1,085 research outputs found

    Composite CDMA - A statistical mechanics analysis

    Get PDF
    Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission - submitted to J.Stat.Mec

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Fast Convergence and Reduced Complexity Receiver Design for LDS-OFDM System

    Get PDF
    Low density signature for OFDM (LDS-OFDM) is able to achieve satisfactory performance in overloaded conditions, but the existing LDS-OFDM has the drawback of slow convergence rate for multiuser detection (MUD) and high receiver complexity. To tackle these problems, we propose a serial schedule for the iterative MUD. By doing so, the convergence rate of MUD is accelerated and the detection iterations can be decreased. Furthermore, in order to exploit the similar sparse structure of LDS-OFDM and LDPC code, we utilize LDPC codes for LDS-OFDM system. Simulations show that compared with existing LDS-OFDM, the LDPC code improves the system performance

    An Efficient and Low Density Crossbar Switch Design for NoC

    Get PDF
    Code Division Multiple Access (CDMA) is a sort of multiplexing that facilitates various signals to occupy a single transmission channel. In this medium, sharing is enabled in the code space by assigning a limited number of N-chip length orthogonal spreading codes to the processing elements sharing interconnect. Serial and parallel overloaded CDMA interconnect (OCI) architecture variants are presented to adhere to different area, delay, and power requirements. Compared with the conventional CDMA crossbar, on a  Xilinx  Artix-7  AC701  FPGA  kit,  the  serial  OCI crossbar achieves 100% higher bandwidth, 31% less resource utilization, and 45% power saving, while the parallel OCI crossbar achieves N times higher  bandwidth  compared with the serial OCI crossbar at the expense of increased area  and power consumption. A 65-node OCI-based star NoC is implemented, evaluated, and compared with an equivalent space division multiple access based torus NoC for various synthetic traffic patterns. The evaluation results in terms of the resource utilization and throughput highlight the OCI as a promising technology to implement the physical layer of NoC routers

    Generalized Adaptive Network Coding Aided Successive Relaying Based Noncoherent Cooperation

    No full text
    A generalized adaptive network coding (GANC) scheme is conceived for a multi-user, multi-relay scenario, where the multiple users transmit independent information streams to a common destination with the aid of multiple relays. The proposed GANC scheme is developed from adaptive network coded cooperation (ANCC), which aims for a high flexibility in order to: 1) allow arbitrary channel coding schemes to serve as the cross-layer network coding regime; 2) provide any arbitrary trade-off between the throughput and reliability by adjusting the ratio of the source nodes and the cooperating relay nodes. Furthermore, we incorporate the proposed GANC scheme in a novel successive relaying aided network (SRAN) in order to recover the typical 50% half-duplex relaying-induced throughput loss. However, it is unrealistic to expect that in addition to carrying out all the relaying functions, the relays could additionally estimate the source-to-relay channels. Hence noncoherent detection is employed in order to obviate the power-hungry channel estimation. Finally, we intrinsically amalgamate our GANC scheme with the joint network-channel coding (JNCC) concept into a powerful three-stage concatenated architecture relying on iterative detection, which is specifically designed for the destination node (DN). The proposed scheme is also capable of adapting to rapidly time-varying network topologies, while relying on energy-efficient detection

    Multi-user receiver structures for direct sequence code division multiple access

    Get PDF

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    Code Multiplexed VLSI Test Architecture for SOC Testing

    Get PDF
    This work presents a code multiplexed test architecture for system-on-a-chip (SOC) testing utilizing simultaneous test data from test generators (TGs) transaction on common bus to the embedded core in the SOC. To improve the SOC testing performance without increasing the testing channel resources and complexity, this work presents an efficient test architecture that exploits parallelism in core-level testing, resulting in shorter testing time and higher concurrency on a shared test bus. The proposed code division multiple access (CDMA) enables multiple concurrent transactions on a shared bus. The CDMA utilizes n-bit orthogonal code for n-embedded cores, which exploits parallel testing with reduced number of test buses and complexity. The multiple access mechanism of the CDMA improves real-time communication between multiple embedded cores or semiconductor intellectual property (SIP) blocks on a shared bus. This technique is experimentally verified with Xilinx’s Virtex-5 XC5VLX50FF676 and Xilinx ISE 12.1 Software environment

    Data Chunking in Quasi-Synchronous DS-CDMA

    Get PDF
    DS-CDMA is a popular multiple access technique used in many mobile networks to efficiently share channel resources between users in a cell. Synchronization between users maximizes the user capacity of these systems. However, it is difficult to perfectly synchronize users in the reverse link due to the geographic diversity of mobile users in the cell. As a result, most commercial DS-CDMA networks utilize an asynchronous reverse link resulting in a reduced user capacity. A possible compromise to increase the user capacity in the reverse link is to implement a quasi-synchronous timing scheme, a timing scheme in which users are allowed to be slightly out of synchronization. This paper suggests a possible way to implement a quasi-synchronous DS-CDMA reverse link using the method of “data chunking”. The basic premise is derived by making a link between TDMA and synchronous DS-CDMA. By considering some basic TDMA limitations, a proposed “data chunked” quasi-synchronous DS-CDMA system is derived from a TDMA system. The effects of such a system are compared to those of a chip interleaved system. MATLAB simulations are performed to analyze the performance of the system in the presence of small synchronization errors between users. Implementation of guard bands is explored to further reduce errors due to imperfect synchronization between users
    corecore