7,795 research outputs found

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    PRIVACY-PRESERVING DATA TRANSMISSION PROTOCOL FOR WIRELESS MEDICAL SENSOR DATA

    Get PDF
    Wireless Sensor Networks (WSN) has fascinated to great extent significance in the last decade. It opened a new series of applications such as monitoring including environmental monitoring large area, exploration of wildlife, and real-time patient medical data which is collected by wireless sensors. The WSN provides the options of flexibilities and costs saving for patients and healthcare enterprises. At the same time, there is a viable concern about the hospitalsā€™ ability to provide adequate care during emergency events. Tools that automate patient monitoring have likely to improve efficiency and quality of health care significantly. In hospitals, medical information sensors which monitor patients produce an increasingly large amount of real-time data. The delivery of this data through wireless networks in a hospital becomes a critical problem because the pathological information of an individual is highly sensitive. It must be kept private and secure. In this article, we propose a realistic approach to preventing the inside attack by ensuring secure data transmission. The main contribution of this article is securely distributing the patient data by implementing Privacy-Preserving Data Transmission Protocol and employing the Paillier and ElGamal cryptosystems to perform statistic analysis on the patient data without compromising the patientsā€™ privacy. We enhance this protocol to reduce the overhead by implementing secure data aggregation method

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Secure Hop-by-Hop Aggregation of End-to-End Concealed Data in Wireless Sensor Networks

    Full text link
    In-network data aggregation is an essential technique in mission critical wireless sensor networks (WSNs) for achieving effective transmission and hence better power conservation. Common security protocols for aggregated WSNs are either hop-by-hop or end-to-end, each of which has its own encryption schemes considering different security primitives. End-to-end encrypted data aggregation protocols introduce maximum data secrecy with in-efficient data aggregation and more vulnerability to active attacks, while hop-by-hop data aggregation protocols introduce maximum data integrity with efficient data aggregation and more vulnerability to passive attacks. In this paper, we propose a secure aggregation protocol for aggregated WSNs deployed in hostile environments in which dual attack modes are present. Our proposed protocol is a blend of flexible data aggregation as in hop-by-hop protocols and optimal data confidentiality as in end-to-end protocols. Our protocol introduces an efficient O(1) heuristic for checking data integrity along with cost-effective heuristic-based divide and conquer attestation process which is O(lnā”n)O(\ln{n}) in average -O(n) in the worst scenario- for further verification of aggregated results

    iPDA: An Integrity-Protecting Private Data Aggregation Scheme for Wireless Sensor Networks

    Get PDF
    Data aggregation is an efficient mechanism widely used in wireless sensor networks (WSN) to collect statistics about data of interests. However, the shared-medium nature of communication makes the WSNs are vulnerable to eavesdropping and packet tampering/injection by adversaries. Hence, how to protect data privacy and data integrity are two major challenges for data aggregation in wireless sensor networks. In this paper, we present iPDA??????an integrity-protecting private data aggregation scheme. In iPDA, data privacy is achieved through data slicing and assembling technique; and data integrity is achieved through redundancy by constructing disjoint aggregation paths/trees to collect data of interests. In iPDA, the data integrity-protection and data privacy-preservation mechanisms work synergistically. We evaluate the iPDA scheme in terms of the efficacy of privacy preservation, communication overhead, and data aggregation accuracy, comparing with a typical data aggregation scheme--- TAG, where no integrity protection and privacy preservation is provided. Both theoretical analysis and simulation results show that iPDA achieves the design goals while still maintains the efficiency of data aggregation
    • ā€¦
    corecore