795 research outputs found

    Common Codebook Millimeter Wave Beam Design: Designing Beams for Both Sounding and Communication with Uniform Planar Arrays

    Full text link
    Fifth generation (5G) wireless networks are expected to utilize wide bandwidths available at millimeter wave (mmWave) frequencies for enhancing system throughput. However, the unfavorable channel conditions of mmWave links, e.g., higher path loss and attenuation due to atmospheric gases or water vapor, hinder reliable communications. To compensate for these severe losses, it is essential to have a multitude of antennas to generate sharp and strong beams for directional transmission. In this paper, we consider mmWave systems using uniform planar array (UPA) antennas, which effectively place more antennas on a two-dimensional grid. A hybrid beamforming setup is also considered to generate beams by combining a multitude of antennas using only a few radio frequency chains. We focus on designing a set of transmit beamformers generating beams adapted to the directional characteristics of mmWave links assuming a UPA and hybrid beamforming. We first define ideal beam patterns for UPA structures. Each beamformer is constructed to minimize the mean squared error from the corresponding ideal beam pattern. Simulation results verify that the proposed codebooks enhance beamforming reliability and data rate in mmWave systems.Comment: 14 pages, 10 figure

    Joint Hybrid Precoder and Combiner Design for mmWave Spatial Multiplexing Transmission

    Full text link
    Millimeter-wave (mmWave) communications have been considered as a key technology for future 5G wireless networks because of the orders-of-magnitude wider bandwidth than current cellular bands. In this paper, we consider the problem of codebook-based joint analog-digital hybrid precoder and combiner design for spatial multiplexing transmission in a mmWave multiple-input multiple-output (MIMO) system. We propose to jointly select analog precoder and combiner pair for each data stream successively aiming at maximizing the channel gain while suppressing the interference between different data streams. After all analog precoder/combiner pairs have been determined, we can obtain the effective baseband channel. Then, the digital precoder and combiner are computed based on the obtained effective baseband channel to further mitigate the interference and maximize the sum-rate. Simulation results demonstrate that our proposed algorithm exhibits prominent advantages in combating interference between different data streams and offer satisfactory performance improvement compared to the existing codebook-based hybrid beamforming schemes
    corecore