5,997 research outputs found

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Automating Fine Concurrency Control in Object-Oriented Databases

    Get PDF
    Several propositions were done to provide adapted concurrency control to object-oriented databases. However, most of these proposals miss the fact that considering solely read and write access modes on instances may lead to less parallelism than in relational databases! This paper cope with that issue, and advantages are numerous: (1) commutativity of methods is determined a priori and automatically by the compiler, without measurable overhead, (2) run-time checking of commutativity is as efficient as for compatibility, (3) inverse operations need not be specified for recovery, (4) this scheme does not preclude more sophisticated approaches, and, last but not least, (5) relational and object-oriented concurrency control schemes with read and write access modes are subsumed under this proposition

    Compensation methods to support generic graph editing: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work, and workflow systems. However, compensation operations are often simply written as a^−1 in transaction model literature. This notation ignores any operation parameters, results, and side effects. A schema designer intending to use an advanced transaction model is expected (required) to write correct method code. However, in the days of cut-and-paste, this is much easier said than done. In this paper, we demonstrate the feasibility of using an off-the-shelf theorem prover (also called a proof assistant) to perform automated verification of compensation requirements for an OODB schema. We report on the results of a case study in verification for a particular advanced transaction model that supports cooperative applications. The case study is based on an OODB schema that provides generic graph editing functionality for the creation, insertion, and manipulation of nodes and links

    Management of concurrency in a reliable object-oriented computing system

    Get PDF
    PhD ThesisModern computing systems support concurrency as a means of increasing the performance of the system. However, the potential for increased performance is not without its problems. For example, lost updates and inconsistent retrieval are but two of the possible consequences of unconstrained concurrency. Many concurrency control techniques have been designed to combat these problems; this thesis considers the applicability of some of these techniques in the context of a reliable object-oriented system supporting atomic actions. The object-oriented programming paradigm is one approach to handling the inherent complexity of modern computer programs. By modeling entities from the real world as objects which have well-defined interfaces, the interactions in the system can be carefully controlled. By structuring sequences of such interactions as atomic actions, then the consistency of the system is assured. Objects are encapsulated entities such that their internal representation is not externally visible. This thesis postulates that this encapsulation should also include the capability for an object to be responsible for its own concurrency control. Given this latter assumption, this thesis explores the means by which the property of type-inheritance possessed by object-oriented languages can be exploited to allow programmers to explicitly control the level of concurrency an object supports. In particular, a object-oriented concurrency controller based upon the technique of two-phase locking is described and implemented using type-inheritance. The thesis also shows how this inheritance-based approach is highly flexible such that the basic concurrency control capabilities can be adopted unchanged or overridden with more type-specific concurrency control if requiredUK Science and Engineering Research Council, Serc/Alve

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Self-adjusting multi-granularity locking protocol for object-oriented databases

    Get PDF
    Object-oriented databases have the potential to be used for data-intensive, multi-user applications that are not well served by traditional applications. Despite the fact that there has been extensive research done for relational databases in the area of concurrency control; many of the approaches are not suitable for the complex data model of object-oriented databases. This thesis presents a self-adjusting multi-granularity locking protocol (SAML) which facilitates choosing an appropriate locking granule according to the requirements of the transactions and encompasses less overhead and provides better concurrency compared to some of the existing protocols. Though there has been another adaptive multi-granularity protocol called AMGL [1] which provides the same degree of concurrency as SAML: SAML has been proven to have significantly reduced the number of locks and hence the locking overhead compared to AMGL. Experimental results show that SAML performs the best when the workload is high in the system and transactions are long-lived

    Transaction and data models for design databases

    Get PDF
    The main issues that need to be resolved before applying transaction concepts to advanced applications such as CAD/CAM are a transaction model with a suitable control mechanism, and a new data model;A complex object is modeled as an hierarchy of interfaces and an implementation. This structuring facilitates storage of multiple object version and their subsequent reuse in design databases. Other concepts needed for data modeling in design databases are implementation and instantiation which are supported by our model. One of the main issues in design environment is change propagation. Two techniques--parametric instantiation and conditional instantiation--are provided that will alleviate the problems associated with change propagation;The design transactions are composed of subtransactions which are managed by the site where the project transactions are executed. While access to the design objects are controlled by the access protocol based on locking, they are not necessarily two-phased--only the access to the composite object hierarchy are serialized by following a tree protocol. The design database manages and controls the top-level project transactions. Hypothetical transaction, allows designers to explore alternate designs that may not be appropriate for future use. Because it is envisioned that most of the transactions in design environments will be transactions of this nature, support for the hypothetical transaction is provided with little overhead. A mechanism for upgrading a hypothetical transaction to a regular transaction is also developed;The project transaction can be decomposed into a hierarchy of subtransactions that model the behavior of design environments more closely. Independent commit transactions are introduced to reduce the cost of aborting long transactions; communicating interfaces between parent and child to capture the effect of multiple request-responses observed between users and application. Client-subcontractor relationship models the behavior of a user transaction that can invoke multiple applications to work on the same data set concurrently. The protocols needed for maintaining the database consistency are also presented along with the proof of correctness;The proposed transaction mechanisms and the data model will support design databases that are used to store structural data

    Concurrent rule execution in active databases

    Get PDF
    Cataloged from PDF version of article.An active DBMS is expected to support concurrent as well as sequential rule execution in an efficient manner. Nested transaction model is a suitable tool to implement rule execution as it can handle nested rule firing and concurrent rule execution well. In this paper, we describe a concurrent rule execution model based on parallel nested transactions. We discuss implementation details of how the flat transaction model of OpenOODB has been extended by using Solaris threads in order to SUppOrt COnCUrrent eXeCUtiOU of rUkS.

    Using Actors to Build a Parallel DBMS

    Get PDF
    In this paper, we present the design and the architecture of a parallel main memory database management system. We focus on concurrency control scheme and recovery. Our prototype is based on the concept of “database actors”, an object-oriented data model well suited for parallelmanipulations. The storage sub system is built upon distributed Ram-files using SDDS (Scalable Distributed Data Structures) techniques. A nested transaction model is proposed and used to handle concurrency access and recovery. We have also proposed novel approach, based on wait-die, to implement a distributed deadlock prevention technique for our model of nested transactions
    corecore