309,871 research outputs found

    A Model for Prejudiced Learning in Noisy Environments

    Full text link
    Based on the heuristics that maintaining presumptions can be beneficial in uncertain environments, we propose a set of basic axioms for learning systems to incorporate the concept of prejudice. The simplest, memoryless model of a deterministic learning rule obeying the axioms is constructed, and shown to be equivalent to the logistic map. The system's performance is analysed in an environment in which it is subject to external randomness, weighing learning defectiveness against stability gained. The corresponding random dynamical system with inhomogeneous, additive noise is studied, and shown to exhibit the phenomena of noise induced stability and stochastic bifurcations. The overall results allow for the interpretation that prejudice in uncertain environments entails a considerable portion of stubbornness as a secondary phenomenon.Comment: 21 pages, 11 figures; reduced graphics to slash size, full version on Author's homepage. Minor revisions in text and references, identical to version to be published in Applied Mathematics and Computatio

    Development and evaluation of a web-based learning system based on learning object design and generative learning to improve higher-order thinking skills and learning

    Get PDF
    This research aims to design, develop and evaluate the effectiveness of a Webbased learning system prototype called Generative Object Oriented Design (GOOD) learning system. Result from the preliminary study conducted showed most of the students were at lower order thinking skills (LOTS) compared to higher order thinking skills (HOTS) based on Bloom’s Taxonomy. Based on such concern, GOOD learning system was designed and developed based on learning object design and generative learning to improve HOTS and learning. A conceptual model design of GOOD learning system, called Generative Learning Object Organizer and Thinking Tasks (GLOOTT) model, has been proposed from the theoretical framework of this research. The topic selected for this research was Computer System (CS) which focused on the hardware concepts from the first year Diploma of Computer Science subjects. GOOD learning system acts as a mindtool to improve HOTS and learning in CS. A pre-experimental research design of one group pretest and posttest was used in this research. The samples of this research were 30 students and 12 lecturers. Data was collected from the pretest, posttest, portfolio, interview and Web-based learning system evaluation form. The paired-samples T test analysis was used to analyze the achievement of the pretest and posttest and the result showed that there was significance difference between the mean scores of pretest and posttest at the significant level a = 0.05 (p=0.000). In addition, the paired-samples T test analysis of the cognitive operations from Bloom’s Taxonomy showed that there was significance difference for each of the cognitive operation of the students before and after using GOOD learning system. Results from the study showed improvement of HOTS and learning among the students. Besides, analysis of portfolio showed that the students engaged HOTS during the use of the system. Most of the students and lecturers gave positive comments about the effectiveness of the system in improving HOTS and learning in CS. From the findings in this research, GOOD learning system has the potential to improve students’ HOTS and learning

    Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

    Full text link
    Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the concept of shaping the reward landscape with training wheels: temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics. A video synopsis can be found at https://youtu.be/6iH5E3LrYh8.Comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2018, 6 pages, 6 figure
    • …
    corecore