16 research outputs found

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio

    The power of linear-time data reduction for matching.

    Get PDF
    Finding maximum-cardinality matchings in undirected graphs is arguably one of the most central graph primitives. For m-edge and n-vertex graphs, it is well-known to be solvable in O(m\sqrt{n}) time; however, for several applications this running time is still too slow. We investigate how linear-time (and almost linear-time) data reduction (used as preprocessing) can alleviate the situation. More specifically, we focus on linear-time kernelization. We start a deeper and systematic study both for general graphs and for bipartite graphs. Our data reduction algorithms easily comply (in form of preprocessing) with every solution strategy (exact, approximate, heuristic), thus making them attractive in various settings

    On the Power of Tree-Depth for Fully Polynomial FPT Algorithms

    Get PDF
    There are many classical problems in P whose time complexities have not been improved over the past decades. Recent studies of "Hardness in P" have revealed that, for several of such problems, the current fastest algorithm is the best possible under some complexity assumptions. To bypass this difficulty, the concept of "FPT inside P" has been introduced. For a problem with the current best time complexity O(n^c), the goal is to design an algorithm running in k^{O(1)}n^{c\u27} time for a parameter k and a constant c\u27<c. In this paper, we investigate the complexity of graph problems in P parameterized by tree-depth, a graph parameter related to tree-width. We show that a simple divide-and-conquer method can solve many graph problems, including Weighted Matching, Negative Cycle Detection, Minimum Weight Cycle, Replacement Paths, and 2-hop Cover, in O(td m) time or O(td (m+nlog n)) time, where td is the tree-depth of the input graph. Because any graph of tree-width tw has tree-depth at most (tw+1)log_2 n, our algorithms also run in O(tw mlog n) time or O(tw (m+nlog n)log n) time. These results match or improve the previous best algorithms parameterized by tree-width. Especially, we solve an open problem of fully polynomial FPT algorithm for Weighted Matching parameterized by tree-width posed by Fomin et al. (SODA 2017)

    On Adaptive Algorithms for Maximum Matching

    Get PDF
    In the fundamental Maximum Matching problem the task is to find a maximum cardinality set of pairwise disjoint edges in a given undirected graph. The fastest algorithm for this problem, due to Micali and Vazirani, runs in time O(sqrt{n}m) and stands unbeaten since 1980. It is complemented by faster, often linear-time, algorithms for various special graph classes. Moreover, there are fast parameterized algorithms, e.g., time O(km log n) relative to tree-width k, which outperform O(sqrt{n}m) when the parameter is sufficiently small. We show that the Micali-Vazirani algorithm, and in fact any algorithm following the phase framework of Hopcroft and Karp, is adaptive to beneficial input structure. We exhibit several graph classes for which such algorithms run in linear time O(n+m). More strongly, we show that they run in time O(sqrt{k}m) for graphs that are k vertex deletions away from any of several such classes, without explicitly computing an optimal or approximate deletion set; before, most such bounds were at least Omega(km). Thus, any phase-based matching algorithm with linear-time phases obliviously interpolates between linear time for k=O(1) and the worst case of O(sqrt{n}m) when k=Theta(n). We complement our findings by proving that the phase framework by itself still allows Omega(sqrt{n}) phases, and hence time Omega(sqrt{n}m), even on paths, cographs, and bipartite chain graphs

    Matching

    Get PDF
    corecore