] ≈ cj[k, h, t, x]

is LIST-valid then Def f is an IA-admissible definition of f w. r. t. Σ+.
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Proof. To show IA-admissibility, extend IA with a new function f I that interprets f
and satisfies Def f . By virtue of the axiom of construction

x ≈ nil ∨ x ≈ cons(h(x), t(x)),

structural induction over nil and cons-terms is adequate. Base case: given s, both b[s]
and B[s] are over Σ+, and both are assigned values by IA:

f I(s, IA(nil)) =

{
IA(b[s]), if IA(B[s]) is true,

e0, otherwise

If IA(B[s]) is false, then an arbitrary value e0 can be assigned.

Next, assume for some cons-term l that f I(s, l′) is defined for all s and l′ less than
l in the sub-list order. In each of the conditions Ci for formulas ( fi), the f terms are
over smaller LIST terms, so they are also evaluable at this stage in the induction. If
no CI is true, f I(t, l) is assigned a default value; if Ci is true, then f I(t, l) = ci[t].
Otherwise Ci and Cj are true, but by the condition in the lemma, this means that
ci = cj and f I can be safely assigned that value. Finally, since IA is acyclic, the
induction covers all LIST-terms and f I is therefore total.

4.3.3 Higher Order LIST Operations

This section demonstrates the usefulness of Lemma 4.3.2 by analyzing some higher
order functions of lists (similar arguments apply for recursive data structures), and
shows that first-order translations of applications of the given morphisms are IA-
admissible. Perhaps the most simple of these is map f , which applies a function f to
each element of the list. In order to support a wider range of operations (for example
those producing nested lists), and to simplify presentation, we will work with an
unsorted logic just for this section. In each of the following, operators are parame-
terized by an admissible function f , a higher-order argument in usual programming
practice.

map f (nil) ≈ nil∧
map f (cons(x, ys)) ≈ cons( f (x), map f (ys))

As map f is condition free, and so long as f is admissible, then map f is IA-admissible
too.

The function append is used as a helper function in flatMap:

append(nil, l2) ≈ nil∧
append(cons(x, ys), l2) ≈ cons(x, append(ys, l2))

Since each condition is empty, this is immediately IA-admissible.
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flatMap f (nil) ≈ nil∧
flatMap f (cons(x, ys)) ≈ append( f (x), flatMap f (ys))

fold f (nil, b) ≈ b∧
fold f (cons(x, ys), b) ≈ f (x, fold f (ys, b))

Again, this does not require any further work to be IA-admissible.

4.4 Applications

In general, it will be difficult to automatically discover admissibility of formulas ‘in
the wild’: first one must settle on a theory or satisfiable axiom set, then select the cor-
rect chaining of definition sets and appropriate structure. . . . Rather, the methods and
results given here provide a library of already admissible definitions (or templates
for proving admissibility) over common first-order theories that users of refutation
complete solvers can use in their own theorem proving applications. Additionally,
these methods could be used to integrate refutation complete first-order theorem
provers in larger systems, (proof assistants for higher-order logic typically), in a way
that extends their present capabilities. In these applications knowledge about the
admissibility of sets of axioms or definitions may already exist; then, testing both
CON and ¬CON in parallel can allow one to conclude that CON is a theorem or non-
theorem depending upon which proof terminates first; obviously this is not the case
if CON is contingently true.

4.4.1 Non-theorems in TLIST

Baumgartner and Bax [BB13] give a selection of admissible definitions (although
using a slightly different definition of admissibility, they remain admissible with the
new definition) which were tested with a selection of first-order reasoners which
have built-in arithmetic reasoning capability. Those results are updated here with a
larger selection of reasoners.

The following definitions extend ΣLIST with new functions and predicates. They
can be shown to be admissible using the lemmas and theorems of the previous sec-
tion. The function length is as defined in Example 4.3.8.

Together they will be used to disprove conjectures in the extended list theory with
integer elements. The goal is to demonstrate that conjectures on which reasoners do
not usually terminate (due to satisfiability in an infinite cardinality theory) can be
disproved using the methods described here.

Let count : Z× LIST 7→ Z, append : LIST× LIST 7→ LIST and in : Z× LIST be op-
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erators. Consider the extension of AXLIST with the following (admissible) definitions.

count(k, nil) ≈ 0 append(nil, l) ≈ l
count(k, cons(h, t)) ≈ count(k, t)⇐ k 6≈ h append(cons(h, t), l) ≈ cons(h, append(t, l))
count(k, cons(h, t)) ≈ count(k, t) + 1⇐ k ≈ h

The function count counts the occurrences of integer k in the given list, while append

creates a new list by appending the second argument list to the end of the first
list. Of the list functions, only count requires an application of Lemma 4.3.2 as both
append and length have no side conditions. The proof of functionality of count is
straightforward, as k ≈ h and k 6≈ h cannot be true simultaneously, so it is admissible
by the lemma.

inRange(n, l)⇔ l ≈ nil∨
(0 ≤ head(l) ∧ head(l) < n ∧ inRange(n, tail(l)))

in(k, l)⇔ count(k, l) > 0

The conjectures given in the following table are false in the (acyclic) theory of lists.
Note that all free variables are assumed to be universally quantified. Since the defini-
tions of the functions inRange, length, etc. are admissible, solvers can deduce satisfia-
bility of the statements shown by deriving a contradiction. In the notation used in the
introduction, AXIOM ∪ HYP ∪ CON is unsatisfiable, while AXIOM ∪ HYP ∪ ¬CON

is satisfiable. Results of running the provers on the former appear in the “Sat” (for
satisfiability) column, while the latter appear in the “Ref” column (for refutation).

Solvers used were Beagle (0.9.51) and Z3 (4.5.1) both with default settings (Beagle in
automatic mode) and with a time limit of 60 seconds. Columns are marked only
when the solver returns the correct result in the time limit.

Superpos. SMT
Problem Ref Sat Ref Sat

inRange(4, cons(1, cons(5, cons(2, nil)))) x x
n > 4⇒ inRange(n, cons(1, cons(5, cons(2, nil)))) x x

inRange(n, tail(l))⇒ inRange(n, l) x
∃n, l. l 6≈ nil ∧ inRange(n, l) ∧ n− head(l) < 1 x x

inRange(n, l)⇒ inRange(n− 1, l) x
l 6≈ nil ∧ inRange(n, l)⇒ n− head(l) > 2 x x

0 < n ∧ inRange(n, l) ∧ l′ ≈ cons(n− 2, l)⇒ inRange(n, l′) x x
length(l1) ≈ length(l2)⇒ l1 ≈ l2 x x

n ≥ 3 ∧ length(l) ≥ 4⇒ inRange(n, l) x
count(n, l) ≈ count(n, cons(1, l)) x

count(n, l) ≥ length(l) x x
l1 6≈ l2 ⇒ count(n, l1) 6≈ count(n, l2) x x

length(append(l1, l2)) ≈ length(l1) x x
length(l1) > 1 ∧ length(l2) > 1⇒ length(append(k, l)) > 4 x x

in(n1, l1) ∧ ¬in(n2, l2) ∧ l3 ≈ append(l1, cons(n2, l2))⇒
count(n, l3) ≈ count(n, l1)
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4.4.2 Non-theorems in TARRAY

For arrays, the defined predicates are: distinct : ARRAY ×Z 7→ Bool is true if the
first n elements are unique; sorted : ARRAY×Z 7→ Bool, where sorted(a, n) is true if
the first n elements of a are sorted in increasing order; inRange : ARRAY×Z×Z, as
for lists, inRange(a, r, n) is true if the first n elements fall in the range [0, r]. None of
the definition formulas are recursive, and so they fit the description of an admissible
predicate. This does not require further proof before it can be used. In order to
fit with typical use cases, the predicates are restricted to array prefixes. It seems
nonsensical to require that an array is only sorted if it is sorted across infinitely
many indices, other properties also only make sense when restricted to a prefix.

inRange(a, r, n)⇔ distinct(a, n)⇔
∀i. (0 ≤ i ∧ i < n) ∀i, j. (n > i ∧ n > j ∧ j ≥ 0 ∧ i ≥ 0)

⇒ (r ≥ read(a, i) ∧ read(a, i) ≥ 0) ⇒ read(a, i) ≈ read(a, j)⇒ i ≈ j)
sorted(a, n)⇔

∀i, j. (0 ≤ i ∧ i < j ∧ j < n)
⇒ read(a, i) ≤ read(a, j)

Definitions of array functions have the following arities and uses:
rev : ARRAY ×Z 7→ ARRAY returns a copy of an array with the order of the first
n elements reversed; max : ARRAY 7→ Z, returns the maximal element in the first
n entries. Again, they are not recursive and so a proof of functionality is required.
Note that in order to ensure functionality, the behaviour of rev must be specified
outside of the given prefix as well, as it returns an array. Both solvers were able to
prove functionality of both definitions.

rev(a, n) ≈ b⇐
∀i. ((0 ≤ i ∧ i < n)⇒ read(b, i) ≈ read(a, n− (i + 1)))

∨ ((0 > i ∨ i ≥ n) ∧ read(b, i) ≈ read(a, i))

max(a, n) ≈ w⇐
∀i. ((0 ≤ i ∧ i < n)⇒ w ≥ read(a, i))

∧ ∃j. (n > j ∧ j ≥ 0 ∧ read(a, j) ≈ w)

The conjectures given in the following table are false in the extensional theory of
arrays. Again, the definitions are admissible, solvers can deduce satisfiability of the
statements shown by deriving a contradiction. In the notation used in the intro-
duction, AXIOM ∪ HYP ∪ CON is unsatisfiable, while AXIOM ∪ HYP ∪ ¬CON is
satisfiable. Results of running the provers on the former appear in the “Sat” (for
satisfiability) column, while the latter appear in the “Ref” column (for refutation).

Solvers used were Beagle (0.9.51) and Z3 (4.5.1), both with default settings (Bea-
gle in automatic mode) and with a time limit of 60 seconds. Columns are marked
only when the solver returns the correct result in the time limit.
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Superpos. SMT
Problem Ref Sat Ref Sat

n ≥ 0⇒ inRange(a, max(a, n), n) x *
distinct(init(n), i) x *

read(rev(a, n + 1), 0) ≈ read(a, n)) x *
distinct(a, n)⇒ distinct(rev(a, n)) x * *
∃nZ. ¬sorted(rev(init(n), m), m) x * *

sorted(a, n) ∧ n > 0⇒ distinct(a, n) x *

The SMT results columns are marked specially since Z3 could not solve any of the
problems when using the problem statements given above. In particular, the incom-
plete specification of rev and max caused Z3 to report “unknown” for all problems.
This is correct where the answer is “satisfiable”; in the absence of the meta-level ar-
guments for satisfiability of admissible functions one cannot be sure that a function
exists satisfying the given property. This is related to the sufficient completeness
problem described in the previous chapter.

However, given an explicit definition for the two functions, e. g.

maxInner(a, n, c) :=

maxInner(a, n− 1, maxZ(c, read(a, n)))

max(a, n) :=

maxInner(a, n, read(a, n))

for max, Z3 was able to correctly solve the problems marked with (*) in the table.
Together these provide a nice illustration of the respective complementary strengths
of the two solvers.

4.4.3 TPTP Arithmetic non-theorems

As shown in Example 4.3.7 multiplication is admissible. As a result, problems in
which linear arithmetic theories, TZ or TQ, are extended with multiplication can be
dealt with using the method suggested here, i. e. proving the conjecture is a non-
theorem. Using this simple method, Beagle won the typed non-theorem division of
CASC-J8, solving 10/50 satisfiable problems in the TPTP. However, this only im-
proved on the second-best score by 1 solved problem. This is by no means a com-
plete answer to the problem of first-order satisfiability, notably, it never produces a
solution (as in, a counter-model).

Table 4.4.3 has a comparison of solving times for the regular (Ref) and non-
negated (Sat) form of the TPTP problems solved by Beagle . All problems are (counter)
satisfiable in their default form with conjectures negated, this is the Ref column;
without negation all result in an unsatisfiable clause set, implying the conjecture
is a non-theorem. Both runs had a 60 second timeout; any empty entries did not
terminate in the time limit.

Problems ARI536=3 and ARI575=3 rely on Z3 to discharge pure clauses in the
theory TR, all others use the built in LIA solver. The ‘ns’ entry denotes a run where
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Problem Ref Sat
ARI126=1 - 2.3
ARI127=1 - 3.6
ARI536=3 ns 1.5
ARI575=2 0.1 0.9
ARI575=3 0.1 1.0

NUM879=1 - 1.2
NUM880=1 - 1.3
NUM881=1 0.7 1.3
NUM885=1 - 1.2
NUM886=1 - 1.1

Table 4.1: Solving time (s) when conjecture is negated (Ref) and not negated (Sat).

Beagle produced a saturation but could not conclude ‘Satisfiable’ due to the presence
of uninterpreted BG sorted symbols.

4.4.4 Definitions in SMT-Lib format

The SMT-lib 2.5 standard [BFT15] provides syntax specifically for giving definitions
of new symbols, possibly using recursion, and the specific form of the definition
guarantees both functionality and totality. Applications of prover technology emit
goals in SMT-lib syntax (e. g. Isabelle, Why3), and first-order solvers support SMT-
lib syntax either by translation or directly.

The SMT-lib expression (define-fun f ((x1S1) . . . (xnSn)) S t) defines a func-
tion with arity f : S1 × . . .× Sn 7→ S; assuming that f does not appear in term t and
sort(t) = S. It is equivalent to the formula ∀x1, . . . , xn. f (x1, . . . , xn) ≈ t. The com-
mand define-funs-rec allows multiple function definitions in a single statement (to
have mutual recursion) and it allows recursive usage of defined symbols.

Note that the definition is accomplished by equating the defined term to a single
term t. Definitions involving side conditions of the form in Definition 4.3.3 or its
specialization to lists, are modelled by if-then-else terms: ite(φ, r, s), where φ is a
formula (the condition), and r, s are terms of the same sort. If-then-else terms can be
translated into FOL:

F[ite(φ, r, s)] becomes (φ⇒ F[r]) ∧ (¬φ⇒ F[s])

for some formula F. Conditions in if-then-else terms translate to perfect dichotomies,
i. e. φ guards the ‘if’ term and ¬φ guards the ‘else’ term, so define-fun definitions
are well-formed and total by default. For example signum : Z 7→ Z defined by
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if-then-else terms and FOL:

signum(x) ≈ ite(x > 0, 1, ite(x ≈ 0, 0,−1))

signum(x) ≈ 1⇐ (x > 0)

signum(x) ≈ 0⇐ (x ≤ 0 ∧ x ≈ 0)

signum(x) ≈ −1⇐ (x ≤ 0 ∧ x 6≈ 0)

Of course, definitions by define-funs-rec must first be shown to be well-founded.
In many theorem-proving applications it is usually not the case that problems

consist of just axioms, definitions, and conjecture formulas. Other formulas may
specify extra properties or lemmas about the problem at hand. In other words, the
problem might have structure: AX ∪ DEF ∪ HYP |= CON, where HYP is a set of arbi-
trary formulas that are neither axiomatic nor fit the syntactic criteria for definitions.
The method above can be applied by moving the formulas HYP to the right of the
consequence relation: AX ∪ DEF |= (

∧
HYP)⇒ CON, then the fact that AX ∪ DEF is

consistent can be used. Specifically, if a refutation based theorem prover can derive
a contradiction from

AX ∪ DEF ∪ (HYP⇒ CON) (4.4)

then one can conclude AX ∪ DEF |= ∧
HYP ∧ ¬CON.

The disadvantage is that the negated form of HYP in (4.4) may not be in a well-
behaved fragment such as the array property or quantifier-free fragment. This would
affect methods that attempt to prove satisfiability, but refutation based methods are
affected by a different set of properties.

4.5 Summary

This chapter presents a syntactic criterion for definitions which preserve satisfiability
of axiom sets. This is specialized for recursive definitions, assuming a reference
model with some fixed well-founded order. Then, standard theories can be extended
by new definitions which can be checked automatically, or manually and then re-
used. One class of automatically recognizable definitions is given by SMT-lib style
define-fun specifications.

The method is used to show counter-satisfiability of non-theorems over standard
theories extended with new definitions, using both an SMT solver and a Superpo-
sition solver. For problems over lists, the counter-satisfiability method was able to
show that the hypothesis was a non-theorem, while the usual refutation method did
not terminate.

For problems over arrays, the counter-satisfiability method prevailed for the Su-
perposition solver, when reasoning with an implicit description of a function. SMT
performed better when using an explicit description of the new function, and could
disprove the conjecture in the usual refutation setting (i. e. where the conjecture is
negated).
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Moreover, the counter-satisfiability method provides an alternative for reason-
ing with multiplication over integers and rationals, even though only the additive
theory of each is decidable. By assuming the built-in definition of multiplication is
satisfiable, any contradiction produced by a conclusion implies that its negation is a
theorem, and so the conjecture is counter-satisfiable.

4.5.1 Related Work

Many common formulas are not included in the array property fragment (Chapter 2,
and also [BMS06]), for example an injectivity predicate for arrays, see distinct in the
previous section. Ghilardi et al. [GNRZ07] provide a decision procedure for an exten-
sion of the array theory and demonstrate how decision procedures may be derived
for extensions to this theory, many of which lie outside the array property fragment.
This relies on the existence of a ‘standard model’ for the theory and extension, whose
existence must be demonstrated a priori.

In contrast to these works, we do not provide decision procedures for specific
fragments. This is intentionally so, in order to support disproving tasks in the pres-
ence of liberally formulated additional axioms (the set HYP above). Although we em-
ploy Superposition based provers in the experiments, like some approaches above,
our approach does not hinge on finite saturation. Claessen and Lillieström [CL11]
present a method for showing that a set of formulas does not admit finite models. It
does not answer whether infinite models exist, and so is complementary to the above.
Suter et al. [SKK11b] give a semi-decision procedure for checking satisfiability of cor-
rectness properties of recursive functional programs on algebraic data types, which
overlaps with the given method on lists (Lemma 4.3.2) by imposing similar syntactic
restrictions. Their method works differently, by partial unrolling of function defini-
tions into quantifier-free logic, instead of theorem proving on (quantified) formulas.

Ge and de Moura [GdM09] describe macro definitions. A macro is a non-ground
clause g(x) ≈ t[x] where g does not occur in t. They suggest that the best way to deal
with terms g(s) is to remove them entirely from the input formula, after which the
clause defining g is equivalent to true. They generalize this to the concept of a pseudo-
macro which is a symbol g defined by a set of clauses Dg = {C1[x], . . . , Cn[x]} such
that all Ci contain g(x) and are trivially true after replacing g(x) with some term tg[x].
Another simple form of pseudo macro is Dg = {C1[x] ∨ g(x) ./ tg[x], . . . , Cn[x] ∨
g(x) ./ tg[x]} where ./ is ≈,≤ or ≥. This concept is exploited to limit instantiation
in the SMT scheme they describe. Note that macros fit the pattern of basic definitions
described in Example 4.2.2, and so pseudo-macros could offer a generalization along
the same lines.

Reynolds et al. [RBCT16] give an admissibility criterion for use in translating re-
cursive function definitions for consumption by SMT solvers. This criterion identifies
when the translation in question preserves unsatisfiability of the function definition.
Although similar in intent, this definition of admissibility is semantic and requires an
external proof of admissibility. Well-founded definitions are shown to be admissible,
so only a termination proof is required for those definitions.
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In particular, a definition is admissible in the sense of Reynolds et al. when ex-
pansion with the terms of the definition does not affect T-satisfiability of a set of
formulas that uses the definitions. It is likely that this is a more general account
of admissibility than that given here, for example, definitions identified in Theorem
4.3.1 are (semantically) admissible, by virtue of being well-founded. Nevertheless,
syntactic criteria are useful in that they give a short-cut method of proving the ad-
missibility of the definition, although they may not cover all possible expressions of
that property.



Chapter 5

Finite Quantification in Hierarchic
Theorem Proving

5.1 Motivation

The previous chapter addressed the problem of disproving contradictory conjectures
in the presence of background theories. This chapter considers the obvious next
question: what to do when the conjecture is contingently true, in other words, when
HYP ∪ {¬Con} is B-satisfiable. In particular, under the assumption that there are
only finitely many free BG-sorted subterms in the ground instances of the clause
set (more specifically, the relevant terms are finite), then the hierarchic satisfiability
problem can be solved using Superposition for hierarchic theories as described in
Chapter 2.

This chapter also describes an algorithm for the hierarchic satisfiability problem
that employs a conflict-guided instantiation strategy for producing formulas that are
free of the completeness problems that can lead to an incorrect conclusion of satisfia-
bility. Unlike traditional finite model finders, it avoids exhaustive instantiation, hence
it is expected to scale better with the size of the problem domains. While aimed at
demonstrating satisfiability, if the algorithm determines unsatisfiability w. r. t. finite
domains, the given clause set is also unsatisfiable w. r. t. unbounded domains. Then
this approach could be seen as an extension of quantifier instantiation heuristics that
determines satisfiability w. r. t. finite domains.

The key results of the chapter are a correctness proof and experimental results
that illustrate the performance characteristics of the algorithm. This updates results
in Baumgartner et al. [BBW14] and places them in context of later developments.

Section 5.2 contains a step-by-step application of the satisfiability procedure to an
example problem in the theory of arrays. Then the particular language fragment used
to model the Ground Base-sorted Term (GBT)-fragment is introduced, as well as a
(previously unpublished) technique for modelling quantification over arbitrary finite
sets using finite integer sets. The satisfiability procedure is introduced in Section 5.4,
as well as a heuristic that uses solvers to find terms for updating the equivalence
relation. Section 5.5 contains a small set of experiments that illustrate the range of
possible behaviours and the scalability of the algorithm. Finally, Section 5.6 places the

89
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satisfiability procedure in the context of a selection of other satisfiability procedures
that include theory reasoning.

5.1.1 Overview

While the first-order validity problem is semi-decidable, the satisfiability problem
is not, as there is no way to enumerate first-order models. If interpreted theo-
ries are added, then even refutationally complete validity checking becomes in-
tractable (linear integer arithmetic with free symbols has a Π1

1-hard validity prob-
lem [Dow72, Hal91]). In practice, this lack of completeness is a major concern in
software verification applications, including ranking function and loop invariant syn-
thesis, which require the capability to disprove non-valid proof obligations. In such
cases, incomplete theorem provers run out of resources or report ‘unknown’ instead
of detecting non-validity (i. e. , satisfiability of the negated conjecture).

There are various methods to circumvent this problem: SMT-solvers generally use
instantiation heuristics to reduce the input problem to a quantifier-free one, while ap-
proaches based on first-order theorem proving either are incomplete; do not accept
free BG-sorted operators at all, for example [KV07, Rüm08, GK06, BT11]; or, other-
wise, are complete only for certain fragments of the input language.

Nieuwenhuis et al. [NOT06] gives an overview of SMT instantiation heuristics,
while specific ones are described by Ge et al. [GBT07], and de Moura and Bjorner
[dMB07]. These heuristics are complete only in rather restricted cases, as in Ge and
de Moura
[GdM09]. For theorem proving, approaches described in [BGW94, AKW09, KW12,
BW13a, BW13b] all restrict the input language to obtain completeness.

Some complete fragments can be very useful, for example, the data structure the-
ories given previously are known to have finite saturations under the Superposition
calculus (when the conjecture is ground and without interpreted theories) [ABRS09].
It seems straightforward to include theory reasoning in these fragments, so long as
compactness is not a problem. Since the only new inferences on the BG part of
clauses are simplifications or constraint refutations, a finite saturation should be pos-
sible. The De�ne rule is then able to recover sufficient completeness by renaming each
of the finitely-many ground free BG-sorted terms in the finite saturation.

More general fragments, such as the array property fragment, allow limited use
of quantifiers. These are usually instantiated first, then the proof goal is discharged
using a dedicated decision procedure for the ground fragment. Solvers for first-order
logic typically degrade in performance as the number of clauses increases, hence it
is desirable to minimize the number of instances, if possible. However, their ability
to reason natively with quantifiers properly extends the capability of SMT solvers.

As described in Chapter 2, the Hierarchic Superposition calculus requires both
compactness of the base specification and sufficient completeness of the input clause
set, for refutation completeness. A lack of sufficient completeness either results in
non-termination, or, more seriously, termination with a saturated clause set none of
whose models properly extend any model of the base specification B. Then, any
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clause set that has a finite saturation under the Hierarchic Superposition calculus
requires sufficient completeness in order to conclude B-satisfiability.

The GBT-fragment, in which all free BG-sorted terms are ground, is sufficiently
complete. This will be the starting point of the method described in this chapter.

The GBT-fragment will be modelled by finitely quantified clauses, in which every
variable occurring below a free BG-sorted operator is quantified over a finite cardi-
nality subset of its domain. The advantage of this is twofold: instantiation is limited
to only those quantifiers which must be instantiated for completeness, and, sets of
clause instances (and hence sets of relevant terms) can be represented efficiently by
ΣZ-formulas.

If all quantifiers range over finite sets, decidability can be recovered trivially
by exhaustive instantiation, followed by calling a suitable SMT-solver. Of course,
the instantiation approach scales poorly with increasing domain size, as observed
in the context of finite-model finding, for example see [Sla92, ZZ95, McC03, CS03,
BFdNT09, RTG+13, RTGK13].

Then the main goal is to design a procedure that recovers sufficient completeness
while minimizing instantiation of clauses. To this end, the satisfiability procedure
maps multiple free BG-sorted terms to the same constant, and refinements are made
by exempting selected terms from that default assignment in a conflict-guided way.
After each refinement, the given clause set is rewritten with the new assignment
into a clause set with sufficient completeness, so B-satisfiability can be checked with
existing reasoners. Suitable reasoners are, e. g. , theorem provers implementing Hier-
archic Superposition and, with one more simple transformation step, SMT-solvers for
the EA-fragment of the background theory. The procedure stops after finitely many
refinement steps; either with a representation of a model (i. e. , a saturated clause
set) or a set of clause instances which demonstrates the unsatisfiability of the input
clause set.

The satisfiability procedure can be understood as testing a succession of over and
under-approximations of the given clause set. Under-approximations are created us-
ing a conjectured equality relation on the free BG-sorted terms. Concretely, terms
assigned the same default constant are in the same equivalence class. Again, sim-
plifying the clause set using this relation (i. e. , replacing free BG-sorted terms with
constants) produces a clause set for which saturation in the Hierarchic Superposition
calculus implies B-satisfiability. It is called an under-approximation in keeping with
naming conventions, e. g. , in counter-example guided abstraction refinement, where
an under-approximation may exclude some Σ-interpretations, but satisfiability of the
under-approximation implies satisfaction of the original set.

The over-approximation phase takes a certain subset of clause instances which
have been produced by a sound assignment to free BG-sorted terms, and tests this
for unsatisfiability. If neither test is conclusive, then the current equality relation is
refined by removing some terms from equivalence classes. Effectively, this enlarges
the set of Σ-interpretations considered in the under-approximation phase. Doing so
naïvely will require more work than simply instantiating outright, and so a critical
part of the procedure is the heuristic used to choose the terms to be removed from
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the equivalence relation and added as instances after an iteration.
In summary, the satisfiability algorithm aims to fix the immediate problem that

follows the restriction to the GBT-fragment: the exponential increase in clause num-
bers due to instantiation with ground free BG-sorted terms. The fix involves repre-
senting clause instances symbolically using LIA formulas, then aggressively replac-
ing relevant terms with constants. This unsound step is rectified by heuristic instanti-
ation of clauses which appear to be causing unsatisfiability; a form of conflict-guided
instantiation.

5.2 Example Application

Let N be the following clause set:

(1) read(write(a, i, x), i) ≈ x (4) 1 ≤ m∧m < 1000
(2) read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j (5) read(a, m) < read(a, m + 1)
(3) read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i /∈ [1..1000i] ∨ j /∈ [1..1000j]

where x ∈ [l..h] abbreviates the formula l ≤ x ∧ x ≤ h for l, h ∈ Z, and x ∈ χZ.
Notice that (1) and (2) are the axioms for non-extensional, integer-sorted arrays

with integer indices, as introduced previously. Axiom (3) states that the array a is
sorted within the domain [1..1000] for i and j. Annotating the upper bounds as 1000i

and 1000j facilitates replacing them with different values for a given variable. The
clauses of (4) constrain the integer constant m to the stated range. The goal is to
confirm that N is TZ-satisfiable.

In the example, sufficient completeness means that in every model of (1)-(5)
w. r. t. pure first-order logic, every ground read-term must be equal to some concrete
integer. Every write-term inside of a read-term can be eliminated with the axioms (1)
and (2). The only problematic terms are applications of read to the array constant a.
The clauses (3) and (5) constrain the interpretation of terms of the form read(a, t) but
do not enforce sufficient completeness. Achieving sufficient completeness for ground
clauses like (5) is easy: one just needs to add clauses defining free BG-sorted terms:
(5b) read(a, m) ≈ n0 and (5c) read(a, m + 1) ≈ n1 where n0 and n1 are fresh integer-
sorted parameters, then replace the clause (5) by (5a) n0 < n1. This is akin to the
De�ne rule described in Chapter 2.

The more difficult part concerns the non-ground clause (3). The method of this
section generalizes the action of the De�ne rule by creating definitions for non-ground
clauses of the form described in Section 5.3. It begins with a default assignment that
maps all read-terms of a particular shape to the same arbitrary symbolic constant.
Applied to clause (3) this produces:

(3a) n3 ≤ n4 ∨ ¬(i < j) ∨ i /∈ [1..1000i] ∨ j /∈ [1..1000j]
(3b) read(a, i) ≈ n3 ∨ i /∈ [1..1000i] (3c) read(a, j) ≈ n4 ∨ j /∈ [1..1000j]

Clauses (3b) and (3c) are the definitions for the default interpretation, one per occur-
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rence of a read-term in (3), and clause (3a) is clause (3) after applying these defini-
tions.

The new clause set N1 = {(1), (2), (3a)−(3c), (4), (5a)−(5c)} needs to be checked
for satisfiability. As N1 has sufficient completeness1, a Hierarchic Superposition
solver can be used to show that it is unsatisfiable. (Alternatively, one can remove all
occurrences of the read-operator in the clauses (3a)-(5c) by exhaustive Superposition-
like inferences, and then submit the resulting clause set to a suitable SMT-solver).

The unsatisfiability of N1 implies that N is not satisfied using the current con-
straints on the interpretation of read (i. e. , definitions), however, it may be satisfied
by less strict constraints. The next step is to refine the default interpretation specified
by clauses (3a), (3b), (3c), at a critical point that is responsible for unsatisfiability.
The heuristic, described in Section 4.2, determines that point by first finding a max-
imal sub-domain for which the clause set is satisfiable. In the example, this is the
sub-domain [1..999i] for the variable i and the point is 1000. Specifically, the set N2

obtained fromN1 by replacing 999i by 1000i everywhere is satisfiable. The refinement
is made by excluding the point 1000 from the default interpretation and providing a
separate definition for it:

(3a1) n31 ≤ n4 ∨ ¬(i < j) ∨ i /∈ [1..1000i] \ {1000} ∨ j /∈ [1..1000j]
(3a2) n32 ≤ n4 ∨ ¬(1000 < j) ∨ j /∈ [1..1000j]
(3b1) read(a, i) ≈ n31 ∨ i /∈ [1..1000i] \ {1000}
(3b2) read(a, 1000) ≈ n32

(3c) read(a, j) ≈ n4 ∨ j /∈ [1..1000j]

Clauses (3b1) and (3b2) provide the modified definitions, and clauses (3a1) and (3a2)
are the rewritten versions of (3). Let N3 = {(1), (2), (3a1)− (3c), (4), (5a)− (5c)} be
the result of the current transformation step; it remains unsatisfiable. In the next
round, the new upper bounds defining the satisfiable subset of N3 are 999j and
1000i. Transforming clause (3) w. r. t. the points 1000 for j and 1000 for i from the
previous step gives:

(3a1) n31 ≤ n41 ∨ ¬(i < j) ∨ i /∈ [1..1000i] \ {1000} ∨ j /∈ [1..1000j] \ {1000}
(3a2) n32 ≤ n41 ∨ ¬(1000 < j) ∨ j /∈ [1..1000j] \ {1000}
(3a3) n31 ≤ n42 ∨ ¬(i < 1000) ∨ i /∈ [1..1000j] \ {1000}
(3a4) n32 ≤ n42 ∨ ¬(1000 < 1000)
(3b1) read(a, i) ≈ n31 ∨ i /∈ [1..1000i] \ {1000} (3b2) read(a, 1000) ≈ n32

(3c1) read(a, j) ≈ n41 ∨ j /∈ [1..1000j] \ {1000} (3c2) read(a, 1000) ≈ n42

Let N4 = {(1), (2), (3a1)− (3c2), (4), (5a)− (5c)} be the result of the current trans-
formation step. This time, N4 is satisfiable, and so is N , with the same models. If I
is any such model, we have I(m) = 999, I(read(a, i)) = k, for some integer k and all
i = 1..999, and I(read(a, 1000)) = l for some integer l > k. The reasoning behind this
procedure is formalized in Section 5.4.

1or an approximation thereof– see later
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The example is solved after two iterations of transformation steps. In general,
each transformation step needs O(m · log(n)) prover calls to determine the next point
as explained above, where m is the number of FQ variables in the given clause set
and n is the size of the largest domain. With m = 2 and n = 1000, this accounts
for 2 · (m · log(n)) ≤ 40 theorem prover calls, however, each one is rather simple. In
contrast, the full ground instantiation of the clauses (3)-(5) has a size of nm = 106,
which is far too large for current theorem provers or SMT-solvers.

When every default assignment is unsuitable, the given method also requires a
full ground instantiation, as separate definitions are needed for each term instance
in order to establish overall (un)satisfiability. Unfortunately, the naïve heuristic pre-
sented in the example only permits single exception points to be added at each step.
So not only is the fully instantiated clause set checked, but also every step-wise
refinement on the way to reaching it. That is, one transformation step for each indi-
vidual domain element followed by a prover run on the clause set instantiated over
all finite quantifier domains.

A section in the next chapter will show how to identify clause sets which necessar-
ily have this behaviour, and how to avoid them with a syntactic check. A specialized
representation of introduced definitions for free BG-sorted terms is also given, which
allows finding ranges for exceptions rather than just single points.

5.3 Finite Cardinality Theories

This section describes a general theory of finite structures and some reasoning meth-
ods over them. A definition for Finitely Quantified (FQ)-clauses over integers gives a
specific fragment for modelling the GBT-fragment. Then, a transformation from gen-
eral theories which define finite sets (or possibly finite sorts) into sets of FQ-clauses
allows reasoning over larger fragments. These will form the basis for both of the
refinement algorithms presented in the current and the following chapter.

Definition 5.3.1 (Cardinality Constraint Clause). The cardinality of the domain of
interpretations can be bounded using cardinality constraint clauses:

x ≈ c1 ∨ . . . ∨ x ≈ cn

where for each 1 ≤ i ≤ n, ci is a distinct constant.

Any model of a cardinality constraint clause with n constants can have at most
n distinct elements in its domain. In a many-sorted language such a clause would
bound the cardinality of the carrier set for the sort of x in any model.

Example 5.3.1. Enumerated data-types (e. g. , Booleans) and data-types implemented
with fixed-width bit-vectors like char can be modelled with cardinality constraint
clauses.

Unfortunately, the rules of the Superposition calculus allow self-inferences on
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constraint clauses:

x ≈ c1 ∨ . . . ∨ x ≈ cn y ≈ c1 ∨ . . . ∨ y ≈ cn

x ≈ y ∨ x ≈ c2 ∨ . . . ∨ y ≈ cn

These produce many, mostly unhelpful, clauses. Such behaviour is noted by Hillen-
brand and Weidenbach [HW07] as the motivation for their calculus: an adaptation
of the Superposition calculus to the case where all sorts are bounded by cardinality
clause constraints. Although it seems evident that the Superposition calculus should
decide this theory (by grounding all clauses first, then by decidability of completion
for ground finite rewrite systems), their goal is to describe an efficient calculus for
this theory. Although decidability was shown in principle, the calculus enumerates
exponentially many interpretations for uninterpreted functions and also contains a
computationally difficult check for redundancy of inferences.

An alternative could be to use the Hierarchic Superposition calculus with a ded-
icated solver for finite cardinality theories, such as the solver described by Reynolds
et al. [RTGK13]. The solver could then delete tautologies like those (eventually) pro-
duced by self-inferences with cardinality constraint clauses. However, similar clauses
result from inferences like the above where x is replaced with a foreground term. As
these are impure (containing a mix of FG and BG terms), they are not removed by
simplification and remain eligible for other inferences. Then the finite domain solver
will need to test impure clauses as well. Such checks are more expensive, since each
mixed clause must be tested independently, i. e. , incremental model finding cannot
be used. If this is done frequently– as it must be for simplification to be effective–
performance will be severely impeded, as the satisfiability check for finite cardinality
theories is NP-complete.

If roles are reversed and a finite model is chosen before the proof, then simpli-
fication checks amount to testing whether a given BG clause is true in the selected
model. The model can also be used to simplify BG literals in impure clauses, but if
any pure BG clauses are not satisfied in that particular model, a new model must be
chosen. Effectively, this pushes the model search out from between inferences to be-
tween derivations. This is the general approach of the refinement procedure, except
that the default interpretation constrains the possible models rather than explicitly
giving a model.

One could find a similar philosophy in the AVATAR system for first-order rea-
soners described by Voronkov [VB14]. It uses a SAT solver to choose a maximal
splitting of clause components before a proof, effectively fixing some part of the in-
terpretation then using a Superposition-based solver to work out the details. This
split is refined when evidence of its unfeasibility is found, similar to the above. This
comparison holds only at a high level: unlike AVATAR this method is focused just
on the problem of reasoning in combinations of theories.
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5.3.1 Finitely Quantified Clauses

The following assumptions on clauses guarantee that there are finitely many free
BG-sorted term instances among the ground instances of a clause set:

• All subterms headed by a BG-sorted foreground (BSFG) operator have only
Z-sorted free variables, and

• These variables are quantified over finite (integer) sets.

The second assumption could be weakened to allow variables of any sort whose
cardinality is restricted by a cardinality constraint by giving a map from that sort to
a suitable subset of integers, see Section 5.3.2.

Let ξ ∈ ΞB be a BG sort. A finite ξ-domain ∆ is any, possibly empty, finite set
{d1, . . . , dn} ⊆ Dom(ΣB) of ξ-sorted domain elements di. Membership in ∆ can be
expressed by a ΣB-formula F∆[x] in one free ξ-sorted variable x whose extension is
exactly the set ∆, in every B-interpretation2. A finite set ∆ can always be represented
as a disjunction: F∆[x] = x ≈ d1 ∨ · · · ∨ x ≈ dn. However, the formula F∆[x] is
intended to be used as a guard for a regular clause, i. e. , F∆[x] ⇒ C[x], this will be
translated by a solver to the CNF form C[d1] ∧ . . . ∧ C[dn]. As mentioned above, a
critical factor in the choice to model finite domains with sets of integers is the fact
that finite sets can be compactly described by ΣZ-formulas:

Definition 5.3.2 (Domain Formula). A finite Z-domain ∆ = {d1, . . . , dn} with mini-
mal and maximal elements dmin, dmax respectively, can be represented by either of the
formulas

dmin ≤ x ∧ x ≤ dmax ∧
∧
c∈S

x 6≈ c (5.1)

x ≈ d1 ∨ · · · ∨ x ≈ dn (5.2)

where S = [dmin, dmax] \ ∆. These are called domain formulas for ∆.

Using (5.1) requires the background domain to have a non-dense partial order,
which essentially restricts usage to the integers. Note that the latter part of the
formula (

∧
c∈S x 6≈ c) could also be considered part of the clause, but generally it

pays for the instantiation procedure to have the most specific representation possible
of the finite domain.

In the following, domain formulas will be abbreviated with set-like notation:
x ∈ ∆ or x ∈ [0, 100]. In particular, the form x ∈ ∆ \Π is used to distinguish certain
domain elements Π that are excluded from ∆, although x ∈ ∆ ∧ ¬(x ∈ Π) is itself a
domain formula. Where a domain formula includes only a single free variable, that
is indicated with a subscript, e. g. , ∆x could refer to the previous formula. Domain
formulas can also appear as literals in clauses, usually negated, e. g. , x /∈ ∆. This is
only at the outer-loop level; all domain formulas inside clauses are expanded to their
full CNF equivalents before being passed to a solver.

2specifically F∆[x] must not contain parameters
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By guarding all variables in a clause that occur below a free BG-sorted operator
with domain formulas, the size of the set of relevant terms can be restricted to be
finite.

Definition 5.3.3 (Finitely Quantified Clause). A finitely quantified clause is a Σ-clause
of the form D ∨ x1 /∈ ∆x1 ∨ · · · ∨ xn /∈ ∆xn , where n ≥ 0, such that

1. xi 6= xj for 1 ≤ i < j ≤ n, and

2. every variable occurring below a free BG-sorted operator in D is in x1, . . . , xn.

Let FQvars(C ∨ ¬∆)3 be the set of variables of C which appear in ∆.

Example 5.3.2. The following are finitely quantified clauses:

(C1) f (x1) > x1 + y ∨ ¬(y > 0) ∨ x1 /∈ [1..1000]
(C2) f (x2 + g(x3)) < 10 ∨ ¬(x2 > 2) ∨ x2 /∈ [1..1000] ∨ x3 /∈ [1..100]

In C1 the variable y does not need to be guarded by a domain formula, as it does
not occur below a free BG-sorted operator. The literal x1 /∈ [1..1000] abbreviates the
negated domain formula ¬(1 ≤ x1 ∧ x1 ≤ 1000), similarly for x2 /∈ [1..1000]. Extra
ΣB-literals such as ¬(x2 > 2) are typically not in the domain formula; regardless, the
existence of a domain formula guarantees that x2 can take only finitely many values.

5.3.2 Indexing Finite Sorts

FQ-clauses require all variables below free BG-sorted terms to be integer sorted and
restricted to finite domains. This section gives a possible way of lifting the restriction
to integer sorted variables, by means of a transformation from clause sets with free
BG-sorted terms that include variables ranging over arbitrary finite domains to FQ-
clause sets. It describes sort encoding similar to those in [HW07, HW13]. There are
two ways to restrict quantifiers to a finite domain: by cardinality constraint clauses,
or by restriction using the base specification. Both situations can be modelled using
FQ-clauses, by introducing a map from the finite set to integers.

5.3.2.1 Finite Predicates

Consider the problem of searching for a counter-example element among a finite
subset of a sort, for example, a list of length three containing characters (i. e. , an
integer in the range [0, 255]). The LIST sort cannot be restricted to only contain
lists of length three, since the list constructor axiom allows constructing lists of any
length. Also, the many-sorted signature does not permit distinct sorts to have a non-
empty intersection. Instead, the domain of interest is defined using a new predicate,
e. g. ,

dom(x)⇔ x ≈ nil ∨ x ≈ cons(a11, nil) ∨ . . . ∨ x ≈ cons(a31, cons(a32, cons(a33, nil)))

3∆ = x ∈ ∆x ∧ y ∈ ∆y ∧ . . .
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This can be used to guard LIST-sorted quantifiers in the problem specification.
As for FQ-clauses, all variables below BSFG operators must range over finite

sets, only now domain formulas are replaced with cardinality constraint clauses over
arbitrary sorts. It is assumed that cardinality constraint clauses have predicates of
the form Cardk as aliases:

Cardk(x)⇔ x ≈ d1 ∨ . . . ∨ x ≈ dk

where the di terms are ground and pairwise distinct. The predicate Cardk can only
be interpreted as a set with at most k different values. Then, a finitely bounded (FB)-
clause is such that any occurrence of a variable in a free BG-sorted term is guarded
by a predicate Cardk of appropriate sort. As a consequence, only variables appear as
arguments to cardinality predicates.

The idx transformation from FB-clause sets to FQ-clause sets is:

Definition 5.3.4. For each predicate Cardk : S→ Bool:

1. Add a new operator iS : Z→ S to Σ

2. Replace each FB-clause C[t[x]] ∨ ¬Cardk(x), where t is a free BG-sorted term,
with the FQ-clause C[x/iS(y)] ∨ y /∈ [1, k]

3. Replace Cardk(x)⇔ x ≈ d1 ∨ . . . ∨ x ≈ dk with iS(1) ≈ d1 ∧ . . . ∧ iS(k) ≈ dk.

For a clause set N containing Cardk predicates and definitions, let idx(N ) be the
result of applying the above for each predicate Cardk.

Lemma 5.3.1. Let N be a set of FB-clauses over signature Σ that includes definitions for
cardinality predicates over sorts {S1, . . . , Sn}. Then N and idx(N ) are equisatisfiable over
the extended signature Σ ∪ {iS : S ∈ {S1, . . . , Sn}}

Proof. ⇐: Assume I |= N . For each cardinality constraint Cardk there is a finite set
CI = {d ∈ DI : I |= Cardk(d)}. Define an arbitrary enumeration of the elements of
CI , i. e. , let CI = {d1, . . . , dk}. For each cardinality predicate Cardk : S → Bool define
iI
S : Z→ S as

iI
S(x)

{
dx if 1 ≤ x ≤ k
d1 otherwise

This satisfies each of the clauses C[t[iS(x)]] ∨ x /∈ [1, k], since the argument to iS is
guarded by a domain formula and the clause is satisfiable for each of the instances
that satisfy the guard.
⇒: Assume idx(N ) has a model I. Define a new Σ-interpretation I′ such that

CardI′
k is the set {I(iS(1)), . . . , I(iS(k))} = {d1, . . . , dk}. The only clauses of N not

already satisfied by I are those with a Cardk predicate. Clearly I′ |= Cardk(x) ⇔ x ≈
d1 ∨ . . . ∨ x ≈ dk. The remaining clauses to satisfy have the form C[t[y]] ∨ ¬Cardk(y).
By assumption, I′ |= C[t[dj]] for j ∈ [1, k], and so I′ |= ∀y. C[t[y]] ∨ ¬Cardk(y).
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5.3.2.2 Finite Sorts

The restriction to a finite cardinality can also be modelled via specifications in which
certain base sorts have a restricted cardinality. Given sorts Ξ in Σ, a cardinality map
over Σ is card : Ξ → N ∪ {∞}, where for all S card(S) ≥ 1. For a cardinality
map card over Σ, a cardinality bounded specification is a specification in which all
interpretations in the model class of the specification have at most card(S) elements
in the carrier set for S, where card(S) 6= ∞.

As for FQ-clauses, all variables below BSFG operators must range over finite sets,
only now that restriction is expressed by the cardinality map and enforced by the
bounded specification. In this context an FB-clause is such that for any BG-sorted
non-base subterm t[x], if sort(x) = S, then card(S) 6= ∞.
The transformation idx from FB-clause sets over bounded specifications to FQ-clause
sets is:

Definition 5.3.5. For each sort S where card(S) 6= ∞

1. Add a new operator iS : Z→ S to Σ

2. Replace each clause C[t[x]], where t is a free BG-sorted term and sort(x) = S,
with the FQ-clause C[x/iS(y)] ∨ y /∈ [1, card(S)]

3. For each constant c of sort S add the clauses4

• iS(βc) ≈ c

• 1 ≤ βc

• βc ≤ card(S)

for fresh parameter βc

4. For every function symbol f : S1 × . . .× Sk → S where S is finitely bounded,
add the clause f (x1, . . . , xk) ≈ iS(1) ∨ . . . ∨ f (x1, . . . , xk) ≈ iS(card(S))

Steps 1 and 2 are the same as for cardinality bounding predicates, while steps 3
and 4 extend the cardinality bound to operator symbols of the appropriate sort.

Lemma 5.3.2. For an FB-clause set N , idx(N ) is equisatisfiable with N , and idx(N ) is an
FQ-clause set.

Proof. ⇐: Assume N has a model M respecting the cardinality restriction card. For a
finitely bounded sort S define an arbitrary enumeration of the elements of SM (i. e. ,
the carrier set for S), so SM = {s1, . . . , sk} such that k ≤ card(S). For each finitely
bounded S define iM

S : Z→ S as

iM
S (x)

{
sx if 1 ≤ x ≤ card(S)
s1 otherwise

4If there are less than card(S) constants, then assign to each existing constant c in S an arbitrary
unique integer k where 1 ≤ k ≤ card(S), and add the clause iS(k) ≈ c.
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This satisfies each of the existential clauses in idx(N ) introduced for constants, and
each of the clauses C[t[iS(x)]] ∨ ¬x ∈ ∆, since the argument to iS is guarded and the
clause is satisfiable for each of the instances that satisfy the guard.
⇒: Assume idx(N ) has a model M. The model M respects the given cardinality

bounds if it satisfies, for each S,

∀x : S. ∃y : Z. 1 ≤ y ≤ card(S) ∧ x ≈ iS(y)

This is ensured by the constraints added for function and constant symbols in steps
3, 4 of the idx transform. So M |= N .

Lemma 5.3.3. For constants ci and variable x of sort S, where card(S) = n; the cardinality
constraint clause x ≈ c1 ∨ . . . ∨ x ≈ cn ∈ N is redundant w. r. t. idx(N ).

Although the above seems almost tautological, it allows eliminating cardinality con-
straint clauses using the transform idx. By taking the presence of the cardinality
constraint to mean card(S) = n in the base specification, the over productive cardi-
nality clause can be dropped.

Example 5.3.3. This can be used to do a form of finite model finding on arbitrary
formulas with BSFG operators by guarding all variables below BSFG operators with
arbitrarily chosen cardinality constraint predicates. A saturation will imply a model,
but a contradiction will require the constraints to be enlarged.

This is similar, in spirit, to the algorithm applied to FQ-clauses, although more
inefficient as the runs are independent. Hence, the next chapter introduces special-
ized algorithms for TLIST and other recursive data structure theories, that exploit the
structure of data structures.

5.4 Domain-First Search

This section describes the algorithm checkSAT defined in Figure 5.4. It is based
on the algorithm in [BBW14], and formalizes the example in Section 5.2. The aim of
checkSAT is to show B-satisfiability of a set of FQ-clauses, while producing a minimal
number of clause instances. As it uses the finite domains of the given FQ-clause set
to organize the clause instances, it is described as domain-first search.

The main advantage of this version of checkSAT is the fact that the entire al-
gorithm (both checkSAT and �nd) can be implemented using off-the-shelf solvers,
unlike the version in the next chapter.

Internally checkSAT allows finite domains to be shared between clauses: a set
of FQ-clauses {C1 ∨ ¬∆1, . . . , Cn ∨ ¬∆n} is represented by the formula (∆1 ∧ . . . ∧
∆n)⇒ (C1 ∧ . . . ∧ Cn) as in line 2. The domain formulas in the antecedent are called
global domain formulas. The sets of excluded points Πx at line 10 are emphasized, as
they track progress in the algorithm.

The algorithm does not specifically require the input clause set to be variable dis-
joint. In fact the algorithm performs differently depending on which finite domains
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1 algorithm checkSAT((∆x1 ∧ . . . ∧ ∆xk ) ⇒ (C1 ∧ . . . ∧ Cn))

2 // returns ‘B-satisfiable’ or ‘B-unsatisfiable’
3 let M = (∆x1 \ ∅ ∧ . . . ∧ ∆xk \ ∅) ⇒ (C1 ∧ . . . ∧ Cn)

4 while true
5 let M− = definitional(M) //see Section 5.4.1
6 let M+ = persistent(M−) //see Section 5.4.1
7 if M− is satisfiable return B-satisfiable // justified by Lemma 5.4.2
8 if M+ is B-unsatisfiable return B-unsatisfiable
9 let (x, d) = find(M)

10 M := (∆x1 \ Πx1 ∧ . . . ∧ ∆x \ (Πx ∪ {d}) ∧ . . .) ⇒
11 (C1 ∧ . . . ∧ Cn) ∧ (C1 ∧ . . . ∧ Cn)[x/d]

Figure 5.1: The algorithm for hierarchic satisfiability

are shared between clauses. There are two extremes of domain sharing that can
occur: at one end, every clause is variable disjoint from all others. This degrades per-
formance both in find which can require as many prover calls as there are (global)
finite domains, and also where variants of relevant terms under different domains
cancel the effect of exceptions (see Example 5.7.1). The opposite extreme is to iden-
tify finitely quantified variables in different clauses according in some fixed order so
that there are only as many global finite domains as the maximal number of finitely
quantified variables in any individual clause. The disadvantage is that any change in
a finite domain affects every clause, adding a new instance of each finitely quantified
clause at each iteration. Actual performance changes realized, depend heavily on the
particular clause set, hence the final choice is left with the user.

checkSAT repeatedly applies a transformation of the formula (∆x1 \Πx1 ∧ . . . ∧
∆xk \Πxk) ⇒ (C1 ∧ . . . ∧ Cn) to an equisatisfiable set of FQ-clauses w. r. t. growing
sets of exception points Πx. It is assumed that each Πx ⊆ ∆x. If Πx = ∆x, then ∆x

is tacitly removed from the set of global domain formulas to avoid a tautology. Note
that ∆x \ Πx is also a domain formula, specifically (d1 ≤ x ∧ x ≤ d2 ∧

∧
e∈S x 6≈

e) ∧ ∧
e∈Πx

x 6≈ e has form (1) in Definition 5.3.2. So the exception points are usually
implicit, except in the context of the checkSAT algorithm.

The procedure stops if any transformed clause set is either B-satisfiable or serves
to demonstrate B-unsatisfiability. It is assumed that B-satisfiability tests, i. e. , lines
7 and 8, carried out by checkSAT are effective. This is always the case when there
are no FG operators other than free BG-sorted operators and the EA-fragment of the
background theory is decidable, for example.

If the clause set is unsatisfiable w. r. t. the current set of exception points, then
a new exception point is found using the heuristic find. To prove termination of
checkSAT, it is enough to choose any d /∈ Πx. However, choosing arbitrarily can lead
to worse overall performance than simply instantiating the FQ-clauses immediately.

The limit of this process of adding exception points is the clause set with all
finite quantifiers instantiated over their domains. As shown by Lemma 5.4.4, this is a
sound transformation of the clause set. Hence the essential property of checkSAT is
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Theorem 5.4.1 (Correctness of checkSAT). For any set N of FQ-clauses, checkSAT(N )
terminates with the correct result: ‘B-satisfiable’ or ‘B-unsatisfiable’. Moreover, if the result
is ‘B-unsatisfiable’ then checkSAT(N) with all domain formulas removed is B-unsatisfiable.

Proof. Termination follows from the fact that find always returns some pair (x, d)
such that x ∈ x and d ∈ ∆x \Πx, as shown in Lemma 5.4.6. Hence, the set Πx grows
monotonically in line 10 in checkSAT, and there are only finitely many elements in
∆x available for that. Correctness follows from the lemmas in the following section:
If checkSAT reports ‘B-unsatisfiable’, then M+ is unsatisfiable at line 8. By Lemma
5.4.5, this is because M itself is B-unsatisfiable. If checkSAT reports ‘B-satisfiable’,
then M+ is satisfiable at line 7. By Theorem 5.4.2, M+ is B-satisfiable, and by Lemma
5.4.3 it follows that N is B-satisfiable and with the same model. The end result of the
instantiation at line 10 is a sound instantiation of N , by Lemma 5.4.4. In that case,
M+ and M− are identical and the result is true of N in any case.

In summary, checkSAT tests the B-satisfiability of an input set of FQ-clauses rel-
ative to a subset of possible models that is specified by the exception points. The
constraints are progressively weakened in an attempt to limit instantiation. This
weakening is informed by a heuristic computed from the current formula set. Al-
though testing subsets of models is unsound, all models are eventually tested and so
the method is sound overall.

5.4.1 Clause Set Approximations

The suggestively named clause sets M+ and M− in checkSAT in Figure 5.4 are over
and under-approximations of M respectively, as evidenced by the satisfiability status
they confer on lines 7 and 8. If the over-approximation M+ is unsatisfiable, then M
is also, and satisfiability of the under-approximation M− implies satisfiability of M.
The converse does not hold in either case.

The clause set M− is produced by replacing all free BG subterms t of M in
innermost-first order with fresh parameters α, and then adding the definition unit
clause t ≈ α. Specifically, a definition in this context is an equation of the form
f (t1, . . . , tk) ≈ α, where f is a BSFG operator and α is a parameter which does not
appear in the original clause set. FQ-Clauses in which a definition is guarded by
a domain formula, e. g. , f (t1, . . . , tk) ≈ α ∨ ¬∆ are also referred to as definitions,
although they really represent sets of definitions.

Since the under-approximation asserts that instances of non-ground free BG sub-
terms under the same definition must be equal, the set of possible models of M is re-
stricted to a subset of models that respect this constraint. Critically, the set M− has (a
version of) sufficient completeness, and so satisfiability of M− implies B-satisfiability.

The algorithm definitional ensures domain formulas are added to clauses and def-
initions, and rewrites clauses appropriately. By a slight abuse of notation, ∆ and
N stand for sets of domain formulas and clauses respectively, so written to make
the connection to the formula M clear. A minimal free BG term is any free BG term
that does not contain a free BG term as a proper subterm. The result of de�nitional
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1 algorithm definitional(∆ ⇒ N)
2 let Cls = {C ∨ ¬(∧x ∈ vars(C) ∩ vars(∆) ∆x) : C ∈ N}
3 let Def = ∅
4 while Ci ∈ Cls has minimal free BG subterm t:
5 //α is a fresh parameter
6 Def = Def ∪ {t ≈ α ∨ ¬(∧x ∈ vars(t) ∆x)}
7 replace C[t] with C[α] in Cls
8 return Cls ∪ Def

Figure 5.2: de�nitional creates an under-approximation of N using global domain ∆

consists of the sets Cls and Def, such that Cls does not contain any free BG-sorted
subterms and all clauses in Def are definition clauses in which all free BG-sorted
terms have no proper free BG-sorted subterms.

The following lemma shows that the action of replacing FQ-clauses by their in-
stances does not affect satisfiability.

Lemma 5.4.1. For any x and d ∈ ∆x,

((∆x1 ∧ . . . ∧ ∆x \ {d} ∧ . . .)⇒ (C1 ∧ . . . ∧ Cn)) ∧ (C1 ∧ . . . ∧ Cn)[x/d]

is equivalent modulo TZ to (∆x1 ∧ . . .)⇒ (C1 ∧ . . . ∧ Cn)

Proof. By rewriting with logical equivalences and using d ∈ ∆x to simplify.

This corresponds to the step on line 10 of the checkSAT algorithm.

Lemma 5.4.2. Let N be a set of FQ-clauses with global domains ∆ ⇒ (C1 ∧ . . . ∧ Ck). If
de�nitional(∆⇒ (C1 ∧ . . . ∧ Ck)) is B-satisfiable, then N is B-satisfiable.

Proof. Let the result of de�nitional(∆ ⇒ (C1 ∧ . . . ∧ Ck)) be Cls ∪ Def and assume
that Cls ∪ Def is B-satisfiable. The definitions in Def are exhaustive in the sense
that any instance of an FQ-clause Ci obtained by ground instantiation with domain
elements of ∆ is congruent with some clause in Cls obtained by paramodulation with
clauses in Def. This entails that N ∪ Def is B-satisfiable, and hence, so is N .

Lemma 5.4.3. If M = (∆x1 \ Πx1 ∧ . . . ∧ ∆xk \ Πxk) ⇒ (C1 ∧ . . . ∧ Cn) and M− is
B-satisfiable, then M is B-satisfiable for any combination of exception points Πx.

Proof. By the previous two lemmas.

The limit of the process of instantiation in Lemma 5.4.1 is free from domain for-
mulas and includes all instances of (C1 ∧ . . . Cn) over the finite domains. Applying
de�nitional to these clauses produces a set Cls ∪ Def where all definitions in Def are
ground. As Cls is the result of rewriting ground free BG-sorted terms in each clause
with parameters unique to each term instance, it follows that Cls ∪ Def is equivalent
to the instances.
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Lemma 5.4.4. If ∆ is empty, then de�nitional(∆⇒ N) is equivalent to N.

So if checkSAT reports unsatisfiable on the final clause set, then the conclusion is
sound.

The set of clauses M− = Cls ∪ Def does not have sufficient completeness. For
example, Def = { f (0) ≈ α0, f (x) ≈ α1 ∨ x /∈ [0, 100] \ {0}}; the instance f (−1) is
not assigned a parameter, and so can be interpreted freely by an interpretation.

This problem could be fixed by including, e. g. , f (x) ≈ α2 ∨ x ∈ [0, 100]. In
general, for every definition term t include a new definition whose domain formula
is built from the negation of all domain formulas found in other definitions for t.
Then every simple instance of a free BG-sorted term (and so every relevant term) is
defined as equal to some parameter, not just those inside the finite domain. Includ-
ing such definitions will have no effect on the satisfiability of M−, as free BG-sorted
terms only appear in definitions. In a derivation, the new definitions only ever su-
perpose on existing definitions, which have disjoint domains by construction. Thus,
all inferences between an introduced definition and an existing one produce only
tautologies.

This appears to be an unnecessary waste of prover effort for the sake of theoretical
completeness, since the same interpretation satisfies the clause set without including
those extra definitions.

Theorem 5.4.2. Let M = ∆ ⇒ (C1 ∧ . . . ∧ Cn) be a set of FQ-clauses as above. If M− is
satisfiable, then it is B-satisfiable.

Proof. Let M2 = vsgi(M−) ∪ {t ≈ α : ¬∆ ∨ t ≈ α ∈ vsgi(M−) and TZ |= ¬∆}. Ev-
ery t ∈ rel(M−) is defined in M2, so it has local sufficient completeness. Moreover,
any model of M2 satisfies M−, as every new unit clause in M2 subsumes only trivial
clauses in vsgi(M−). Assume for contradiction that M2 is not B-satisfiable. Then
there is a derivation of the empty clause from M2 using the Hierarchic Superposition
calculus. This derivation cannot include any new definitions t ≈ α, because t only
occurs in either the definition or a trivial ground clause of vsgi(M−), which is im-
mediately redundant. Then the derivation of the empty clause uses premises from
vsgi(M−) only, contradicting that M− is satisfiable. Therefore, M2 is B-satisfiable,
and that model satisfies M−.

This is enough for completeness of the Hierarchic Superposition calculus on the
clause set M−, as shown in Chapter 2.

The over-approximation M+ selects a subset of clauses and definitions in M−

which do not contain any variables in the domain formulas ∆. Concretely, given that
M = ∆ ⇒ (C1 ∧ . . . ∧ Ck), define M+ = {C ∈ M− : vars(C) ∩ vars(∆) = ∅}.
This set of clauses is equivalent to a subset of the set produced by fully instantiating
all finite quantifiers of M. Since this full instantiation is equisatisfiable with M, the
unsatisfiability of M+ implies the unsatisfiability of M.

Lemma 5.4.5. If M+ is unsatisfiable, then M is unsatisfiable.
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Proof. Every clause in M+ is either unchanged by the de�nitional algorithm or it
contains a ground free BG-sorted subterm. If a clause of Cls is included in M+,
then so are all definitions used in that clause. Then that clause is congruent in
M+ to a clause of M in which all finite quantifiers are instantiated. Hence, the
congruence closure of M+ contains a subset of the full instantiation of M, and M is
unsatisfiable.

Example 5.4.1. Let the input formula be ∀x ∈ [0, 100]. f (x) > f (0) and let M be

∆ = x ∈ [0, 100] \ {0}
(C1) f (0) > f (0) (C2) f (x) > f (0)

The modified domain formula x ∈ [0, 100] is the result of one iteration of checkSAT
in which �nd returns (x, 0).
The clause set M− is

∆ = x ∈ [0, 100] \ {0}
(D1) f (0) ≈ α1 (D2) f (x) ≈ α2

(C1) α1 > α1 (C2) α2 < α1

And M+ is {D1, C1, C2}, which is unsatisfiable.

Note that each version of M is equivalent, no matter how the clauses are parti-
tioned into FQ-clauses and instances.

5.4.2 Update Heuristic �nd

This heuristic aims to find a variable x and domain element d such that M− with d ∈
∆ are unsatisfiable, while adding d ∈ Π (but not adding the corresponding instance)
results in a satisfiable clause set. (Recall the in-place replacement of the constant 1000i

in Section 2). It does this by partitioning domains in M− to find a maximal satisfiable
subset of instances. Then, removing d from ∆x and simultaneously adding instances
formed by the substitution [x → d] may ‘repair’ the conjectured equivalence relation
on free BG-sorted terms, so that the transformed clause set is satisfiable.

Some of the exception points chosen for refinement can be irrelevant, in the sense
that they do not change the clause set beyond adding variants. This problem is
addressed with the improved heuristics found in the next chapter.

As usual for such heuristics, time spent searching for a ‘good’ update pair is
traded for the possibility of detecting satisfiability earlier. An advantage of this
heuristic over ones presented in the following chapter is that it does not require
any modification of the component solver. Its main disadvantage is that much of
work done checking subsets of M− is repeated.

Performance of the algorithm, measured in number of calls to the component
solver, scales linearly with the number of domains and at worst logarithmically with
the cardinality of the largest domain. That is the reason for working on the clause
set as an implication ∆⇒ N rather than a set of individual FQ-clauses.
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1 algorithm find((∆x1 ∧ . . . ∧ ∆xn) ⇒ N)

2 // returns a pair (xj, d) such that d ∈ ∆xj

3 for i = 1 to n:
4 let Ni =

∧ {C ∈ N : FQvars(C) ∩ {x1, . . . , xi} = ∅}
5 if definitional(∆xi+1 ∧ . . . ∧ ∆xn ⇒ Ni) is B-satisfiable:
6 let Γ ⊆ ∆xi and d ∈ Γ such that
7 definitional(Γ ∧ . . . ∧ ∆xn ⇒ Ni) is B-unsatisfiable and
8 definitional(Γ \ {d} ∧ . . . ∧ ∆xn ⇒ Ni) is B-satisfiable // see text
9 return (xi, d)

10 // from Lemma 5.4.6 it follows d ∈ ∆x as claimed

Figure 5.3: find determines the next exception point to add

The specific order of domain formulas visited at line 3 is arbitrary, but perfor-
mance may be improved by sorting by decreasing domain size.

For FQ-clauses with base theory TZ the set Γ and d ∈ Γ can be determined
efficiently, as follows: Assume the set ∆xi is (a subset of) an interval [l, u] for some
numbers l and u with l < u. From the above it follows that there is a maximal
number u′ with l < u′ ≤ u, such that Γ := [l, u′] ∩ ∆xi is as claimed. The number u′

can be determined by binary search in the interval [l + 1, u]. By maximality, u′ is the
desired element d. This justifies line 8 in Figure 5.4.2.

Lemma 5.4.6. Whenever find is called from checkSAT, then the if-clause on line 5 is executed
for some i, and find returns a pair (xi, d) such that d ∈ ∆xi .

Proof. As find is called from checkSAT, it follows that the input set is unsatisfiable.
However, the subset with no FQ variables is satisfiable, hence the condition in line 5
in find is satisfied for some i in 1, . . . , n. Among all these values, the if-clause is exe-
cuted for the least one. Specifically, there is some i ∈ [1, n] for which definitional(∆xi ∧
. . . ∧ ∆xn ⇒ Ni) is B-unsatisfiable, while definitional(∆xi+1 ∧ . . . ∧ ∆xn ⇒ Ni+1) is
satisfiable. (If i = n, then the satisfiable set is just M+). Hence, the set of domains
Γ ⊂ ∆x for which definitional(Γ ∧ . . . ∧ ∆xn ⇒ Ni) is satisfiable is non-empty, and the
maximal such set set is a proper subset of ∆x. Therefore d exists also.

5.5 Experimental Results

We have implemented the checkSAT/find algorithm using Beagle (Chapter 3) as the
component solver. 5 The implementation is prototypical and currently serves only to
try out the ideas presented here. Table 5.2 summarizes the experiments performed
with this implementation.

5This is available in the distribution at http://www.bitbucket.org/peba123/beagle

http://www.bitbucket.org/peba123/beagle
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5.5.1 Problem Selection

Currently, the TPTP problem library does not contain many test problems that exhibit
a failure of sufficient completeness. Beagle can already solve problems where suffi-
cient completeness and not compactness is at issue, using the De�ne rule. Hence, test
problems are necessarily synthetic. In addition, it is the behaviour of the domain-
first refinement algorithm that is under investigation, not the performance of the
component solver. This requires synthetic benchmarks in order to minimize the con-
tribution of other factors to the solver’s performance, as well as to allow relevant
parameters to be tuned.

The problems tested on are listed in Table 5.1. Problems (1) and (6) are B-
unsatisfiable, while the remainder are B-satisfiable. Free variables of each problem
are quantified over the domain ∆, which is typically of the form [0, n − 1] where
|∆| = n; and, for problem (5), ARRAY(1, 2) represents the first two axioms of the
set ARRAY. The only difference between (6) and (6-alt) is the renaming of variables
x2, x3 to x. This will affect the structure of the finite domains, possibly reducing the
difficulty of the problem. For each problem the algorithm was run with a range of
domain sizes to better illustrate the scaling behaviour.

# Status Statement

1 Unsat ∀y. f (x) > 1 + y ∨ y < 0
2 Sat ∀x. x < 0⇒ g(x) ≈ −x∧

∀x. x ≥ 0⇒ (g(x) ≈ x ∨ g(x) ≈ x + 1)∧
f (x) < g(x)

3 Sat f (x1, x2, x3, x4) > x1 + x2 + x3 + x4
4 Sat f (x) 6≈ x ∧ f (5) ≈ 8 ∧ f (8) ≈ 5
5 Sat ARRAY(1, 2) ∧ ∃a, m. (i < j⇒ read(a, i) ≤ read(a, j)∧

1 ≤ m ∧ m < 1000 ∧ read(a, m) < read(a, m + 1))
6 Unsat f (x1) > x1 ∧

f (x2 + 3) < 10 ∨ ¬x2 > 2
6-alt Unsat f (x) > x∧

f (x + 3) < 10 ∨ ¬x > 2

Table 5.1: Problems used for testing. Free variables range over the domain ∆ = [0, n − 1],
where the size parameter n = |∆| is given in Table 5.2.

In general, the behaviour of the checkSAT algorithm can be understood by divid-
ing problems into categories: Problems can be either satisfiable or unsatisfiable, and
dependent or independent of domain size. When satisfiable, the checkSAT algorithm
terminates after enough exception points have been added to allow a model. In the
unsatisfiable case, the algorithm terminates once an unsatisfiable subset of instances
has been found. Problems may also be too difficult for the component solver, this
usually results in a timeout on the first call.

Performance on problems, both satisfiable and unsatisfiable, may be indepen-
dent of the domain sizes. For example, in problem (1) any single instance [x → a]
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produces an unsatisfiable set, no matter the size of the domain. Problem (3) is an ex-
ample of a satisfiable, domain independent problem; it is always satisfiable under the
default interpretation. (Notice that the variable y does not need to be finitely quan-
tified). Z3 reports ‘unknown’ on problem (1), but, surprisingly it solves the similar
problem f(x) > y ∨ y < 0 quickly. Problems (4) and (5) are also in this category.

Other problems are domain dependent: the size of the smallest set of unsatisfiable
ground instances, or the number of exception points required for satisfiability can
grow with domain size.

5.5.2 Results

All experiments were carried out on a Linux desktop with a quad-core Intel i7 cpu
running at 2.8 GHz, with 8GB of RAM, although the host JVM6 was configured
with maximum heap size of 4GB. Problems were run with a 60 second time limit,
executions that exceeded that are marked ‘-’ in the table.

2 1,3 4

|∆| #Iter #TP Time #Iter #TP Time #Iter #TP Time

10 9 40 7.24 1 1 <1 2 7 1.18
20 19 102 13.75 1 1 <1 2 8 1.18
50 - - - 1 1 <1 2 10 1.31

100 - - - 1 1 <1 2 11 1.32
200 - - - 1 1 <1 2 12 1.33
500 - - - 1 1 <1 2 13 1.37

1000 - - - 1 1 <1 2 14 1.34
2000 - - - 1 1 <1 2 15 1.44
5000 - - - 1 1 <1 2 17 1.66

5 6 6alt

|∆| #Iter #TP Time #Iter #TP Time #Iter #TP Time

10 3 17 6.18 3 15 2.26 3 12 <1
20 3 19 11.95 3 17 2.28 3 14 <1
50 3 21 19.10 3 19 2.84 3 19 1.1

100 3 23 42.30 3 21 2.18 3 21 1.1
200 - - - 3 23 2.26 3 23 1.2
500 - - - 3 25 2.47 3 24 1.2

1000 - - - 3 27 2.96 3 26 1.3
2000 - - - 3 29 3.30 3 28 1.4
5000 - - - 3 33 2.95 3 32 1.5

Table 5.2: checkSAT experimental results.

6OpenJDK v.1.8
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The column ‘#Iter’ is the number of while-loop iterations in checkSAT needed to
solve the problem for the given size of ∆. The column ‘#TP’ is the number of theo-
rem prover calls stemming from the various B-satisfiability checks in checkSAT/find.
Finally, ‘Time’ is the total CPU time (seconds) needed to solve the problem.

For comparison, we have also run Microsoft’s SMT-solver Z3 [dMB08], version
4.1, on the examples, using the obvious formula representation of the domains ∆.

For problem (2) the function symbol g is ‘sufficiently complete’ defined by the
first two clauses, and only the third clause containing the function symbol f needs
finite quantification. Z3 could not solve this problem within three minutes.

Problem (3) was devised to get some insight into Z3’s capabilities on the problems
described here. While it is trivial for domain-first refinement, Z3 seems to instantiate
the clause in problem (3). Clearly, there is a scalability issue here, as for about
|∆| > 60 the problem becomes unsolvable in reasonable time.

As a side note, we found Z3’s performance impressive, and it could solve prob-
lems (4)–(6) in very short time.

Problem (4) is a simple test of the default interpretation/exception mechanism.
Problem (5) is the main example from Section 5.2.

The problems (4) and (6) scale very well, however solving time for (5) increases
in linearly with domain size. Note however the difference between (6) and (6-alt): by
combining similar domains, run time was halved. This prefigures the enhancement
of the next chapter. In problem (4) the exception points are easily discovered from
the problem and in (5) the exceptions are quickly discovered by the search. Similarly,
in problem (6) the definition for f(9) is found quickly: the only one needed to estab-
lish unsatisfiability. However, this requires searching the domain of x1 first, then x2

(comapre Example 5.3.2).

# |∆| Beagle CVC4 Status CVC4 Time

1 100 <1 Unsatisfiable 0.4
2 10 7.24 GaveUp 0.24
2 20 13.75 GaveUp 0.64
3 200 <1 timeout
4 200 1.33 Satisfiable 0.9
5 100 42.30 timeout
6 500 2.47 Unsatisfiable 0.12
6 1000 2.96 Unsatisfiable 0.20
6 2000 3.30 Unsatisfiable 0.28

Table 5.3: checkSAT comparison to CVC4.

Table 5.3 shows the result of running CVC4 (version 1.5)7 on some representa-
tive problems, where the first column (#) references the problem definition in Table
5.1, and the domain size is specified as in Table 5.2 Its recently developed bounded
integer finite model finding algorithm builds on [RTGK13], and is rather close in

7Using flag –fmf-bounded-int
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behaviour to the checkSAT algorithm described here, in the sense that it also builds
definitions for uninterpreted terms with variables ranging over finite integer sets.
Compared to the default CVC4 configuration, this new feature enables solving the
instances of problems 4 and 6.

5.6 Related Work

Procedures for computing models of first-order logic formulas without background
theories have a long tradition in automated reasoning. MACE-style model find-
ing [CS03] utilizes translation into propositional SAT or into EPR [BFdNT09] for
deciding satisfiability w. r. t. a given candidate domain size k; SEM-style model find-
ing [Sla92, ZZ95, McC03] utilizes constraint solving techniques, again w. r. t. k. The
main problem is scalability w. r. t. both the domain size k and the number of variables
in the input clause set, which severely limits the applicability of both styles in prac-
tice. Reynolds et al. [RTG+13, RTGK13] propose a finite model finding procedure in
the SMT framework that addresses this problem using on-demand instantiation tech-
niques. However, quantification is restricted to variables ranging into the free sort
and the extension to quantification of variables over other interpreted sorts (e. g. ,
integers) is left as future work.

Heuristic instantiation is the state-of-the-art technique for handling quantified
formulas in SMT-solvers [GBT07, dMB07]. These heuristics perform impressively
well in practice, but are necessarily incomplete. Many language fragments, such as
the array property fragment [BMS06] and local theories [IJSS08] admit equisatisfiable
translations to finite sets of ground clauses.

Ge and de Moura [GdM09] propose a technique where the ground terms used
for instantiation come from solving certain set constraints. They obtain completeness
results for the fragment in which every variable occurs only as an argument of a free
function or predicate symbol. This fragment is expanded with a subset of LIA terms
and also includes fragments such as the array properties fragment. Not all LIA terms
are included, for example, terms like f(x + y) are disallowed, but are acceptable in
FQ-clauses when x and y are finitely quantified. Since the procedure is an effective
means for proving the existence of a finite equivalent set of instances, it can be used
to test whether a clause set is eligible to be transformed to a FQ-clause set. This is
described in the next section.

The actual quantifier instantiation phase described in Ge and de Moura [GdM09]
is known as Model Based Quantifier Instantiation. This involves the SMT solver
building a model of the unquantified part of the formula, which is used in an at-
tempt to refute the (negated) quantified formula. If no contradiction is found, then
the counter-example model suggests an extension to the existing model. Then, model
based quantifier instantiation can be viewed as a way to reduce the set of instantia-
tions which must be explored, and as a way to quickly arrive at a better model for
the quantified formula.

Reynolds et al. extend this technique [RTG+13], using the SMT solver to re-
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duce the set of instances generated from a given model. Essentially, a given in-
stance of the quantified formula is expanded to a larger set of instances, equivalent
modulo the background theory and only instances outside of that set are consid-
ered for further rounds of quantifier instantiation. In addition, the model built is
constrained to small domain cardinalities by incorporating finite model finding tech-
niques [RTGK13], this then produces a smaller set of terms from which to create
formula instances. Although this finite model finding method is refutation complete
for uninterpreted first-order quantified formulas, it is not necessarily so for formulas
that involve background theories, as it falls victim to the same completeness prob-
lems that were described for the Hierarchic Superposition calculus. The finite model
finding technique can also be applied to bounded integer domains (FQ-clauses), for
similar reasoners as considered here. Uninterpreted functions which range over in-
tegers are also given ‘definitions’ using an expressive constraint language similar to
finite domains. However, the focus is on finding a model and relies on theory solvers
being capable of providing bindings for shared variables. This is similar to how SMT
solvers are employed in the Leon tool described below. As the next chapter shows,
using this over and under approximation approach in a refutation theorem proving
setting effectively inverts this relationship: checkSAT and �nd search for unsatisfiable
sets to refine the definitions. Unsurprisingly then, the SMT based finite model find-
ing approach is model complete (i. e. models are always found for satisfiable clause
sets) for FQ-clauses.

Theorem proving using successive under and over-approximation of the problem
has been described by Lynch [Lyn04], and is also used to great effect in the Leon
static analysis tool for a subset of the Scala language [BKKS13]. While the specific
method used by Leon is similar [SKK11a], the domain-first search algorithm differs
in that it uses a refutation based first-order theorem prover for discharging proof
goals. So the evidence used to find a refinement is a refutation, not a model (like in
Leon and most SMT based methods), and this necessitates the algorithm find.

Further, the Inst-Gen calculus [GK04a], as used in iProver, can be viewed as em-
ploying an approximation strategy, where propositional instantiations are used in the
course of a saturation-style proof search. Successive superposition inferences are in-
formed by the result of reasoning on the previous instantiated clause set. An earlier
description of the calculus [GK03] also describes a method for obtaining non-ground
approximations, useful where those approximations fall in a decidable fragment.

5.6.1 Complete Instantiable Fragments

Where clause sets are in the array property fragment or local theories fragment, domain-
first search can be applied in lieu of immediate instantiation. The finite set of in-
stances is set as the finite domain which must be searched, possibly using techniques
such as those described in Section 5.3.2.

Ge and de Moura [GdM09] describe a way of constructing an equisatisfiable set of
instances of a formula using set constraints derived from a clause set. Although they
were interested in producing sets of ground instances for consumption by an SMT
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solver, the same reasoning can be used to instantiate clauses to the GBT-fragment.

Theorem 5.6.1 (Ge & DeMoura). LetN be a clause set and ∆N be a set of instances derived
from the least solution to set constraints of N . Let N ∗ = {Cσ : C ∈ N , σ ∈ ∆N }, then
N ⇔ N ∗.

An immediate consequence is

Lemma 5.6.1. Assume N ⇔ N ∗ as above. Let N ′ be any set of instances of N such that
N ∗ ⊆ gnd(N ′), then N ⇔ N ′.

So a set N ′ created by instantiating all variables below BSFG operators is equisat-
isfiable with the original clause set, as long as those instances are found by solving
the set constraints. It is possible that certain clause sets might have a finite set N ′
even though the set N ∗ is infinite. Such clause sets have equisatisfiable clause sets
in the GBT-fragment, and so Hierarchic Superposition is at least refutation complete
on those clause sets.

5.7 Summary

This chapter introduced a new method for proving satisfiability of clause sets modulo
LIA. The critical restriction is that all integer-sorted, uninterpreted subterms have
finitely many instances. This is enforced by bounding certain quantifiers to finite
sets. Section 5.3.2 describes how this can be applied to any finite set of instances
using an indexing function to integers.

Although the decision problem remains difficult, this technique at least guar-
antees refutation completeness. And, in some cases, it is more efficient than fully
instantiating the clause set, as shown by the experiments.

Inefficiencies still remain: some clauses are already ‘complete enough’, and do not
need to be instantiated with this method. Furthermore, some refinements produced
by �nd can be redundant in the sense that they do not alter the existing clause set
under-approximation being tested.

Alternative default interpretation: Taking a constant as the default assignment for
free BG-sorted terms is not always a good choice. For example, for the clause f(x) ≈
x ∨ x /∈ [1..1000] checkSAT needs to amend the default assignment f (x) ≈ α at every
point in the FQ domain. Any BG-term can be used as a default: in the above, using
the term x as the default assignment to f(x) produces a satisfiable clause set.

Unfortunately the set of terms that can be used in default assignments is limited
by the language of the theory solver to be linear polynomials with integer coefficients.
For example, while the set {f(x) ≈ x · x} has sufficient completeness, the definition
is outside of the LIA fragment and so termination of Hierarchic Superposition is no
longer guaranteed. Similarly, the use of parameters in a linear polynomial is not
possible, e. g. , f(x) ≈ a · x + b, for parameters a, b is outside the LIA fragment.
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The technique of replacing unknown functions with template terms is described,
along with the Model Based Quantifier Instantiation (MBQI) heuristic for SMT solvers
[GdM09]. In MBQI, a model for the ground part of the formula is used to interpret
terms in the non-ground part. Then the non-ground part is negated and Skolemized,
making it eligible for solving with an SMT solver. If that is satisfiable, then the as-
signments to the Skolem constants in the counter-example are used to produce more
ground clauses. Templates are used to replace uninterpreted function symbols in the
original problem.

A variant of the above method could be used with checkSAT, using the solution-
finding capability described in Chapter 3 for the LIA fragment, or a suitable SMT
solver used as a theory solver in the Superposition solver. The critical observation is
that clauses in fixed(M) are equivalent to clauses with ground free BG-sorted terms
only. If linear templates are used to replace free BG-sorted terms, then any templates
in fixed(M) will be in the LIA fragment, as they have the form α1d1 + . . .+ αkdk + β for
d1, . . . , dk ∈ Z. As before, unsatisfiability of fixed(M) implies overall unsatisfiability,
but when satisfiable a binding v : ConstsZ 7→ Z can be found for the parameters in
the templates.

The binding v is used to rewrite the parameters in M−, so that all templates are in
the LIA fragment. Then one iteration of checkSAT is performed. Again, satisfiability
of M− (modulo v) implies overall satisfiability, otherwise an update (x, d) can found.
Adding new clause instances required by the update may expand fixed(M) and lead
to an updated binding v′, which can be used in the next iteration of checkSAT. It
does not matter that the exception point (x, d) was computed relative to a binding v,
as the only effect is to exclude d from the respective finite domain. Termination is
not affected either, as once all points are excluded from finite domains, no templates
are present and fixed(M) is equivalent to the original clause set.

In the first iteration fixed(M) will be empty, so it is necessary to choose an arbi-
trary non-zero value from the finite domains to instantiate the FQ-clauses.

Bernays-Schönfinkel fragment: The Hierarchic Superposition calculus can imme-
diately be instantiated with, say, an instance-based method for deciding background
theories that are given as a set of EPR-clauses. (See Example 2.5.1 in Chapter 2). Then
checkSAT, or the extensions above, could possibly be used to integrate arithmetic rea-
soners, instance-based methods and Superposition. Specifically, in a combination of
EPR and arithmetic, any FG operators must have a BG result sort, and predicates that
take BG terms are disallowed also. So long as every free variable under a BSFG oper-
ator is either EPR or finitely bounded, then sufficient completeness can be recovered
using the de�nitional procedure.

Consider applying the checkSAT algorithm to a predicate p(t) which has a finite
number of instances, as per the previous example. The default assignment for p
will be false. When there are no exception points, the effect will be removing all
p-literals from clauses. If the result is satisfiable, then the clause set has a model
where p is interpreted as false everywhere. If the result is unsatisfiable, then p
can be updated using find. Once an exception point e is found, p(e) is removed
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from the default assignment (where it was assigned false) and instances of clauses
containing p-literals are added. This continues until either a subset of unsatisfiable
clause instances is found or a satisfiable set is found.

In contrast, a model based approach like Model Evolution maintains a context
that partially specifies the current set of true literals. New literals are added to the
context by computing a unifier between the given context and a subset of clauses.
When reasoning modulo theories the context unifier may be difficult to compute,
even when finite quantification is assumed. The find heuristic in combination with a
Hierarchic Superposition solver could offer an alternative.

The next chapter provides a clearer analysis of the reasoning behind the algorithm
presented in [BBW14] and Section 5.4. This analysis permits a variety of heuristics
for finding the refinement point (alternatives to find), and also a means for applying
the update to the model in a way that avoids redundancies. This avoids some patho-
logical cases and points the way to generalizations to other theories, such as that of
recursive data structures. Also, some classes of ‘complete enough’ functions will be
described, as alluded to in Examples (1) and (2).

This example motivates some of the modifications in the next chapter:

Example 5.7.1. Consider the following FQ-clauses from some hypothetical Def set,
where it is assumed that {0, 1} ⊆ ∆x and {0, 1} ⊆ ∆y

(1) f (x) ≈ α1 ∨ ¬∆x (2) f (y) ≈ α2 ∨ ¬∆y

Assume that the first update is (x, 0), so that the new set is

(1.1) f (x) ≈ α1 ∨ ¬∆x \ {0} (2) f (y) ≈ α2 ∨ ¬∆y

(1.2) f (0) ≈ α3

Now clauses (1.1) and (2) imply that α1 ≈ α2 as 1 ∈ ∆x ∩ ∆y. Moreover, (2) and
(1.2) imply α2 ≈ α3, and all together this implies α1 ≈ α3. Because of the presence
of variant definitions in Def, no progress was made by the update. In fact, each
instance where x ∈ ∆x ∩ ∆y will need to be added twice as an update. Such a
situation can be avoided by careful management of the free BG-sorted terms being
defined in de�nitional, which will be the focus of the next chapter.



Chapter 6

Hierarchic Satisfiability with
Definition-First Search

6.1 Motivation

This chapter presents a refinement of the algorithm for hierarchic satisfiability given
in the previous chapter. That algorithm was described as a ‘domain-first search’: de-
fault definitions were modified by removing individual points of a finite domain, up-
dating all clauses and definitions in the scope of that particular (bounded) quantifier.
In contrast, the new algorithm takes a ‘definition-first’ approach, in which relevant
terms are removed from the default definition with no regard to the domain.

The hierarchic satisfiability procedure works by adding information to the prob-
lem to recover completeness (specifically for the Hierarchic Superposition calculus),
in a way that prevents excessive generation of clause instances. This is incrementally
changed until either satisfiability or unsatisfiability is shown, or all possibilities are
exhausted. By giving the definitions a semantic role, i. e. , focusing on what is to be
added, the critical update step of the procedure can be reasoned about. In particu-
lar, the search for the next refinement can be controlled to avoid redundancy (e. g. ,
where the new under-approximation clause set is logically identical to the previous
one).

Recall that the performance of the existing find heuristic also depends on the
quantifier structure of the input problem, and has built-in inefficiencies incurred by
using the solver in a black-box way. Instead, if the first-order solver provides just the
set of definitions used in a proof, then only those need to be searched for an update
set. This avoids repeating the same or similar derivations multiple times. Several
new heuristics are given that exploit this information, at least one of which does not
require finite domains at all.

As domains are no longer explicitly required to organize the definitions and to
find updates, the satisfiability algorithm can be used in more general settings where
domains are not present, for example, lists and recursive data structures can appear
below BSFG operators. Or, the procedure could be used for refutation based solving:
unsatisfiability can be deduced by searching for an unsatisfiable set of instances,
though the search may not terminate if no such set exists.
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This chapter also presents some results on sufficient completeness of basic defini-
tions (described in Chapter 4) and the list theory.

Section 6.2 presents the basics of the definition-first algorithm, beginning with a
more general version of checkSAT from the previous chapter, then specializing the
defining map and approximation steps to the new setting. Section 6.3 introduces the
new heuristics enabled by definition-first search. Each different heuristic attempts to
minimize some aspect of the unsatisfiable clause set found in the previous approxi-
mation step. Section 6.4 gives some experimental results, in particular, comparing the
new algorithm with the previous checkSAT algorithm, as well as comparing the var-
ious choices of update heuristic. The following sections characterize clauses which
can be excluded from the definition-first search: Section 6.5 describes basic definitions,
similar to those described in Chapter 4; Section 6.6 gives completeness results for
data structure theories and gives a version of checkSAT specifically tailored for that
case. Finally, Section 6.7 shows that it is theoretically possible to employ a version of
checkSAT for refutation complete proof search.

6.2 Definition-First Search

Domain-first search organizes definitions for relevant terms by the domains they
share. Exceptions removed individual points from default definitions for all terms in
the scope of a selected finite quantifier. However, definitions for relevant terms could
also be organized using the term instance relation. For example, take the FQ-clauses

∆x,y ⇒ C[ f (x, 0)] ∧ D[ f (x, y)]

with relevant terms being the instances of f (x, 0), f (x, y) restricted to the arbitrary
finite domain ∆x,y. The domain-first procedure would produce definitions

f (x, 0) ≈ α ∨ ¬∆x f (x, y) ≈ β ∨ ¬∆x,y

Notice that the definitions assign both parameters α and β to instances of f (x, 0). A
possible exception instance is (x, 1), and this would introduce new definitions

f (1, 0) ≈ α1 f (1, y) ≈ β1 ∨ ¬∆y

In definition-first search, each most-general term receives a default definition,
and all instances are exceptions to that. In the example the overlap in definitions is
corrected, as f (x, 0) is an instance of f (x, y):

f (x, 0) ≈ α ∨ ¬∆x f (x, y) ≈ β ∨ ¬∆x ∨ ¬∆y \ {0}

The domains are irrelevant, apart from the disequations that enforce the disjointness
property of terms and their instances, e. g. , f (x, y) ≈ β ∨ x 6≈ 1 ∨ y 6≈ 0. So
definitions could be represented implicitly by a set of terms each being assigned a
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unique parameter: non-ground terms assert that all of their instances are equal, except
for those already contained in the set of defined terms. Exceptions must now be term
instances rather than variable/integer pairs. Returning to the example, adding an
exception f (1, 0) updates other domains:

f (x, 0) ≈ α ∨ ¬∆x \ 1 f (x, y) ≈ β ∨ ¬∆x \ 1 ∨ ¬∆y \ {0}
f (1, 0) ≈ α1

Note that domains are retained as the input clauses are FQ-clauses.
As before, the algorithm works on sets of FQ-clauses N , and produces definitions

for relevant terms in the input clause set, i. e. , for t ∈ rel(N ). The definition-first
search maintains a data structure containing the current set of default definitions
organised via the term instance relation1, called the defining map for N . This replaces
the domain formula/clause division ∆ ⇒ N of the domain-first search algorithm.
As in the previous chapter, definitions assign parameters instead of concrete values,
so the BG solver must at least decide satisfiability for the EA-fragment of the BG
theory.

This section gives an overview of the new algorithm, then describes defining
maps and how they rewrite clause sets, and shows that they meet the requirements
for completeness on the over-approximated clause set produced by rewriting with
the definitions. Finite domains will still be used to make the relationship with the
previous algorithm clear, and because the defining map is simpler when free vari-
ables in definitions only range over integer domains. Later it will be shown how
defining maps can be used in the general case, in lieu of the syntactic transformation
idx described in the previous chapter.

6.2.1 Algorithm

The algorithm presented in Figure 6.2.1 is a modification of checkSAT from the pre-
vious chapter, updated to operate on defining maps. Defining maps are further
described in the next section, for now it suffices to consider a defining map for N
MN to be a set of ground definitions t ≈ α that contains a single definition for each
of the relevant terms in N .

The differences between checkSATM and checkSAT are few, most simply abstract
steps of checkSAT to be independent of the representation of definitions. It will be
shown later that the checkSAT algorithm using defining maps over data structures
has roughly the same structure.

As before, the checkSATM procedure takes a set of FQ-clauses N ; and maintains a
representation of the current set of definitions (here the defining map MN ), which is
used to produce over and under-approximations of the input clauses. This represen-
tation is updated at the end of each iteration, using information from the previous
proof to limit new clause instances introduced. The procedure makes use of the
sub-procedures init, apply, clausal, saturate, �nd and update.

1i. e. , t � s iff ∃σ. t = sσ
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1 algorithm checkSATM(N ):
2 let MN = init(N )
3 while true:
4 let N− = apply(MN , N ) ∪ clausal(MN )
5 let N+ = { C ∈ apply(fixed(MN ), N ) : C contains no BSFG operators }
6 ∪ clausal(fixed(MN ))
7 if � ∈ saturate(N+) return UNSAT // Theorem 6.2.4
8 let D = saturate(N−) //D is a saturated clause set
9 if � 6∈ D return SAT // Theorem 6.2.3

10 let updateSet = find(MN , D)
11 MN = update(MN , updateSet)

Figure 6.1: Pseudocode for Definition-First checkSAT algorithm

The procedure init(N ) constructs an initial defining map for N . There is no
constraint on the structure of the initial defining map, so long as it defines each term
in rel(N ) (with the possible exception of free BG terms in tautologous clauses). In
the implementation init assigns a fresh parameter to each maximal2 free BG-sorted
term of N up to variants. (Recall a free BG-sorted term is maximal if it is not a
proper subterm of another free BG-sorted term).

The procedure apply rewrites the clause set with the current defining map MN .
This should lift the action of rewriting the ground instances of clauses with all com-
binations of ground instances of definitions in MN . The resulting clause set should
not contain any BSFG operators and should be equisatisfiable with N modulo the
definitions in MN .

The set clausal(MN ) is the clausal representation of MN , which is assumed to
have sufficient completeness.3 As a result, the clause sets N+ and N− are suffi-
ciently complete too. Compared with the previous chapter, apply and clausal special-
ize de�nitional into two parts which generate sets Cls and Def respectively (where
de�nitional produced Cls ∪ Def). This is because the procedure of rewriting with
definitions is more complex when using a defining map. Both apply and clausal are
described in Section 6.2.3.

To form the over-approximation N+ at line 5, the fixed (read: persistent) def-
initions of the defining map are used. Fixed definitions are those that assign a
ground term to a unique parameter, and so the clauses that result from rewriting
with a fixed definition appear in all future approximations N−. This method of
over-approximation is independent of the use of finite domains, and can be used in
more general applications of checkSATM. A definition for fixed is given in the next
section. Clauses which contain non-fixed definitions are excluded from N+, while
the fixed definitions are rewritten appropriately by clausal. Both are included in the

2In the previous chapter minimal free BG-sorted terms were used, maximal terms are used here to
reduce the number of definitions. This will be clarified later.

3As in the previous chapter, this requires the inclusion of trivial definitions for terms in rel(N ) that
only appear in redundant clauses.
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over-approximationM+.
The procedure saturate calls a Hierarchic Superposition solver. If saturate(N−)

terminates and the saturation is consistent, then this indicates that N is B-satisfiable,
as per Theorem 6.2.3. If a contradiction is derived, then N is unsatisfiable w. r. t. all
B-models which also satisfy MN . As before, N− is an under-approximation and
must be changed, hopefully in such a way that makes it impossible to repeat the
previous derivation from N− in the next iteration, while also introducing as few
new definitions as possible.

In contrast to the previous version of checkSAT, �nd operates on the saturated
(unsatisfiable) clause set D (line 9). Information about the proof is encoded along
with the clauses, so that only the definitions used in the derivation of unsatisfiability
are eligible to be used as exceptions. This clause annotation procedure is described in
Section 6.3.1. When a set of exception term instances is found, update inserts those
instances as new definitions in the defining map before the next iteration. More
information on the �nd heuristic is in Section 6.3.2.

Theorem 6.2.1. For FQ-clause set N , checkSATM(N ) terminates with the correct result
and, if the result is UNSAT, then N with all domain predicates removed is B-unsatisfiable.

Proof. As the algorithms are similar, the previous proof only needs minor modifica-
tion. Specifically, now termination is guaranteed by the monotonically increasing set
of fixed definitions. New definitions to be fixed are returned by the new version of
�nd on line 10, which always returns a set of terms to fix. Note that if no defini-
tions are returned at line 10, then the derivation of contradiction from N− does not
depend on any non-fixed definitions made in the defining map M. Specifically, the
derivation of unsatisfiability can also be carried out in N+. Otherwise, the limit of
the update process is reached: a defining map with no unsound assumptions, and
this provides a definitive check for satisfiability, as shown in Lemma 6.2.4.

6.2.2 Bounded Defining Map

Defining maps for sets of FQ-clauses will be called bounded defining maps, as each of
the definitions must be stored with its finite domains. These domains must also be
preserved between updates and applied to clauses when rewriting with the defini-
tions.

Definition 6.2.1 (Ground Equivalent). For an FQ-clause C ∨ ¬∆, define the ground
equivalent ge(C ∨ ¬∆) := {Cσ ∈ vsgi(C) : TZ |= ∆σ}.

The ground equivalent of a set of clauses is the union of the ground equivalents
of its members. Because instances that do not satisfy ∆ are TZ-valid, it follows that

Lemma 6.2.1. vsgi(C ∨ ¬∆) is equivalent to ge(C ∨ ¬∆) modulo TZ.

Sufficient completeness requires every relevant subterm of N to have a defini-
tion. As in the previous chapter, only a subset of the relevant terms will be defined,
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namely, the subset of relevant terms in the ground equivalent clause set of N . Suf-
ficient completeness could be recovered immediately by adding arbitrary definitions
for relevant terms not in the ground equivalent. It is enough to note that whenever
a model exists for the ground equivalent, then there is a model which defines all the
relevant terms and is TZ-extending. This is the same as that shown in the previous
chapter.

When the input consists of FQ-clauses, each of the free variables in free BG-sorted
terms is integer sorted. Definitions introduced as exceptions are formed from non-
ground terms in a defining map by instantiating one or more variables with integer
values. For example, f (x) ≈ α ∨ x /∈ [0, 100] can have f (0), f (1) added as exceptions.
The following restricted form of substitution is used to relate definition terms and
instances added as exceptions.

Definition 6.2.2 (Numbering Substitution). A numbering substitution is any substitu-
tion such that for all Z-sorted variables x, either xσ = x or xσ ∈ Z.

A numbering instance of a term, literal or clause is any instance made by a num-
bering substitution.

Example 6.2.1. [x → x + 2, y → 4 + 2], [x → α], [x → y] are all simple substitutions
that are not numbering; [x → 6] is a numbering substitution.

A defining map for FQ-clauses is represented by a data structure quite similar to
a substitution tree used for term indexing, which shares features with the (similarly
motivated) defining map used for finite quantifier instantiation in CVC4 [RTG+13],
or to a Model Evolution context data structure, described in Baumgartner and Tinelli
[BT05]

Definition 6.2.3. A bounded defining map MN for a clause setN is a set of definition
and domain formula pairs (t ≈ α, ∆) such that

1. t ∈ rel(N )

2. α is a Z-sorted parameter not in N

3. all variables in t are in ∆

4. For every maximal term s ∈ rel(ge(N )), there is a definition (s′ ≈ α, ∆) ∈ M
where s ≈ α ∈ ge(s′ ≈ α ∨ ¬∆)4

5. Given the pairs (t ≈ α, ∆), (s ≈ β, ∆′) ∈ MN where α 6= β then

(a) t and s are not variants

(b) if s is a proper numbering instance of t, then ∆ ∩ ∆′ = ∅

(c) if t, s are not mutual instances or variants, but σ = mgu(t, s) is numbering,
then there is (t′ ≈ α′, ∆2) ∈ MN where tσ = t′ and ∆2 ∩ ∆ ∩ ∆′ = ∅

4this will be relaxed later, when terms in rel(N ) are known to be defined by other clauses
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Example 6.2.2. Let N = { f (g(a, x), y) ≈ y ∨ x, y 6∈ [0, 100]}. One possible defining
map for N is

f (g(a, x), y) ≈ α0, x, y ∈ [1, 100] f (g(a, 0), y) ≈ α1, y ∈ [1, 100]
f (g(a, x), 0) ≈ α2, x ∈ [1, 100] f (g(a, 0), 0) ≈ α3

The definition f (g(a, 0), 0) ≈ α3 is required by property 5.c of the definition of
defining maps. Notice that g(a, x) and g(a, 0) are not necessarily defined at this
stage. The clausal procedure will do this later, and is described in Section 6.2.3

The following lemma shows that a bounded defining map assigns a single pa-
rameter to each relevant term. Note that ge(M) is the ground equivalent of the set of
FQ-clauses t ≈ α ∨ ¬∆ where (t ≈ α, ∆) ∈ M.

Lemma 6.2.2. Let N be a set of FQ-clauses and MN a bounded defining map for N . For
any t ∈ rel(N ), if t ≈ α1 and t ≈ α2 are in ge(MN ), then α1 = α2.

Proof. Assume for contradiction that α1 6= α2. By property 5a MN cannot contain
both t ≈ α1 and t ≈ α2, so these must be instances of two separate definitions.
Specifically, t = s1µ1 = s2µ2 for substitutions µ1, µ2 and (s1 ≈ α1, ∆1), (s2 ≈ α2, ∆2)
are in MN . Hence, s1, s2 are unifiable and, without loss of generality, either t = s2 or
t 6= s2. If t = s2, then s2 is an instance of s1, i. e. , s2 = s1µ1. The substitution µ1 must
be numbering, otherwise t ≈ α1 is not in ge(MN ). But domains ∆1, ∆2 are disjoint
by property 5b, so µ1 cannot exist. Finally, if t 6= s2, then by property 5c t ≈ β is in
MN and has a domain disjoint from both ∆1 and ∆2.

Now that the defining map has been established as actually being a map, an
abstract description of fixed definitions can be given.

Definition 6.2.4 (Fixed definitions). Definition t ≈ α is fixed by defining map M if t
is ground, and, if any s ≈ α is in ge(M), then s = t.

The set of all fixed definitions in M is fixed(M). For bounded defining maps, each
fixed definition has a trivial domain (as it is ground) so the set fixed(M) consists of
unit clauses.

It is possible that a defining map assigns different parameters to terms t, t′ such
that TZ |= t ≈ t′. For example, the defining map {( f (x) ≈ α0, x ∈ [0, 5]), ( f (x + 1) ≈
α1, x ∈ [0, 5])} entails that f (1) ≈ α0 and f (1) ≈ α1. This particular case could be
repaired by transforming the domain predicate x ∈ [0, 5] using the inverse map x− 1,
followed by combining the definitions. However, the general problem, i. e. , finding
common subterms modulo TZ, is essentially theory unification. As requirement 5 in
Definition 6.2.3 is only there for sake of theorem prover efficiency, this form of overlap
can be ignored without sacrificing completeness. This is not to say the construction
of a bounded defining map is in vain, as later experiments will show.

Terms in defining maps may contain instances of other relevant terms as sub-
terms. For example, the subterm g(a, x) in Example 6.2.2 might have a definition
(g(a, x) ≈ β, ∆g), but this will not affect any of the other definitions containing that
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term. The defining map contains only subterms of the original clause set (i. e. , with-
out any defining map parameters), this has the benefit of keeping the update proce-
dure rather simple.

Bounded defining maps can be viewed as a constraint on the interpretations con-
sidered by the solver. As for domain-first search, definition-first search limits in-
stantiation by progressively weakening the constraints imposed by the definitions.
Bounded defining maps can be related based on how strict their constraints are:
each map organises the relevant terms of a clause set into an equivalence relation,
where terms are equivalent if they are assigned the same parameter.

Definition 6.2.5 (Implied Equivalence Relation). A defining map MN implies an
equivalence M=

N on a subset of rel(N ), defined as M=
N := {(t1, t2) : ∃α. t1 ≈ α ∈

ge(MN ) ∧ t2 ≈ α ∈ ge(MN )}.
This is a subset of the congruence closure of ge(MN ). For example, if f (g(1), 0) ≈

α1, f (g(0), 0) ≈ α2, g(0) ≈ α3, g(1) ≈ α3 are in ge(MN ), then (g(0), g(1)) ∈ M=
N .

However, ( f (g(1), 0), f (g(0), 0)) is not in M=
N , even though the latter terms are equal

in the congruence closure of ge(MN ).
This permits a description of bounded defining maps which abstracts the names

of parameters used in the defining map, and provides a way to relate successive
defining maps. A defining map is more general than another if its implied equivalence
relation is a subset of the equivalence relation of the second map. Then the most
general defining map assigns every relevant term to a unique parameter, equivalently,
it only contains ground terms in definitions.

Lemma 6.2.3. The following are equivalent:

1. M is the most general defining map for N

2. for all t1 ≈ α1, t2 ≈ α2 in ge(M), if α1 = α2 then t1 = t2

3. for all definitions (t ≈ α, ∆) ∈ M, t is ground.

Proof. 1. ⇒ 2. by definition of the implied equivalence on M. 2. ⇒ 3. by the fact that
all definitions in M are fixed and 3. ⇒ 1. by property 5 of Definition 6.2.3.

Rather trivially then, the most general map does not affect the satisfiability of a
clause set, as it uniquely names all existing terms.

Lemma 6.2.4. Let M be the most general defining map for N , then N ∪ M is B-satisfiable
iff N is B-satisfiable.

Lemma 6.2.5. If M1 is more general than M2 and N ∪ M2 is B-satisfiable, then N ∪ M1

is B-satisfiable.

Proof. M2 differs from M1 by enforcing additional equalities between relevant terms.
Hence, a model I for N ∪ M2 is already a model for N ∪ M1 if parameters in
definitions are ignored. These can be accommodated by setting αI = tI , as the terms
t in definitions already have interpretations under I. This is not a problem so long
as the signature allows the extra constants, as they only appear in definitions of M1

anyway.
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1 algorithm apply(C ∨ ¬ ∆, MN ):
2 let CS = {C ∨ ¬ ∆}
3 while D ∈ CS has maximal relevant term t:
4 for all (s ≈ α, ∆2) ∈ MN where mgu(s, t) = σ

5 CS = (CS \ D) ∪ (D[α] ∨ ¬∆ ∨ ¬ ∆2)σ

6 return CS

Figure 6.2: apply rewrites clause C ∨ ¬∆ modulo definitions in MN

6.2.3 Rewiting Clauses with Defining Maps

In the domain-first search the procedure de�nitional rewrites the FQ-clause set to the
set Cls which is free of BSFG operators, while Def restricts to a subset of possible Σ-
interpretations. For the definition-first version, this process is broken into two steps:
apply and clausal, which produce Cls and Def respectively.

The procedure apply in Figure 6.2.3 rewrites the input clause set N with the
current defining map. It must preserve the finite domain structure in order to lift the
action of rewriting ground clauses with ground definitions.

The procedure apply is similar to de�nitional in producing the set Cls. It must
rewrite maximal terms, since innermost-first rewriting creates new relevant terms
which might not appear in the defining map.

Example 6.2.3. The application of the defining map from Example 6.2.2 to

f (g(a, 1), 1) ≈ f (g(a, 0), y) ∨ ¬(y ∈ [−1, 10])

gives the clauses

α0 ≈ α1 ∨ ¬(y ∈ [−1, 10]) ∨ ¬(y ∈ [−5, 20] \ 0),

α0 ≈ α3

Lemma 6.2.6. If C′[s1, . . . , sk] ∈ ge(C) where s1, . . . , sk are all of the maximal free BG sorted
terms in C′, and si ≈ αi ∈ ge(M) for each i, then C′[α1, . . . , αk] ∈ ge(apply(C, M)).

Theorem 6.2.2. If apply(N , M) ∪ M is B-satisfiable then N is B-satisfiable.

Proof. Let I be a B-extending model for apply(N , M) ∪ M. By Lemma 6.2.6 each
C ∈ ge(N ) is in the equational closure of apply(N , M) ∪ M hence is entailed by
I. By Lemma 6.2.1, ge(N ) is equivalent to vsgi(N ) and so I |= N because I is
B-extending.

In practice, for a free BG-sorted term t only the most specific generalization of t
and all proper instances of t must be included among defining map terms in order
to unify with the clause containing t (i. e. , the term s at line 4 of apply). This is
because, when a definition t ≈ α is applied to C[t′] and there is a defined term s
such that tσ1 = s and sσ2 = t′ for non-trivial substitutions σ1, σ2, then the disjointness
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1 algorithm clausal(M):
2 let flat = {(t ≈ α, ∆) ∈ M : t has no proper free BG-sorted subterm }
3 for (t ≈ α, ∆) ∈ M not in flat:
4 let C = t ≈ α ∨ ¬∆
5 while C = t[s] ≈ α ∨ ¬ (∆x1 ∧ . . . ∧ ∆xk ) has minimal free BG-sorted term s:
6 add s ≈ β ∨ ¬ (

∧
x ∈ vars(s) ∆x) to flat

7 let C = t[β] ≈ α ∨ ¬ (
∧

x ∈ vars(t[β]) ∆x)

8 add C to flat
9 return flat

Figure 6.3: clausal transforms defining map M to a clause set without affecting sufficient
completeness

constraint (in the domain formula) of t ≈ α will be falsified, making the resulting
clause redundant.

Next, clausal in Figure 6.2.3 transforms definitions to FQ-clauses, the most impor-
tant step of which is flattening.

Note that a definition equation (t ≈ α, ∆t) from a bounded defining map is equiv-
alent to an FQ-clause: t ≈ α ∨ ¬∆t this is guaranteed by points 1 and 2 of the
bounded defining map definition. Lemma 6.2.2 prevents the immediate derivation
of αi ≈ αj from a such a clausal representation. However, this direct translation to
clauses may produce a clause set that does not have sufficient completeness.

The behaviour and structure of non-ground defining maps is greatly simpli-
fied if definitions are kept only for maximal free BG-sorted terms. For example,
f (g(a, x), y) ≈ α is used, rather than something of the form f (z, y) ≈ α, g(a, x) ≈ β.
However, the former definition will not have sufficient completeness if g(a, x) is not
covered by any definition. This is further illustrated in the following example:

Example 6.2.4. Consider the set of ground definitions, where f , g are BSFG operators

{ f (g(n)) ≈ α : ∀n ∈N} ∪
{g( f (n)) ≈ β : ∀n ∈N}

This cannot cover rel(N ) for a clause set N , since it must also include definitions for
each f (n) and g(n). There is a model for ∆ that is not a TZ-model:

Let I be an interpretation that assigns the carrier set Z ∪ {ω} to the sort Z, where
ω is some non-integer element. Define f I , gI such that for all i ∈ Z, f I(i) = gI(i) = ω

and let f I(ω) = gI(ω) = 0. Then, the given clause set does not have sufficient
completeness.

The replacement of s in t by a constant yields an equivalent clause only when
s is ground. Otherwise, it introduces the assumption that instances of s are equiv-
alent. This does not change the result of apply, as the terms affected by the new
assumption are already identified under the original (maximal) definition. For ex-
ample, f (g(a, x), y) ≈ α is flattened to f (β, y) ≈ α, g(a, x) ≈ β, meaning terms such
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as f (g(a, 0), 1) and f (g(a, 1), 1) are made equal. However, those terms are already
equal due to the definition f (g(a, x), y) ≈ α. As with other assumptions in the defin-
ing map, the new assumption can be repaired by the update procedure described
later. That modification is accomplished by changing the definition for the maximal
term t[s] ≈ α, rather than creating a separate definition for s.

Lemma 6.2.7. If I is a B-extending interpretation such that I |= clausal(M), then I |= {t ≈
α ∨ ∆ : (t ≈ α, ∆) ∈ M}

Proof. ge(M) is contained in the equational closure of ge(clausal(M)) by construction.
The simplification step at line 6 of the procedure does not remove any clauses from
the ground equivalent set.

The following theorem shows that N−, as defined in checkSATM, is indeed an
under-approximation of N .

Theorem 6.2.3. Given a set of FQ-clauses N , if N− = apply(MN ,N ) ∪ clausal(MN ) is
satisfiable, then N is B-satisfiable.

Proof. As for Theorem 4.4 in the last chapter, any model of N− can be made into a
B-extending model. Then by Theorem 6.2.2 and Lemma 6.2.7 it follows that N is
B-satisfiable.

The set fixed(M) contains definitions and rewritten clauses which do not change
in any more-general defining maps. Again, for bounded defining maps, the setN+ is
simply the subset of definitions and clauses without finite quantified variables after
rewriting with definitions.

Lemma 6.2.8. If M1 and M2 are both defining maps for N , and M1 is more general than
M2, then fixed(M2) ⊆ fixed(M1).

This immediately implies the following

Theorem 6.2.4. If N ∪ fixed(M) is B-unsatisfiable, then N is B-unsatisfiable.

Proof. By Lemma 6.2.8, N+ is a subset of apply(Mmax,N ) ∪ clausal(Mmax), where
Mmax is the most general defining map for N . By Lemma 6.2.4, it follows that N is
B-unsatisfiable.

6.3 Updating Defining Maps

Progress in the domain-first search algorithm is made using the �nd heuristic to
identify a finite domain and a value to remove from that domain, such that the
subset of clauses and definitions with that value excluded was satisfiable. The same
method could be used to make progress in definition-first search, but defining maps
provide a way to compute more accurate updates more efficiently than �nd. This
requires a modification of the component solver and an abstract characterization of
what makes a ‘good’ update. The current section will formalize ‘updates’, describe
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1 algorithm update((t ≈ α, ∆t), M):
2 let ∆0 = ∆t
3 for (s ≈ β, ∆s) ∈ M:
4 if σ = mgu(r, s) is numbering:
5 if s is ground:
6 remove σ from ∆0
7 else:
8 replace (s ≈ β, ∆s ∧ ¬∆t) in M
9 for r ≈ α ∈ ge(t ≈ α ∨ ¬ ∆0):

10 let αr be a fresh parameter
11 add (r ≈ αr, ∅) to M

Figure 6.4: Procedure for applying a single update (t ≈ α, ∆t) to defining map M.

the clause labelling scheme used to find the subset of clauses and definitions to pass
to �nd, and finally, give three alternative implementations for �nd with different
performance characteristics.

An update for a defining map is a subset of definitions from the current defining
map that is unsatisfiable when taken together with the input clause set . Of course,
the set of all definitions is unsatisfiable (assuming that satis�able(N−) fails), but large
update sets introduce more instances on the next iteration of checkSAT. Therefore,
any update heuristic should aim to minimize the number of terms in the update set,
while preserving unsatisfiability of N−. In particular, if an update set is minimal (in
that any subset does not produce an unsatisfiable set), then all of its terms should be
updated in the defining map, not just a single one.

Definition 6.3.1 (Update). An update for a defining map is a set U of ground terms
{t ∈ rel(N ) : t is not fixed in M}.

The action of the procedure update shown in Figure 6.3 is to replace the existing
definitions for update terms with equations between update terms and fresh BG
parameters. Update sets involving multiple definitions can be applied using multiple
calls to update.

It simply removes shared instances in existing definitions (line 8) to enforce the
disjointness property of defining maps (property 5 in Definition 6.2.3), then adds all
ground instances of (t ≈ α) not already present with a fresh parameter replacing α.
The removal at line 6 prevents duplicate additions.

After the application of an update, all terms in the update are fixed by the new
defining map, by the simple fact that all instances of the updated term are present as
ground terms in the new defining map.

Lemma 6.3.1. Let M′ be the defining map produced by update((t ≈ α, ∆), M), for some term
t and defining map M. Then for every s ∈ ge(t ≈ α ∨ ¬∆), it follows that s ∈ fixed(M′).
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6.3.1 Clause Labels

Now that definitions are ‘atomic’, their use can be traced through a proof to show
which clauses depend on which specific definitions in the current defining map.
Clause labels will be used for this: A clause label is an extra-logical set of defini-
tions stored with clauses, that contains the non-ground definitions used to rewrite a
clause in the apply procedure. Labels are meant to represent the use of an unsound
assumption in the derivation, which is eligible for inclusion in an update set. A la-
belled clause is written C | L, where L is a possibly empty set of labels. Here labels
are simply definition/domain pairs, e. g. , (t ≈ α, ∆).

For example, applying a non-fixed definition ( f (x, y) ≈ α, ∆) to C[ f (z, 1)] ∨ ¬∆z

produces labelled clause C[α] | ( f (z, 1) ≈ α, ∆ ∧ ∆z) (braces in label sets are typically
omitted for clarity). The definition in the clause label has been modified with the
unifier [x → z, y→ 1] used in applying the definition to the clause.

The procedures apply, clausal defined above are modified to include labels as
follows:

• In apply each clause initially receives an empty label, and whenever a definition
D rewrites a clause C | L with substitution σ the label L is extended with Dσ.

• In clausal each definition to be flattened is labelled by itself, and labels are
preserved through flattening.

Clause labels are passed through inferences and simplifications: the conclusion
takes the union of labels of the premises along with any unifier (or matcher) used
in the inference (or simplification). The existing calculus rules are modified in the
following general way5:

C1 | L1 C2 | L2

C3σ | (L1 ∪ L2)σnum

where σ is the inference substitution and σnum is its restriction to only numbering
substitutions, or renamings on the variables of L1 ∪ L2 (i. e. , bijections on variables).

Then every clause in a derivation from labelled clauses will be labelled with the
definitions necessary to derive it. Since only non-fixed definitions are used in labels,
these roughly correspond to unsound assumptions used in the proof. Specifically,
these assumptions are that all instances of defined terms are equal. The application
of unifiers to labels means that a clause label may identify only a subset of defined
term instances which are necessarily assumed to be equal.

The following example shows how different defining maps may block or allow
certain derivations.

Example 6.3.1 (Preventing inferences with definitions). Fix some finite domain ∆x,y,
and let M = {( f (x, y) ≈ α, ∆x,y)}. This defining map applies to a single clause

5Except for the optional non-deterministic split rule, which is disabled for this application as it can
separate clauses from their domain formulas.
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x 6≈ f (x, y) ∨ g(x, y) 6≈ g(0, 0) ∨ ¬∆x,y (assuming g does not have a BG result sort),
producing the labelled clause

x 6≈ α ∨ g(x, y) 6≈ g(0, 0) ∨ ¬∆x,y | ( f (x, y) ≈ α, ∆x,y)

Consider an application of equality resolution

x 6≈ α ∨ g(x, y) 6≈ g(0, 0) ∨ ¬∆x,y | ( f (x, y) ≈ α, ∆x,y)

0 6≈ α ∨ ¬(∆x,y[x → 0, y→ 0]) | ( f (0, 0) ≈ α, ∅)
[x → 0, y→ 0]

Notice that the unifier [x → 0, y→ 0] applies to the label, making its domain formula
ground. Equivalently, it represents an empty set. If x ≈ 0 and y ≈ 0 are not excluded
a priori by ∆x,y, the domain part of the conclusion ¬(∆x,y[x → 0, y → 0]) simplifies
to ¬true, and it can be removed.

Next, let f (0, 0) be fixed by taking M′ = {( f (x, y) ≈ α, ∆x,y ∧ x 6≈ 0 ∧ y 6≈
0), ( f (0, 0) ≈ α′, ∅)}. The new labelled clause is

x 6≈ α ∨ g(x, y) 6≈ g(0, 0) ∨ ¬(∆x,y ∧ x 6≈ 0 ∧ y 6≈ 0) | ( f (x, y) ≈ α, ∆x,y ∧ x 6≈ 0 ∧ y 6≈ 0)

The only difference is that the finite domain is now restricted. Similarly, in the
inference above the finite domain is replaced everywhere with the new restricted
version, and, as a result, the conclusion becomes trivially true.

Hence, one way to prevent the derivation of a labelled clause is to add one of
the definitions of the labels as a new definition. In general, if (d, ∆) is a definition,
then adding instance (d[x → n], ∆[x → n]) to the defining map will also require
modifying the original definition to (d, ∆ ∧ x 6≈ n)6. This creates a tautological
clause if the substitution [x → n] is applied to a clause with the modified domain.
However, clause domains can be modified without the change being recorded in the
label. For example, in (C[x → α] | L) assuming x is a finitely quantified variable,
then the substitution [x → α] does not apply to the label L, as α is a parameter. If
(C[x → α] | L) is demodulated with α ≈ 5, say, then only the definition instances
in L[x → 5] are really necessary. But that information is lost due to the parameter
substitution.

Though such cases could probably be accounted for, for simplicity all instances
of a definition in a label will be fixed in the new defining map. This is guaranteed to
prevent the derivation of the given labelled clause, as at least one ancestor clause is
completely removed by instantiation.

A successful proof produces either a labelled empty clause or a B-unsatisfiable set
of labelled ΣB-clauses. Given a derivation of an empty clause, then any instantiation
of the set of clauses used to derive it will also produce an empty clause; yet another
reason to add all instances of a label definition.

In summary, adding all instances of at least one definition in the label of the
empty clause in a derivation from N− should block the same proof being derived

6Compare this with the final step of checkSAT in the previous chapter.
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in the next iteration. However, derivations that end with an empty clause and no
invocation of the BG solver are the rare easy case. The more common case of an
unsatisfiable set of labelled BG clauses is the focus of the next section. It will be
necessary to select some set of definition instances such that at least one definition in
each clause label in the unsatisfiable set is completely covered.

6.3.2 Finding Update Sets

It is desirable to extract a small but relevant update from a derivation of an unsatis-
fiable set of labelled BG clauses. ‘Small’ refers to the number of terms in the ground
equivalent of the update set. A small update will generate only a few new clauses in
the next iteration of checkSATM. ‘Relevant’ means that it should not allow repeating
the current derivation under the updated defining map. This is already guaranteed
by the use of clause labels.

As described in the previous section, the derivation of a B-unsatisfiable clause set
can be blocked with an update that includes all instances of at least one definition
from every label of a clause in that set. There are two ways to minimize the size of this
update: either minimize the number of labels selected for the update, or minimize
the size of the B-unsatisfiable clause set while preserving unsatisfiability.

A minimal hitting set for labels is a set of definitions which contains a definition
from each clause label and is minimal w. r. t. sets with that property. A minimal
unsatisfiable core (MUC) of a B-unsatisfiable clause set is a B-unsatisfiable subset of
which any proper subset is B-satisfiable.

The following heuristics combine those minimizations in slightly different ways,
with different aggregate behaviour. As the update process is a trade-off between
time used searching for a small update versus the time lost by including unnecessary
instances in the defining map, there is no definite choice of one over the other.

Ground MUC: Some SMT solvers are capable of efficiently finding a MUC from
among large sets of ground formulas. The B-unsatisfiable clause set can be instanti-
ated to ground clauses using the domain formulas of the labels. Quantifier elimina-
tion (Cooper’s algorithm) can be used to remove any variables that do not appear in
labels.

Lemma 6.3.2. A B-unsatisfiable set of labelled ΣB-clauses derived from a set of FQ-clauses
can always be ground instantiated.

Proof. The algorithm is largely as follows:

• Use background theory quantifier elimination to eliminate free variables in C |
L that do not occur in L. The result is a labelled formula φ | L.

• For each labelled clause or formula add all instances over the label domains

The result is a conjunction of labelled ground instances.
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1 algorithm NG-MUC(D):
2 for label l in labelSet(D):
3 D1 = D with all clauses labelled by l removed
4 if D1 is sat:
5 core = core ∪ {l}
6 else:
7 D = D1
8 return core

Figure 6.5: Pseudocode for the NG-MUC heuristic

The SMT solver returns a MUC of ground clauses, the labels of which are searched
for a minimal hitting set of (ground) definition terms to use as an update.

The disadvantage of this approach is that the number of ground clauses produced
for testing still scales exponentially with the size of domains. On the other hand,
SMT solvers are optimized for larger problem instances than first-order solvers, and
generally the final B-unsatisfiable clause set is smaller than the input clause set.

Non-Grounding MUC: This approach minimizes the number of label definitions
selected, without instantiating the clause set. Optionally, once a set of label defini-
tions is selected, sets of clause instances that do not contribute to unsatisfiability are
removed by bisecting the domains of the selected definitions. Since this can only be
done for FQ-clauses, the combination of non-grounding MUC search and domain
bisection is a separate heuristic (described later).

The following algorithm minimizes the set of labels by removing any clauses from
the B-unsatisfiable set of ΣB-clauses D that are labelled by a selected label definition,
then continuing with a different selected label until the set becomes satisfiable. The
BG solver is not required to be able to find a MUC, as the method is implemented
as an outer-loop around an existing BG solver. Also, the NG-MUC procedure does
not depend on the representation of the labels or the presence of domain formulas,
so the heuristic could be used for more general formula fragments.

For example take the following set of clauses labelled with definitions d1, d2, d3

(1) 0 < α | d1, d2 (2) α < 1 | d2 (3) α 6≈ 0 | d3

Clearly 0 < α and α < 1 together are unsatisfiable. The result of a run of NG-
MUC is {d1, d2}, the set of labels of that minimal unsatisfiable core. At this point,
whichever definition in {d1, d2} has the least number of instances could be returned,
since the removal of any definition in {d1, d2} gives a B-satisfiable clause set (e. g. ,
removing all clauses labelled with d2 yields just clause (3), which is satisfiable). This
is also the main disadvantage of NG-MUC: each of the label definitions after mini-
mization may contain many new instances. For example, both d1 and d2 could be
(g(x) ≈ αg, x ∈ [0, 100]). This can happen when no unifier used in the derivation
of the unsatisfiable clause set acts on any finitely quantified variable. There is no



§6.4 Experimental Results 131

1 algorithm reduce(D, Labels):
2 for l ∈ Labels:
3 for x ∈ vars(l) where x ∈ [m, n] ⊂ Z:
4 do:
5 Dr = replace each C | l[x], . . . ∈ D
6 with C ∨ ¬ (m ≤ x ∧ x ≤ (m + (n − m)/2))
7 n = m + (n − m)/2
8 while (Dr is unsat & m 6= n)
9 update bounds for x in l

10 return Labels // with updated bounds

Figure 6.6: The reduce heuristic builds on NG-MUC by subdividing domains

immediately apparent way to reduce the number of those instances without using
the finite domains somehow, as described for the next heuristic.

Domain Reduction: The set of instances of those definitions in core, as returned by
NG-MUC, is minimized by reducing the size of the FQ-domains of variables in the
selected literal set (the argument Labels). This heuristic operates on the assumption
that the finite domains in the clause part are at least a subset of the finite domains
in the label. Finite domains in clauses are reduced by adding extra literals, e. g. , to
reduce x ∈ [0, 100] by half, the literal x < 50 would be added to the clause. Rather
than attempt to compute exactly which elements remain in the finite domain, this is
approximated by taking the minimum and maximum values from the label domain
m, n respectively, on line 3 of the code listing.

As for NG-MUC this reduction procedure is repeated for each variable in each
label as long as the clause set remains unsatisfiable.

This step could potentially involve many calls to the BG solver, so it should be
implemented with a timeout. Also, the procedure could stop as soon as a single
ground label is produced (i. e. , the domains of all of its free variables have been
reduced to single elements), and use that as the update.

Comparable applications are found in: Torlak et al. [TCJ08] which translates a
declarative specification into a SAT problem then searches for a minimal unsatisfi-
able core in the specification; also in Ryvchin and Strichman [RS11] which looks for
‘high-level’ unsatisfiable cores, considering clauses to be grouped into sets which are
added or removed as a whole. Both applications use at base a simple minimization
algorithm for finding a core: it removes clauses one at a time, testing satisfiability,
until any subset of the remaining clauses is satisfiable, just as in NG-MUC.

6.4 Experimental Results

We have produced a prototype implementation to investigate the scaling behaviour of
the heuristics given above and to show any improvement over the original, modular
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# |∆| Status Statement

1 100 Unsat ∀y. f (x) > 1 + y ∨ y < 0
2 10 Sat ∀x. x < 0⇒ g(x) ≈ −x∧

∀x. x ≥ 0⇒ (g(x) ≈ x ∨ g(x) ≈ x + 1)∧
f (x) < g(x)

3 200 Sat f (x1, x2, x3, x4) > x1 + x2 + x3 + x4
4 200 Sat f (x) 6≈ x ∧ f (5) ≈ 8 ∧ f (8) ≈ 5
5 1000 Sat ARRAY(1, 2) ∧ ∃a, m. (i < j⇒ read(a, i) ≤ read(a, j)∧

1 ≤ m ∧ m < 1000 ∧ read(a, m) < read(a, m + 1))
6 500 Unsat f (x1) > x1 ∧

f (x2 + 3) < 10 ∨ ¬x2 > 2

Table 6.1: Same problems as in Chapter 5, Table 5.1 but with fixed domain cardinality

# Original Z3-MUC NG-MUC NG+red

1 1.39 1.36 5.33 1.66
2 9.71 4.23 3.43 4.11
3 1.59 1.45 1.60 1.62
4 1.93 1.40 1.61 1.63
5 (timeout) 2.48 2.73 2.81
6 4.26 3.42 2.65 5.51

Table 6.2: Run time in seconds of four solver configurations on the problems.

algorithm. Both use the Beagle solver 7 to implement the saturate call. As in [BBW14],
we are not looking to evaluate either the pure first-order or the pure background
reasoning performance of the solvers (each being handled by a modular sub-solver),
but rather how performance scales with respect to the size of the finite quantification
domains. The original problems from [BBW14] remain illustrative of the categories
of behaviour that checkSATM may exhibit, and they allow a comparison of the per-
formance of the old and new versions.

As seen in Chapter 3, most of the problems from the TPTP library which extend
TZ were already solved by Beagle , and the few that were not solved failed for reasons
other than those addressed here (e. g. , problems with non-linear multiplication or
compactness), hence an analysis of performance on those problems is not relevant.

In Table 6.1, the free variables of each problem are quantified over the domain
∆, which is typically of the form [0, n − 1] where |∆| = n; and for problem five,
ARRAY(1, 2) represents the first two axioms of the set ARRAY.

In Table 6.2 the columns are, from left to right: the original checkSAT algorithm,
as described in Chapter 5 and [BBW14]; minimal unsatisfiable core with instantiation,
using the SMT solver Z3 [dMB08] to find the core; non-ground minimal unsatisfiable
core, corresponding to the NG-MUC algorithm described above; minimal unsatisfi-

7http://bitbucket.org/peba123/beagle
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|∆| Z3-MUC NG-MUC NG+red

10 3.10 2.10 4.60
50 15.12 8.91 12.72

100 25.14 12.52 18.51
150 37.39 15.10 34.70
200 (timeout) 20.95 39.10

Table 6.3: Scaling behaviour (run time in seconds) on problem two.

able core with domain reduction, which is the sequential execution of both NG-MUC

and reduce.
NG-MUC performs worse on problem one because that problem requires only

a single instance to yield unsatisfiability, whereas NG-MUC selects a non-ground
definition, producing a large update set. Each of the other methods are able to return
a singleton update set. All new versions perform significantly better on problems
two and five due to the duplication in reasoning over variant terms that is implicit in
the original checkSAT algorithm. (If f (x) and f (y) appear in separate clauses, then
they are given separate definitions in the original algorithm, with up to |∆x| extra
exceptions that may be added).

In Table 6.3, checkSATM solves problem two by giving a value for the function g
at each point in the domain. Then the Z3-MUC method must instantiate clauses over
the entire domain on each iteration of the satisfiability algorithm, while only adding
a small update set. The result is that many large clause sets are tested for little benefit
in terms of proof progress. In contrast, both of the non-grounding algorithms avoid
full instantiation up until the final iteration, at which point satisfiability is shown.

Interestingly, the domain reduction does not improve overall performance, due
to the symmetry of the problem. It is only when all values of g are added to the
defining map (in any order) that the problem is shown satisfiable. In other problems,
especially unsatisfiable ones (such as problem one) NG+red has an advantage, as it
can narrow down on the necessary instances quickly and the overhead of the extra
BG solver calls pays off.

Critically, it appears that the efforts to reduce duplication of reasoning have pro-
duced improvements over the original method, showing that its advantages are re-
tained in the more general account given here. At least one update heuristic NG-

MUC is independent of both a requirement for finding a MUC and for having FQ-
clauses specifically.

6.5 Sufficient Completeness of Basic Definitions

This section introduces basic definitions, simple syntactic patterns which guarantee
sufficient completeness (of a subset of the clauses), and which can easily be identified.

This is critical in conjunction with checkSAT procedures (both in this and the
last chapter), because relevant terms which are already defined by clauses do not
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need to be given default definitions in a defining map. Consequently, the number of
refinement steps in a run of checkSAT may be drastically reduced if those definitions
are excluded.

Definition 6.5.1 (Basic definition). A basic definition is a unit clause

f (s1, . . . , sk) ≈ t

where f : S1 × . . . × Sk → B; (B is the BG sort) t is a ΣB-term and vars(t) ⊆
vars( f (s1, . . . , sk)).

Recall the basic flat definitions from Chapter 4, these required each of s1, . . . , sk
to be variables. As the name implies, they are also basic definitions. Allowing terms
instead of variables is acceptable when proving sufficient completeness, but requires
an extra check, given in Lemma 6.5.1.
Consider the axioms (1) from LIST[E] and (2) from ARRAY[E]:

head(cons(x, y)) ≈ x read(store(v, w, x), w) ≈ x

Each of these is a basic definition. A clause set including these definitions has local
sufficient completeness if any instance of head(cons(x, y)) or read(store(v, w, x), w)
in the clause set have only ΣB-terms in the x variable position. Otherwise, the set
of relevant terms includes terms of the form, e. g. , head(cons(t, y)), which rewrite
to free BG-sorted terms t, and not to pure BG terms, as required in the sufficient
completeness definition.

Lemma 6.5.1. Given a clause set N such that for each term r ∈ rel(N ) there is a basic
definition f (s1, . . . , sk) ≈ t ∈ N and substitution σ, where f (s1, . . . , sk)σ = r and tσ is a
ΣB-term. Then N has local sufficient completeness.

Proof. Let M |= sgi(N ) ∪ GndTh(B) and take r, t as above. By assumption, there
is a substitution σ such that tσ is a ΣB-term, and since vars(t) ⊆ vars( f (s1, . . . , sk))
it follows from the fact that f (s1, . . . , sk)σ is ground, that tσ is ground. Therefore N
has local sufficient completeness.

In addition, defining maps can combine with basic definitions without destroy-
ing sufficient completeness. Leaving basic definitions untouched by the satisfiability
procedure reduces the number of definitions to be updated, greatly improving the
efficiency of the definition-first search.

First, a lemma about combining clause sets with sufficient completeness.

Lemma 6.5.2. If N1,N2 are Σ-clause sets such that both have local sufficient completeness,
then N1 ∪ N2 has local sufficient completeness.

Proof. The result follows from rel(N1 ∪ N2) = rel(N1) ∪ rel(N2). Very-simple sub-
stitutions cannot make a term into a free BG-sorted term, so terms in rel(N1 ∪ N2)
are very-simple instances of terms in either N1 or N2.
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Theorem 6.5.1. Given a FQ-clause set N and defining map M for N such that every
t ∈ ge(N ) is either a simple instance of the left-hand side of a basic definition in N ; or,
for some parameter α, t ≈ α is in ge(M). Then if clausal(M) ∪ apply(M,N ) is satisfiable,
it is B-satisfiable.

Proof. Let N = D ∪ N ′ where D is the set of all basic definitions in N . Note that
vsgi(D) ∪ M fulfils the conditions for a defining map for N (apart from possibly
number 5). Let K = {t ≈ α : t ∈ rel(N ) but is not a subterm of a clause in ge(N )},
where α is the same for each term t. Since LHS terms of equations in K only occur in
trivial ground instances of vsgi(N ), it follows that K does not affect the satisfiability
of the set, in particular N ∪ M ∪ K implies N ∪ M. By Lemma 6.5.2, clausal(M) ∪
apply(M,N ′) ∪ D ∪ K has local sufficient completeness, and following the proof of
Theorem 4.2 in the previous chapter, clausal(M) ∪ apply(M,N ′) ∪ D is B-satisfiable.

6.6 Sufficient Completeness of Recursive Data Structure The-
ories

The data structure theories given in Chapter 2 are ‘almost’ sufficiently complete, in
that the axioms define the interaction of the FG elements (lists, arrays, trees etc)
with the BG theory well enough that most relevant terms satisfy the condition for
sufficient completeness. This section gives proofs of sufficient completeness, or lack
thereof, of those data structure theories with integer element theory (so that selectors
are BSFG operators). The proofs suggest a use of the definition-first procedure to
recover completeness for extensions of those theories, in which data structres are
defined by templates in an iterative deepening style.

For an example of the use of basic definitions, consider the theory ARRAY with Z

as the index and element sort. Recall that ΣARRAY = {read : ARRAY×Z→ Z, store :
ARRAY×Z×Z→ ARRAY, a0 : ARRAY} and ARRAY is:

(1) i ≈ j ∨ read(store(m, i, e), j) ≈ read(m, j) (2) read(store(m, i, e), i) ≈ e
(3) (∀i. read(m, i) ≈ read(n, i))⇒ m ≈ n (4) read(a0, i) ≈ 0

Note that axiom (4) is new and defines the constant array a0 so that the set of very-
simple ground instances of a term with free array sorted variables is well-defined. As
mentioned above, axioms (1) and (4) of ARRAY are basic definitions, and therefore
do not need to be included in the defining map.

The axiom set ARRAY does not have sufficient completeness as, for example:

ARRAY[Z] |=Z store(a0, 0, 0) ≈ a0,

but vsgi(ARRAY[Z]) 6|= store(a0, 0, 0) ≈ a0

Lemma 6.6.1. The axiom set ARRAY[Z] does not have sufficient completeness.
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Proof. The transformation of (3) to CNF produces a new Skolem function sk : A×
A → Z. Roughly, sk is expected to return an index at which the argument arrays
differ, or some arbitrary index if they are the same. Then sk(a1, a2) ∈ rel(ARRAY[Z])
for array terms a1, a2. Assume that some (ΣZ ∪ ΣARRAY)-interpretationM assigns a
non-integer value ω to sk(a1, a2). Then M is free to assign any value to read(a1, ω)
and read(a2, ω) since no clause in vsgi(ARRAY[Z]) apart from the instantiation of
(3) with a1, a2 contains (a term interpreted as) the value ω. It is then possible to
have M |= read(a1, i) ≈ read(a2, i) for every i ∈ Z, but also have M(read(a1, ω)) 6=
M(read(a2, ω)) so that a1 ≈ a2 is not entailed byM.

Let ΣLIST[Z] = {head : LIST → Z, tail : LIST → LIST, cons : Z × LIST →
LIST, nil : LIST} and LIST[Z]:

(1) head(cons(x, l)) ≈ x (2) tail(cons(x, l)) ≈ l
(3) l ≈ nil ∨ cons(head(l), tail(l)) ≈ l (4) nil 6≈ cons(x, l)
(5) ∃x. head(nil) ≈ x (6) tail(nil) ≈ nil

Note the extra axioms (5) and (6), which allow deducing head(tailn(nil)) ≈ head(nil)
for n ≥ 0.

Lemma 6.6.2 ([AKW09]). The axiom set LIST[E] has sufficient completeness for any ele-
ment theory E.

Proof. Terms in rel(LIST[E]) have the form head(l) where l is either nil, cons(e, l′), or
tail(l′) where e is a ΣB-term. The first two cases are covered by axioms (1) and (5),
which are basic definitions. For the last case, note that terms of the form tail(l′) can
be reduced to cons(l′′) or nil by axioms (2) and (6), so head(tail(l′)) can be proven
equal to some ΣB-term too.

Clause sets extending the list theory lose sufficient completeness as soon as list
constants other than nil are introduced. For example, the clause set LIST[Z] ∪
{head(l) 6≈ x} where l is a list constant, has a model8 in which head(l) is interpreted
as an arbitrary non-integer element.

Armando et al. [ABRS09] show that with a specific ordering and transformation
of the clause set the superposition calculus finitely saturates the set LIST ∪ G where
G is a set of quantifier free literals (unit clauses). The crucial point is that literals
in G are flattened and reduced by LIST. Then the only relevant terms that occur
are ground or are subterms of clauses in LIST– in basic definitions in fact. Put
differently: by restricting to quantifier-free literals, unbounded access in arbitrary
lists cannot be defined. In that case Hierarchic Superposition with the De�ne rule is
complete (assuming the correct term order).

Theorem 6.6.1. Given a ground conjunction G of flat (ΣLIST[Z] ∪ ΣZ)-literals where the
ΣZ part is in a complete fragment [BW13a], then, with an appropriate ordering, Hierarchic
Superposition with weak abstraction decides TZ ∪ LIST[Z]-satisfiability of LIST[Z] ∪ G.

8more specifically sgi(LIST[Z] ∪ {head(l) 6≈ x}) ∪ GndTh(TZ) has a model
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Proof. As per the reasoning in Armando et al. [ABRS09] Superposition inferences
produce a finite saturated clause set, and the ordering constraints on the Hierar-
chic Superposition calculus (specifically, that domain elements are minimal) do not
contradict the ordering required for saturation of LIST axioms. As Hierarchic Su-
perposition inferences are a subset of possible (unsorted, non-theory) Superposi-
tion inferences considered by [ABRS09], it follows that the clause set is saturated
w. r. t. Hierarchic Superposition also. The saturated clause set without the LIST ax-
ioms contains only ground free BG-sorted terms, and by [BW13b], Hierarchic Super-
position with weak abstraction is (refutation) complete on that fragment. Together
with Lemma 6.6.2, if the result does not contain the empty clause, then TZ ∪ LIST[Z]-
satisfiability follows.

By generalizing Lemma 6.6.2, more general clauses can be supported. This moti-
vates the satisfiability procedure for lists described in Section 6.6.1.

Theorem 6.6.2. Let N be a Σ-clause set where ΣLIST[E] ⊆ Σ and whose only BSFG operator
is head. If for every LIST-sorted subterm l of clauses in vsgi(N ), N ∪ LIST |= l ≈ t for
some term t consisting only of cons, nil and ground ΣB-terms, then N ∪ LIST has sufficient
completeness.

As a practical application of Theorem 6.6.2, adding definitions for list operators
such as map, sum and length as per Chapter 4 should not affect sufficient complete-
ness, so long as the definitions are well-founded. However, those definitions often
assume a well-founded order on model elements (such that cons(l) � l for any l
say). This assumption is violated in the presence of infinite or cyclic lists. In decision
procedures, such as in Oppen [Opp80], satisfiability is w. r. t. the theory of acyclic
lists, but in this case where the list theory is described axiomatically, infinite lists
are not excluded. By including the length operator which maps lists into an inter-
preted theory, interpretations of ΣLIST including infinite lists can be excluded by the
TZ-extending criterion for models of saturated clause sets.

Define length : list→ Z by

(1) length(cons(x, y)) ≈ length(y) (2) x 6≈ nil ∨ length(x) ≈ 0

Theorem 6.6.3. LIST[E] with length operator has sufficient completeness and any TZ-
extending model does not have any infinite length lists.

Proof. Clause sets over ΣLIST[E] ∪ {length} have sufficient completeness, by a similar
argument to 6.6.2. List constants are allowed, since terms length(tailn(l)) reduce to
α− n using the De�ne rule. Let I be a TZ-extending model of the axioms LIST[E] and
clauses 1) and 2) of the length definition. Then for any list element w, I(length(w)) =
k ∈ Z, so I |= length(tailk(w)) ≈ 0 and tailk(w) ≈ nil by 2). So no w ∈ I is infinite.

6.6.1 Recursive Data Structure Definitions

This application of definition-first search exploits the fact that only the individual
list constants must be defined in order for LIST[E] to have sufficient completeness.
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9 This tacitly assumes there are no other non-constant LIST sorted operators in the
signature other than cons.

A list defining map for a clause set must include a definition for each list sorted
constant appearing in the clauses, except for nil. Given a clause set N with subterms
including ΣLIST operators, let L be the set of LIST-sorted constants other than nil in
N . There are three types of list defining maps for N :

M∅
LIST := {l ≈ nil : l ∈ L}

M−LIST := {l ≈ cons(el1, . . . , cons(elk, nil) . . .) :

for fresh constants eli, k ≥ 1 and l ∈ L}
M+

LIST := {l ≈ cons(el1, . . . , cons(elk, lend) . . .) :

for fresh constants eli, lend where k ≥ 1 and l ∈ L}

The defining map M+
LIST effectively fixes a minimum length for each list constant,

while M−LIST assigns an exact length individually, for each list constant. Hence, maps
of the form M+

LIST are called indefinite, while those of form M−LIST (i. e. , each list term
terminated by a nil constant) are definite.

Example 6.6.1. Let L = {l1, l2, l3}.

M∅
LIST = {l1 ≈ nil, l2 ≈ nil, l3 ≈ nil}

M−LIST = {l1 ≈ nil, l2 ≈ cons(e1, cons(e2, nil)), l3 ≈ cons(e4, nil)}
M+

LIST = {l1 ≈ l1,end, l2 ≈ cons(e1, cons(e2, l2,end), l3 ≈ cons(e4, l3,end}

Since a list defining map does not contain any BSFG operators at all, it does
not need to be flattened or otherwise transformed to ensure sufficient completeness.
Also, applying the defining map to a clause set is simply a matter of replacing list
constants with their new definitions.

Clause sets extended with either M∅
LIST or M−LIST have sufficient completeness by

Theorem 6.6.2. As with Section 2, M−LIST is an under-approximation: satisfiability can
be deduced with this restriction, but not unsatisfiability. A clause set extended with
list defining map M+

LIST does not have sufficient completeness, however Theorem
6.6.4 shows that it can be used to over-approximate a clause set, similar to how the
set of fixed definitions is used above.

Define a relation � on list defining maps over a set L, where M1 � M2 if for
all l ∈ L the depth of the terms assigned to l by M1 is less or equal to the depth
of the term assigned by M2. Then from the previous example M∅

LIST � M−LIST and
M−LIST � M+

LIST.

Theorem 6.6.4. Let M+
LIST be an indefinite list defining map for clause set N . If, for all

definite defining maps M′LIST � M+
LIST, it is the case that N ∪ M′LIST is unsatisfiable, and

N ∪ M+
LIST is unsatisfiable, then N is unsatisfiable.

9It is possible, though inefficient, to transform clause sets including LIST[TZ] to FQ-clauses using
the idx transform in Chapter 5



§6.6 Sufficient Completeness of Recursive Data Structure Theories 139

1 algorithm checkSATLIST(N ):
2 let M = M∅

LIST
3 let updateQueue = []
4 while (true):
5 let D = saturate(N ∪ MLIST)
6 if (� /∈ D) return SAT
7 listConsts = find(D)
8 if (listConsts.isEmpty) return UNSAT
9 if (� ∈ saturate(N ∪ M−LIST )) return UNSAT

10 updateQueue.push(listConsts)
11 M = extendList(updateQueue.pop())

Figure 6.7: N is a set of clauses including LIST[Z]

Proof. Assume that N ∪ M+
LIST is unsatisfiable. Then for all list constants l, where

l ≈ cons(el1, . . . , cons(elk, lend) . . .) ∈ M+
LIST, there are no models of N in which l has

at least k elements. By hypothesis, there are no models where l has fewer than k
elements, therefore N has no models.

Unlike the corresponding proof for bounded defining maps, this proof relies on the
fact that prefixes of the hypothesised lists have already been shown unsatisfiable. So
the refininement procedure can lengthen just one list by one element each iteration.
The choice of which list constant will take the modified definition is still open, and
the same clause labelling procedure can be used to restrict the choice to just those
that label a minimal unsatisfiable set of BG-clauses.

A version of the checkSATM satisfiability algorithm specialized to the LIST theory
is given in Figure 7.

The procedure �nd(D) checks the labelled clauses in the saturated clause set D
and returns a set of list constants for which the assumption ‘has length exactly k’ is
required for the proof. If there are no such constants, then the derivation is indepen-
dent of M−LIST, and so the same derivation is possible using M+

LIST. Therefore, it is
correct to conclude UNSAT. Otherwise, those constants are pushed onto the global
update queue.

At line 9 the defining map M+
LIST is a list defining map identical to M−LIST, except

with all nil constants replaced with fresh list constants. In addition, the call to saturate

on line 8. could have a timeout imposed, as Theorem 6.6.4 only requires definite maps
to be checked.

So long as calls to saturate are terminating, the procedure checkSATLIST will pro-
duce a counter-example, where one exists. This is not possible simply using the sat-

urate procedure alone, as there is no way to determine whether the implied model
is a TZ-model. Since no assumptions are made on the structure of N , termination is
not guaranteed a priori, and, in general, inductive facts cannot be proven either.

The checkSATLIST procedure can also be modified to search over other recursive
data structures, e. g. , binary trees, given a suitable modification of Theorem 6.6.4 and
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a corresponding fair enumeration of possible shapes for the given data structure.

6.7 Refutation Search

Now that definitions can be represented independently of their finite domains, it is
possible to discard the finite domains entirely. For similar reasons as above, each
individual test of an approximation clause set can yield a correct B-satisfiable or
B-unsatisfiable result.

This section will sketch a method for refutation search based on the checkSATgen

algorithm above, showing that with an appropriate implementation of find and a
global fairness criterion it is possible to obtain refutation completeness. A few open
questions remain, and are described at the end of the section. In particular, the given
restrictions on heuristics are likely to be inefficient in practice, however more efficient
heuristics may be feasible, when restricted to fragments for which satisfiability is
equivalent to a finite set of clause instances.

In this section, like in other sections, all substitutions will be simple. The defining
map used here is similar to a bounded defining map, except with no finite domain
structure. Instead, dismatching constraints will be used to ensure that instances of
definitions do not overlap.

Definition 6.7.1 (Dismatching Constraint, [GK04b]). A dismatching constraint is a
pair of term tuples ds(s, t), such that s and t are variable disjoint. A substitution σ is
a member of ds(s, t), when for all (simple) substitutions γ, sγ = tσ.

The critical point is that a dismatching constraint is falsified exactly when there
is a matcher µ such that sµ = t.

Dismatching constraints can be joined via conjunctions, this corresponds to in-
tersection of the sets of member substitutions. It is assumed that in conjunctions
∧ n

i=1ds(si, ti), each si is variable disjoint with tj and sk for k 6= i.
All equations in defining maps will be constrained with dismatching constraints;

a non-ground definition without a constraint represents the set of all of its simple
ground instances. These are constructed so that instances of definitions do not over-
lap (see point (2) in the following definition). Example 6.7.1 will show how to con-
struct such dismatching constraints.

Definition 6.7.2 (General Defining Map). Given a set of terms T, a general defining map
for T is a set of equations with constraints MT = {s1 ≈ α1 | D1, . . . , sn ≈ αn | Dn},
where parameters αi are fresh; each si is an instance of some term s′i ∈ T (that has a
BSFG operator outermost) and each Di is a dismatching constraint conjunction. MT
must have the following properties:

1. Given s1 ≈ α1 ∈ MT, there is no s2 ≈ α2 ∈ MT such that mgu(s1, s2) = σ is
renaming and non-empty. If it is empty, then α1 = α2.

2. If s1 ≈ α1 | D1 and s2 ≈ α2 | D2 are in MT where mgu(s1, s2) = σ is not
a renaming substitution, then s1σ ≈ β | D3 is in MT for some parameter β,
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and there are no ground substitutions γi, γj in Di, Dj such that siγi = sjγj for
distinct i, j in {1, 2, 3}.

3. For every s ∈ T there is a definition s′ ≈ α ∈ MT for some parameter α such
that there exists matcher µ where s′µ = s.

Usually the set of terms T is the set of relevant terms (i. e. , very-simple ground
instances of free BG-sorted terms) for a clause set.

To generate a dismatching constraint for t ≈ α ∈ MT, take the set Instt of substi-
tutions µ such that

1. tµ ≈ β ∈ MT and

2. there is no t′ ≈ β′ ∈ MT where ∃γ, γ′. tγ = t′ and t′γ′ = tµ

From each matcher [x1 → t1, . . . , xm → tm] in Instt create the dismatching con-
straint ds(〈t1, . . . , tm〉, 〈x1, . . . , xm〉), then t ≈ α is constrained with the conjunction of
all such constraints generated from the set.

Example 6.7.1 (Dismatching Constraints). A defining map for term set

T = { f (x, y), f (g(z), y), f (g(a), y), f (x, b)} is:

f (x, y) ≈ α0 | ds(b, y) ∧ ds(g(z), x) f (g(a), y) ≈ α2 | ds(b, y)

f (g(z), y) ≈ α1 | ds(a, z) ∧ ds(b, y) f (g(z), b) ≈ α4 | ds(a, z)

f (x, b) ≈ α3 | ds(g(z), x) f (g(a), b) ≈ α5

Brackets from single element tuples are left out for clarity. For example, [x → a, y→
a] is a member of the constraint for f (x, y) ≈ α0, but [x → a, y → b] and [x →
g(a), y→ b] are not.

The first step is to show that the clause set approximations N+ and N− work as
intended when using a general defining map.
N+ is the simplest of the two approximations and consists of just the ground

(fixed) definitions in the defining map, along with all clauses (instances) in vsgi(N )
which are completely rewritten by those fixed definitions.

Lemma 6.7.1. N+ unsatisfiable implies N is unsatisfiable.

Proof. Since N+ is equivalent to a subset of vsgi(N ).

‘Ground equivalent’ in this context means all very-simple ground instances that
satisfy any dismatching constraints present.

Definition 6.7.3 (Ground Equivalent for Dismatching Constraints). Given a con-
strained clause C | D, then ge(c | D) is the set {Cσ : σ ∈ D and Cσ is ground}.
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The apply procedure is the same as before, only dismatching constraints are pre-
served instead of finite domains. Dismatching constraints are also used in the deriva-
tion to block inferences that would trivialize the defining map.

Example 6.7.2 (Constraint Simplification Required). The unit clause f (x′, b) ≈ t[x′]
is rewritten into three clauses by the defining map in Example 6.7.1:

α3 ≈ t[x] | α3 · ds(g(z), x)

α4 ≈ t[g(z)] | α4 · ds(a, z)

α5 ≈ t[g(a)] | α5

The parameter in the constraint denotes the unique definition equation with that
parameter. If constraints are ignored, there is an obvious superposition inference
between the second and third clauses, producing α4 ≈ α5 with unifier [z → a]. This
violates the dismatching constraint ds(a, z) and should be removed. This same pat-
tern will occur each time definitions in which the defined terms are proper instances
(e. g. , f (g(z), b) ≈ α4 and f (g(a), b) ≈ α5) rewrite the same clause.

Again, this is necessary to make progress in the checkSATgen loop.
Note also, that due to the lack of finite domains, there is no need to complete N−

to a sufficiently complete clause set, as it has sufficient completeness already.

Lemma 6.7.2. ge(apply(N , Mrel(N )) ∪ flat(Mrel(N ))) has sufficient completeness.

Proof. As a result of Definition 6.7.2, Mrel(N ) has a definition for all relevant terms
in N . So apply(N , Mrel(N )) does not contain any free BG terms. Any term in
vsgi(flat(Mrel(N ))) is equated to some parameter, and so is necessarily equal to some
BG element in any model of ge(apply(N , Mrel(N )) ∪ flat(Mrel(N ))) ∪ GndTh(B)

Lemma 6.7.3. If N− is produced by rewriting with Mrel(N ) and is satisfiable, then N is
B-satisfiable.

Proof. Note that simplification of dismatching constraints never removes any clauses
from the ground equivalent. By Lemma 6.7.2, if N− is saturated w. r. t. HSP, then
it is B-satisfiable. By construction it has a B-extending model, which also satisfies
Mrel(N ). As N is implied by the equational closure of N−, it follows that the given
model is also a model of N .

These two lemmas establish that the ‘local’ behaviour of checkSATgen is correct,
however the global behaviour is still unspecified– does it ever terminate? Is termina-
tion guaranteed for any specific problem classes?

Lemma 6.7.4 (Compactness Implies Finite Fixed Set). If B is a compact specification,
then for any B-unsatisfiable clause setN there is a defining map MU with over-approximation
set N+ that is B-unsatisfiable, and MU contains finitely many definitions.
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Proof. If clause set N is B-unsatisfiable, then there is a finite subset U of sgi(N ) such
that U ∪ GndTh(B) is unsatisfiable. Let MU consist of {t ≈ αt : t ∈ relU and αt

is a fresh parameter } along with definitions for any maximal free BG-sorted terms
of N appropriately constrained to satisfy Definition 6.7.2. As both U and the set of
maximal free BG-sorted terms are finite, MU is finite too.

Hypothesis: (Under assumption) If given a B-unsatisfiable clause set N and as-
suming each call to saturate terminates, then checkSATgen eventually terminates with
result ‘B-unsatisfiable’.

This reduces to the condition that every definition tσ in fixed(MU) is eventu-
ally added by find(), or, conversely, there is no infinite set of term instances outside
fixed(MU) selected before an instance in fixed(MU).

Example 6.7.3 (Unfair Update Selection). The unit clause f (x) < x will be unsatisfi-
able for any interpretation of the form f (0) ≈ α0, f (1) ≈ α1, . . . , f (x) ≈ α ∨ ¬(x 6∈
[0, n]), although it is satisfiable on its own. If f (x) < x were part of an overall un-
satisfiable clause set, then it could ‘hijack’ the satisfiability search by generating the
infinite sequence of exceptions f (0), f (1), . . . without reaching MU .

This is very similar to the fairness condition for saturation based calculi, and a
similar condition can be used here.

Recall that an update heuristic is a map from labelled (constrained) clauses to a
definition and instances of that definition. Specifically, the result of an application
of the heuristic is a non-ground definition from the defining map and a substitution
which identifies an instance of that definition. The input set of labelled clauses is
B-unsatisfiable and is the result of an HSP derivation in which labels correspond to
the definitions used, and the substitutions used in the derivation of each clause are
applied to the label and constraint.

Then a fair update heuristic for MT should not delay selection of any given term
in T, no matter the input. The following definition captures this.

Definition 6.7.4 (Fair Update Heuristic). An update heuristic (i. e. , a find implemen-
tation) is fair just when for any given ground free BG term t ∈ MT there does not
exist a sequence of labelled clause sets C0, C1, . . . such that for all Ci

1. in Ci there is a clause with label t′ ≈ α, constraint D containing µ where t′µ = t;
and

2. find(Ci) = (s, σ) where sσ 6= t.

This will correct the problem illustrated by Example 6.7.3 only if it is the case that
every t ∈ fixed(MU) eventually appears in a label and constraint pair in a proof of B-
unsatisfiability from N−. This is not guaranteed, and requires an extra assumption
on checkSATgen:
Assumption: Every t ∈ fixed(MU) is considered by �nd infinitely often.

This can be accomplished by periodically (say every 5th iteration) sending MT to
�nd (where definitions label themselves), i. e. , allowing any term to be selected.
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Theorem 6.7.1. Let B be a compact specification and assume that checkSATgen implements
a strategy that satisfies the assumption above. If given a B-unsatisfiable clause set N , then,
assuming each call to saturate terminates and find is a fair update heuristic, it follows that
checkSATgen eventually terminates with result ‘B-unsatisfiable’.

Proof. By compactness and Lemma 6.7.4 MU exists. By assumption, the entire set
of definition terms in Mrel(N ) is eligible for selection infinitely often. Since find is
fair, any t ∈ fixed(MU) is eventually selected for updating, and so the particular
unsatisfiable over-approximation N+ is eventually tested. By Lemma 6.7.3, none of
the N− sets tested prior to that incorrectly conclude ‘B-satisfiable’, and by Lemma
6.7.1, testing N+ returns the required ‘B-unsatisfiable’ result.

It remains to show that a fair heuristic exists. The heuristics mentioned in Section
6.3.2 minimize w. r. t. cardinality of the update only, so are not necessarily fair.

Example 6.7.4 (A Fair Update Heuristic). Consider the heuristic that on input Ci
returns a ground term instance t0γ0, t1γ1, . . . according to the rules:

1. Select t0γ0 from C0 arbitrarily, store t0 as p.

2. If there is a term ti+1 in the labels of Ci+1 such that ti+1 ≺ ti according to the
term order, select that set p = ti+1.

3. Otherwise, select ti+1 from Ci+1 arbitrarily. If there are no terms smaller than
ti+1 in ge(MT) and not in fixed(MT), then set p = ti+1.

The assumption on checkSATgen strategy ensures that option (3) is never chosen in-
finitely often in sequence without updating p. The phrase ‘select from Ci’ means
choose a definition (t ≈ α) labelling a constrained clause C | D and a substitution
γ ∈ D. Since the term order is well-founded, it follows that only finitely many terms
are selected in option (2) before option (3) is chosen and p is updated. Therefore the
given heuristic is fair.

The heuristic in Example 6.7.4 only returns ground instances as updates. It may
be impossible to have heuristics that return non-ground instances for the general
case, since they are generally not ordered.

As observed in Section 5.6.1, for fragments in which satisfiability can be decided
by testing a finite set of clause instances, it may be enough to give definitions for just
the relevant terms found in that finite instantiation. In that case, the set fixed(MU)
is known, and a fair heuristic could simply ensure that those terms are eventually
added, meanwhile returning whatever terms it chooses. Thus, more efficient up-
dates can be returned, while guaranteeing completeness overall. Such considerations
remain to be verified, however.

Ideas from this could be used inside the HSP calculus: already the De�ne rule is
applied eagerly to recover sufficient completeness. In addition, instantiation could
be used to introduce new definitions for instances of relevant terms produced via
E-matching rather than unification. This sacrifices the possible efficiency gains from



§6.8 Summary 145

using non-ground definitions, and doesn’t guarantee sufficient completeness, but it
avoids the usual problem in using instantiation, namely, that new clause instances
are immediately eligible for simplification by subsumption.

6.8 Summary

The given hierarchic satisfiability algorithm checkSATM augments a prover for first-
order logic modulo theories by recovering completeness when the set of relevant
terms is finite. Strong theory reasoning capabilities, specifically for linear inte-
ger arithmetic, enable an intensional description of sets of relevant terms, which
is exploited in the hope of avoiding excessive instantiation– anathema to first-order
solvers. However, this is the usual solution when reasoning over fragments in which
satisfiability is equal to satisfiability in a finite set of instances [GdM09, ISS09].

The only way to exploit that compact description is to use default (parametric)
values, necessitating an under- then over-approximation approach to reasoning, sim-
ilar to that described by Lynch [Lyn04]. In this approach, a simplifying constraint
on the equational structure of possible interpretations is hypothesized and then iter-
atively refined. Some heuristics are required to avoid performing more solver calls
than would be done if outright instantiation were used instead.

By focusing on the free BG sorted terms rather than the finite domains as the
means for organizing definitions, performance advantages were obtained over the
original hierarchic satisfiability procedure for modular solvers [BW13b].

Clause labels were used to produce a smaller set of possible repairs at the end
of an unsuccessful test of a particular defining map. Though requiring modification
of the component solver, this technique avoids repeating many similar proofs, as
happens in the original �nd method that was based on binary search.

Although smaller, the final set of labels is usually not definitive, and so several
heuristics were given, and compared against the original implementation. Two of the
heuristics (Z3-MUC and NG+red) require the finite quantification restriction, but one
method (NG-MUC) does not, and that could be adapted for other use cases, such as
where quantifier ranges are unbounded or over non-integer sorts.

The general form of the algorithm was also specialized to recursive data structure
domains. Theoretical results where given, though most problems over these domains
require a component solver with better inductive reasoning capability to handle the
saturate() calls.

The description of basic definitions allows automatic recognition of relevant terms
that can be excluded from the defining map, thereby improving efficiency. This fixes
a problem left implicit in [BW13b].

One further way of generalizing the method is to move to an incomplete search,
lifting the requirement for finite quantification of variables in relevant terms and
defining maps. This would be similar to the heuristic quantifier instantiation meth-
ods found in SMT [dMB07], or to instantiation based first-order reasoning (for ex-
ample, Ganzinger and Korovin [GK04b]) when in the over-approximation phase.
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In particular, dismatching constraints are used to prevent trivial definitions, and
E-matching is used to discover useful updates when the NG-MUC heuristic is not
effective.

Implementation and testing of this variation on instance-based reasoning is future
work.



Chapter 7

Conclusion

This thesis describes some techniques for first-order reasoning with theories, fo-
cussing in particular on those which enable a first-order reasoner to conclude sat-
isfiability of a formula, modulo an arithmetic theory. These new techniques form a
useful complement to existing methods that are primarily aimed at proving validity,
though unsatisfiable problems remain the easiest to solve.

Each of these make use of the theory reasoning capability of the Hierarchic Super-
position calculus, combining equational reasoning with native support for quantifiers
and building in decision procedures for arithmetic theories. Weak abstraction and
related improvements make an implementation of the calculus feasible.

The first contribution is an implementation of that calculus (Beagle ), including
an optimized implementation of Cooper’s algorithm for quantifier elimination in the
theory of linear integer arithmetic. This includes a novel means of extracting certain
values for quantified variables in satisfiable integer problems with arbitrary quantifi-
cation. In addition, Beagle includes theory solvers for rational and real linear arith-
metic as well as an interface (via SMT-lib) to compatible SMT solvers. Beagle accepts
input in both SMT-lib and TPTP format, meaning it can interface with verification
tools like the Why3 intermediate verification language and the Sledgehammer solver
for Isabelle/HOL. Beagle won an efficiency award at CASC-J7, and won the arithmetic
non-theorem category at CASC-25. This implementation is the start point for solving
the ‘disproving with theories’ problem.

The first satisfiability method, and the first use of definitions, gives syntactic crite-
ria for recognising when an unsatisfiable formula implies satisfiability of a particular
subformula: the hypothesis. If the input formula is divided into satisfiable (known)
axioms and satisfiability preserving definitions that extend the axioms, the remain-
der must be the cause of the unsatisfiability, and therefore has no model relative to
the axioms. These syntactic criteria include well-founded recursive definitions, def-
initions over lists, and to arrays. This allows proving some non-theorems which are
otherwise intractable, and justifies similar disproofs of non-linear arithmetic formu-
las. Using these results, a selection of non-theorems shown satisfiable, where the
corresponding negated forms (counter-satisfiable) were unable to be solved.

When the hypothesis is contingently true, disproof requires proving existence of
a model. If the Superposition calculus saturates a clause set, then a theory extending
model exists, but only when the clause set satisfies a completeness criterion. This
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requires each instance of an uninterpreted theory-sorted term to have a definition
in terms of theory symbols. If that were not the case, then any model found may
not properly extend the background theory, meaning it is not correct to conclude
satisfiability.

The method described in Chapters 5 and 6, checkSAT requires that certain quan-
tifiers are restricted to range over finite sets, and builds definitions for those unin-
terpreted theory-sorted terms. Moreover, the use of first-order reasoning allows for
an implicit representation of those finite sets, possibly avoiding scalability problems
that affect other quantifier reasoning methods.

Definitions are produced in a counter-example driven way via a sequence of over
and under approximations to the clause set. Two descriptions of the method are
given: the first uses the component solver modularly, but has an inefficient counter-
example heuristic. The second is more general, correcting many of the inefficiencies
of the first, yet it requires tracking clauses through a proof. This latter method is
shown to apply also to lists and to problems with unbounded quantifiers. Further-
more, the recognition of basic definitions already present in the input formula allows
for reducing the number of terms that need to be defined using the checkSAT method,
improving overall efficiency.

Lastly, a sketch proof is given for how the checkSAT method could be used for
clause sets without finite domains. Although only refutation completeness is possible
there, this nevertheless extends the capabilities of the basic Hierarchic Superposition
calculus, as it is not guaranteed to be refutation complete in the absence of sufficient
completeness.

Together, these tools give new ways for applying successful first-order reasoning
methods to problems involving interpreted theories.

7.1 Future Work

As with all software described herein, Beagle is prototypical and lacks many state-of-
the-art features found in other solvers. Specifically, performance is rather poor on
large formulas, or on formulas with large boolean components (e. g. shallow terms,
many boolean variables). Improvements to term-indexing would likely improve the
situation, as would more powerful simplification strategies. Proofs can be gener-
ated for the equational part of a derivation, however there is no proof procedure
for Cooper’s algorithm (the aforementioned quantifier value extraction method only
returns values for the innermost quantifiers).

The syntactic test for admissible definitions could be automated and integrated
into Beagle , although initial tests suggest it is difficult to cover all variations. Perhaps
it would be better used as a general solver strategy that relies on the user specifying
definitions, e. g. using the SMT-lib input language. The observation that these types
of formulas are satisfiability preserving could be used in simplification strategies,
similar to how Armando et al. [ABRS09] restrict inferences between theory axioms.

In addition, an automated method of finding bounded domains, or mapping
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from finite domains appropriately would be necessary to apply checkSAT at a large
scale. Refinements to the way definitions are stored and manipulated would also
improve performance; the formal methods literature is replete with methods for rep-
resenting substitution sets and integer partitions efficiently. Further experimentation
with various component solvers in checkSAT, or using an SMT solver as an oracle for
constructing models would also be very interesting.

Finally, the refutation complete, unbounded algorithm checkSATgen warrants ex-
pansion, especially as there are few methods exploring this style of theorem proving
in the first-order reasoning literature. It has been remarked to me that Constraint Sat-
isfaction only came into its own once the field started exploring incomplete heuristics,
perhaps the same is true of automated reasoning?
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