1,796,447 research outputs found

    Grammar-based Representation and Identification of Dynamical Systems

    Get PDF
    In this paper we propose a novel approach to identify dynamical systems. The method estimates the model structure and the parameters of the model simultaneously, automating the critical decisions involved in identification such as model structure and complexity selection. In order to solve the combined model structure and model parameter estimation problem, a new representation of dynamical systems is proposed. The proposed representation is based on Tree Adjoining Grammar, a formalism that was developed from linguistic considerations. Using the proposed representation, the identification problem can be interpreted as a multi-objective optimization problem and we propose a Evolutionary Algorithm-based approach to solve the problem. A benchmark example is used to demonstrate the proposed approach. The results were found to be comparable to that obtained by state-of-the-art non-linear system identification methods, without making use of knowledge of the system description.Comment: Submitted to European Control Conference (ECC) 201

    Sensor placement for fault location identification in water networks: A minimum test cover approach

    Full text link
    This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to compute the solution to the MTC problem. In the second approach, we develop a new \textit{augmented greedy} algorithm for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed computational experiments for a number of real water distribution networks

    Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Existing approaches have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-identification problem, where a new camera may be temporarily inserted into an existing system to get additional information. To address such a novel and very practical problem, we propose an unsupervised adaptation scheme for re-identification models in a dynamic camera network. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with a newly introduced target camera, without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Extensive experiments on four benchmark datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art unsupervised learning based alternatives whilst being extremely efficient to compute.Comment: CVPR 2017 Spotligh

    On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification

    Full text link
    We present a new approach to convexification of the Tikhonov regularization using a continuation method strategy. We embed the original minimization problem into a one-parameter family of minimization problems. Both the penalty term and the minimizer of the Tikhonov functional become dependent on a continuation parameter. In this way we can independently treat two main roles of the regularization term, which are stabilization of the ill-posed problem and introduction of the a priori knowledge. For zero continuation parameter we solve a relaxed regularization problem, which stabilizes the ill-posed problem in a weaker sense. The problem is recast to the original minimization by the continuation method and so the a priori knowledge is enforced. We apply this approach in the context of topology-to-shape geometry identification, where it allows to avoid the convergence of gradient-based methods to a local minima. We present illustrative results for magnetic induction tomography which is an example of PDE constrained inverse problem

    Learning to rank in person re-identification with metric ensembles

    Full text link
    We propose an effective structured learning based approach to the problem of person re-identification which outperforms the current state-of-the-art on most benchmark data sets evaluated. Our framework is built on the basis of multiple low-level hand-crafted and high-level visual features. We then formulate two optimization algorithms, which directly optimize evaluation measures commonly used in person re-identification, also known as the Cumulative Matching Characteristic (CMC) curve. Our new approach is practical to many real-world surveillance applications as the re-identification performance can be concentrated in the range of most practical importance. The combination of these factors leads to a person re-identification system which outperforms most existing algorithms. More importantly, we advance state-of-the-art results on person re-identification by improving the rank-11 recognition rates from 40%40\% to 50%50\% on the iLIDS benchmark, 16%16\% to 18%18\% on the PRID2011 benchmark, 43%43\% to 46%46\% on the VIPeR benchmark, 34%34\% to 53%53\% on the CUHK01 benchmark and 21%21\% to 62%62\% on the CUHK03 benchmark.Comment: 10 page
    • …
    corecore