931 research outputs found

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Cycle slip detection during high ionospheric activities based on combined triple-frequency GNSS signals

    Get PDF
    The current cycle slip detection methods of Global Navigation Satellite System (GNSS) were mostly proposed on the basis of assuming the ionospheric delay varying smoothly over time. However, these methods can be invalid during active ionospheric periods, e.g., high Kp index value and scintillations, due to the significant increase of the ionospheric delay. In order to detect cycle slips during high ionospheric activities successfully, this paper proposes a method based on two modified Hatch–Melbourne–W¨ubbena combinations. The measurement noise in the Hatch–Melbourne–W¨ubbena combination is minimized by employing the optimally selected combined signals, while the ionospheric delay is detrended using a smoothing technique. The difference between the time-differenced ambiguity of the combined signal and this estimated ionospheric trend is adopted as the detection value, which can be free from ionospheric effect and hold the high precision of the combined signal. Five threshold determination methods are proposed and compared to decide the cycle slip from the magnitude aspect. This proposed method is tested with triple-frequency Global Navigation Satellite System observations collected under high ionospheric activities. Results show that the proposed method can correctly detect and fix cycle slips under disturbed ionosphere

    Ionospheric Regional modeling Algorithm based on GNSS Precise Point Positioning

    Get PDF
    Precise point positioning (PPP) is an absolute spatial positioning technology different from carrier phase relative positioning. With the continuous development of Global navigation satellite system (GNSS), multi-constellation GNSS further provides PPP with more abundant observation information and useful spatial geometric observations, which improves positioning performance and robustness. In recent years, the un-difference and un-combined precise point positioning (UPPP) has been continuously developing. Firstly, we introduce the basic theory of GNSS positioning and compare the position performance between UPPP and ionospheric-free PPP (IF PPP). The positioning performance of the four mainstream GNSS systems, GPS, GLONASS, Galileo, and Beidou, the PPP floating-point solutions of the four satellite systems all converge within 60 minutes and their error are less than 10cm. Secondly, a two-dimensional (2-d) model is proposed to fit the vertical total electronic content (VTEC) in the ionosphere with the ionospheric delays extracted by UPPP. With the model constraining the ionospheric delay in UPPP, the convergence is 2 minutes shorter than using the global ionospheric map (GIM) from IGS. Thirdly, to solve the limitation of the traditional methods in 2d representation, a method is proposed represent the ionosphere in 3D, called Compressed Sensing Tomography (CST). Comparing the simulated single-difference slant total electron content (STEC) and the input single- difference STEC between satellites, the root mean square (RMS) of the reference station’s error is less than 1 TEC uni

    Benefits from a multi-receiver architecture for GNSS precise positioning

    Get PDF
    Precise positioning with a stand-alone GPS receiver or using differential corrections is known to be strongly degraded in an urban or sub-urban environment due to frequent signal masking, strong multipath effect, frequent cycle slips on carrier phase, etc. The objective of this Ph.D. thesis is to explore the possibility of achieving precise positioning with a low-cost architecture using multiple installed low-cost single-frequency receivers with known geometry whose one of them is RTK positioned w.r.t an external reference receiver. This setup is thought to enable vehicle attitude determination and RTK performance amelioration. In this thesis, we firstly proposed a method that includes an array of receivers with known geometry to enhance the performance of the RTK in different environments. Taking advantage of the attitude information and the known geometry of the installed array of receivers, the improvement of some internal steps of RTK w.r.t an external reference receiver can be achieved. The navigation module to be implemented in this work is an Extended Kalman Filter (EKF). The performance of a proposed two-receiver navigation architecture is then studied to quantify the improvements brought by the measurement redundancy. This concept is firstly tested on a simulator in order to validate the proposed algorithm and to give a reference result of our multi-receiver system’s performance. The pseudorange measurements and carrier phase measurements mathematical models are implemented in a realistic simulator. Different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array, the satellite constellation geometry, and the amplitude of the noise measurement, in order to determine the influence of the use of an array of receivers. The simulation results show that our multi-receiver RTK system w.r.t an external reference receiver is more robust to noise and degraded satellite geometry, in terms of ambiguity fixing rate, and gets a better position accuracy under the same conditions when compared with the single receiver system. Additionally, our method achieves a relatively accurate estimation of the attitude of the vehicle which provides additional information beyond the positioning. In order to optimize our processing, the correlation of the measurement errors affecting observations taken by our array of receivers has been determined. Then, the performance of our real-time single frequency cycle-slip detection and repair algorithm has been assessed. These two investigations yielded important information so as to tune our Kalman Filter. The results obtained from the simulation made us eager to use actual data to verify and improve our multi-receiver RTK and attitude system. Tests based on real data collected around Toulouse, France, are used to test the performance of the whole methodology, where different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array as well as the environmental conditions (open sky, suburban, and constrained urban environments). The thesis also tried to take advantage of a dual GNSS constellation, GPS and Galileo, to further strengthen the position solution and the reliable use of carrier phase measurements. The results show that our multi-receiver RTK system is more robust to degraded GNSS environments. Our experiments correlate favorably with our previous simulation results and further support the idea of using an array of receivers with known geometry to improve the RTK performance

    Trustworthy precise point positioning with global navigation satellite systems

    Full text link
    With the modernization of the Global Navigation Satellite System (GNSS), GNSS precise point positioning (PPP) technology becomes popular benefiting from its wide coverage and high accuracy. However, PPP technology still has many challenges in terms of continuity, fast convergence, and integrity monitoring, and these unsolved issues result in limitations of engineering applications. In this thesis, a reliable PPP technology with GNSS is investigated. The main contributions of the thesis are as follows: (1) A new cycle slip repair method that uses multiple epochs of time-differencing and geometry-based observations are proposed which has a significant improvement in the success rate of cycle slip repairs compared to existing methods. The positioning results also reflect that this method can reduce position errors and improve the continuity of PPP technology. (2) A systematic comparison of current interpolation methods used for high-accuracy regional ionospheric corrections is presented. It is found that each method has essentially the same accuracy in a small regional network with only a few stations, while the Kriging interpolation method can significantly improve the accuracy when the size of the network increases. Besides, a new method for predicting the uncertainty after broadcasting by grid point is also proposed. It has been validated that it is significantly closer to reality than other existing methods. In addition, different ionospheric correction implementation methods at the user end are also compared. (3) A integrity monitoring scheme for use in PPP based on real-time kinematic (RTK) positioning networks (PPP-RTK) with regional atmospheric corrections has been developed, which is based on the impacts of faults on the estimators considering possible faults in undifferenced and uncombined measurements. (4) Procedures for integrity monitoring considering the risks caused by incorrect ambiguity fixing are investigated. Two different methods for considering the probability of wrong ambiguity fixing including categorizing it into unmonitored fault and categorizing it as an individual type of fault are proposed and analyzed. (5) An integrity monitoring (IM) scheme based on the single-epoch framework for PPP-RTK is also proposed in order to exclude the effects caused by using observations from multiple epochs. Different solutions and their related availability are evaluated based on the satellite geometry in the global area

    GNSS precise point positioning :the enhancement with GLONASS

    Get PDF
    PhD ThesisPrecise Point Positioning (PPP) provides GNSS navigation using a stand-alone receiver with no base station. As a technique PPP suffers from long convergence times and quality degradation during periods of poo satellite visibility or geometry. Many applications require reliable realtime centimetre level positioning with worldwide coverage, and a short initialisation time. To achieve these goals, this thesis considers the use of GLONASS in conjunction with GPS in kinematic PPP. This increases the number of satellites visible to the receiver, improving the geometry of the visible satellite constellation. To assess the impact of using GLONASS with PPP, it was necessary to build a real time mode PPP program. pppncl was constructed using a combination of Fortran and Python to be capable of processing GNSS observations with precise satellite ephemeris data in the standardised RINEX and SP3 formats respectively. pppncl was validated in GPS mode using both staticsites and kinematic datasets.In GPS only mode,one sigma accuracy of 6.4mm and 13mm in the horizontal and vertical respectively for 24h static positioning was seen. Kinematic horizontal and vertical accuracies of 21mm and 33mm were demonstrated. pppncl was extended to assess the impact of using GLONASS observations in addi- tion to GPS instatic and kinematic PPP. Using ESA and Veripos Apex G2 satel- lite orbit and clock products,the average time until 10cm 1D static accuracy was achieved, over arange of globally distributed sites, was seen to reduce by up to 47%. Kinematic positioning was tested for different modes of transport using real world datasets. GPS/GLONAS SPPP reduced the convergence time to decimetre accuracy by up to a factor of three. Positioning was seen to be more robust in comparison to GPS only PPP, primarily due to cycle slips not being present on both satellite systems on the occasions when they occurred,and the reduced impact of undetected outliersEngineering and Physical Sciences Research Council, Verip os/Subsea
    • …
    corecore