375,212 research outputs found

    Decentralized system identification using stochastic subspace identification for wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model. ??? 2015 by the authors; licensee MDPI, Basel, Switzerlandopen0

    A tale of three systems : case studies on the application of architectural tactics for cyber-foraging

    Get PDF
    Cyber-foraging is a technique to enable mobile devices to extend their computing power and storage by offloading computation or data to more powerful servers located in the cloud or in single-hop proximity. In previous work, we developed a set of reusable architectural tactics for cyber-foraging systems. We define architectural tactics as design decisions that influence the achievement of a system quality. In this article we present the results of three case studies to validate the application of the tactics to promote their intended functional and non-functional requirements. The first two case studies focus on the identification of architectural tactics in existing cyber-foraging systems. The third case study focuses on the development of a new cyber-foraging system using the architectural tactics. The results of the case studies are an initial demonstration of the validity of the tactics, and the potential for taking a tactics-driven approach to fulfill functional and non-functional requirements for cyber-foraging systems. (C) 2019 Elsevier B.V. All rights reserved

    An Evolutionary Neural Network Approach for Slopes Stability Assessment

    Get PDF
    A current big challenge for developed or developing countries is how to keep large-scale transportation infrastructure networks operational under all conditions. Network extensions and budgetary constraints for maintenance purposes are among the main factors that make transportation network management a non-trivial task. On the other hand, the high number of parameters affecting the stability condition of engineered slopes makes their assessment even more complex and difficult to accomplish. Aiming to help achieve the more efficient management of such an important element of modern society, a first attempt at the development of a classification system for rock and soil cuttings, as well as embankments based on visual features, was made in this paper using soft computing algorithms. The achieved results, although interesting, nevertheless have some important limitations to their successful use as auxiliary tools for transportation network management tasks. Accordingly, we carried out new experiments through the combination of modern optimization and soft computing algorithms. Thus, one of the main challenges to overcome is related to the selection of the best set of input features for a feedforward neural network for earthwork hazard category (EHC) identification. We applied a genetic algorithm (GA) for this purpose. Another challenging task is related to the asymmetric distribution of the data (since typically good conditions are much more common than bad ones). To address this question, three training sampling approaches were explored: no resampling, the synthetic minority oversampling technique (SMOTE), and oversampling. Some relevant observations were taken from the optimization process, namely, the identification of which variables are more frequently selected for EHC identification. After finding the most efficient models, a detailed sensitivity analysis was applied over the selected models, allowing us to measure the relative importance of each attribute in EHC identification

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table
    corecore