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Abstract
There are many classical problems in P whose time complexities have not been improved over
the past decades. Recent studies of “Hardness in P” have revealed that, for several of such
problems, the current fastest algorithm is the best possible under some complexity assumptions.
To bypass this difficulty, the concept of “FPT inside P” has been introduced. For a problem with
the current best time complexity O(nc), the goal is to design an algorithm running in kO(1)nc

′

time for a parameter k and a constant c′ < c.
In this paper, we investigate the complexity of graph problems in P parameterized by tree-

depth, a graph parameter related to tree-width. We show that a simple divide-and-conquer
method can solve many graph problems, including Weighted Matching, Negative Cycle
Detection, Minimum Weight Cycle, Replacement Paths, and 2-hop Cover, in O(td·m)
time or O(td · (m + n logn)) time, where td is the tree-depth of the input graph. Because
any graph of tree-width tw has tree-depth at most (tw + 1) log2 n, our algorithms also run in
O(tw · m logn) time or O(tw · (m + n logn) logn) time. These results match or improve the
previous best algorithms parameterized by tree-width. Especially, we solve an open problem of
fully polynomial FPT algorithm for Weighted Matching parameterized by tree-width posed
by Fomin et al. (SODA 2017).
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1 Introduction

There are many classical problems in P whose time complexities have not been improved
over the past decades. For some of such problems, recent studies of “Hardness in P” have
provided evidence of why obtaining faster algorithms is difficult. For instance, Vassilevska
Williams and Williams [33] and Abboud, Grandoni and Vassilevska Williams [1] showed that
many problems including Minimum Weight Cycle, Replacement Paths, and Radius
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41:2 On the Power of Tree-Depth for Fully Polynomial FPT Algorithms

are equivalent to All Pair Shortest Paths (APSP) under subcubic reductions; that is,
if one of them admits a subcubic-time algorithm, then all of them do.

One of the approaches to bypass this difficulty is to analyze the running time by intro-
ducing another measure, called a parameter, in addition to the input size. In the theory of
parameterized complexity, a problem with a parameter k is called fixed parameter tractable
(FPT) if it can be solved in f(k) · |I|O(1) time for some function f(k) that does not depend
on the input size |I|. While the main aim of this theory is to provide fine-grained analysis
of NP-hard problems, it is also useful for problems in P. For instance, a simple dynamic
programming can solve Maximum Matching in O(3twm) time, where m is the number of
edges and tw is a famous graph parameter called tree-width which intuitively measures how
much a graph looks like a tree (see Section 2 for the definition). Therefore, it runs in linear
time for any graph of constant tree-width, which is faster than the current best O(

√
nm)

time for the general case [5, 31, 15].
When working on NP-hard problems, we can only expect superpolynomial (or usually

exponential) function f(k) in the running time of FPT algorithms. On the other hand,
for problems in P, kO(1)|I|O(1)-time FPT algorithms might be possible. Such algorithms
are called (fully) polynomial FPT algorithms, introduced by Giannopoulou, Mertzios and
Niedermeier [16]. For instance, Fomin, Lokshtanov, Pilipczuk, Saurabh and Wrochna [11]
obtained an O(tw4 · n log2 n)-time (randomized) algorithm for Maximum Matching. In
contrast to the O(3twm)-time dynamic programming, this algorithm is faster than the current
best general-case algorithm already for graphs of tw = O(n 1

8−ε). In general, for a problem
with the current best time complexity O(nc), the goal is to design an algorithm running in
O(kdnc′) time for some small constants d and c′ < c. Such an algorithm is faster than the
current best general-case algorithm already for inputs of k = O(n(c−c′)/d−ε). On the negative
side, Abboud, Vassilevska Williams and Wang [2] showed that Diameter and Radius do
not admit 2o(tw)n2−ε-time algorithms under some plausible assumptions. In this paper, we
give new or improved fully polynomial FPT algorithms for several classical graph problems.
Especially, we solve an open problem for Weighted Matching posed by Fomin et al. [11].

Our approach. Before describing our results, we first give a short review of existing work
on fully polynomial FPT algorithms parameterized by tree-width and explain our approach.
There are roughly three types of approaches in the literature. The first approach is to
use a polynomial-time dynamic programming on a tree-decomposition, which has been
mainly used for problems related to shortest paths [7, 27, 4, 32]. The second approach is
to use an O(tw3 · n)-time Gaussian elimination of matrices of small tree-width developed
by Fomin et al. [11]. The above-mentioned O(tw4 · n log2 n)-time algorithm for Maximum
Matching was obtained by this approach. The third approach is to apply a divide-and-
conquer method exploiting the existence of small balanced separators. This approach was
first used for planar graphs by Lipton and Tarjan [21]. Using the existence of O(

√
n)-size

balanced separators, they obtained an O(n1.5)-time algorithm for Maximum Matching and
an O(n1.5 logn)-time algorithm for Weighted Matching for planar graphs. For graphs of
bounded tree-width, Akiba, Iwata and Yoshida [3] obtained an O(tw · (m+ n logn) logn)-
time algorithm for 2-hop Cover, which is a problem of constructing a distance oracle, and
Fomin et al. [11] obtained an O(tw ·m logn)-time1 algorithm for Vertex-disjoint s − t

1 While the running time shown in [11] is O(tw2 ·n log n), we can easily see that it also runs in O(tw·m log n)
time. Because m = O(tw · n) holds for any graphs of tree-width tw, the latter is never worse than the
former. Note that tw · n in the running time of other algorithms cannot be replaced by m in general;
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Table 1 Comparison of previous results and our results. n and m denote the number of vertices
and edges, w denotes the width of the given tree-decomposition, and d denotes the depth of the
given elimination forest. The factor d in our results can be replaced by w · log n.

Problem Previous result Our result
Maximum Matching O(w4n log2 n) [11] O(dm)
Weighted Matching Open problem [11] O(d(m + n log n))
Negative Cycle Detection O(w2n) [27] O(d(m + n log n))
Minimum Weight Cycle — O(d(m + n log n))
Replacement Paths — O(d(m + n log n))
2-hop Cover O(w(m + n log n) log n) [3] O(d(m + n log n))

Paths. We obtain fully polynomial FPT algorithms for a wide range of problems by using
this approach. Our key observation is that, when using the divide-and-conquer approach,
another graph parameter called tree-depth is more powerful than the tree-width.

A graph G of tree-width tw admits a set S of tw + 1 vertices, called a balanced separator,
such that each connected component of G− S contains at most n

2 vertices. In both of the
above-mentioned divide-and-conquer algorithms for graphs of bounded tree-width, after
the algorithm recursively computes a solution for each connected component of G − S, it
constructs a solution for G in O(tw · (m + n logn)) time or O(tw ·m) time, respectively.
Because the depth of the recursive calls is bounded by O(logn), the total running time
becomes O(tw · (m+ n logn) logn) or O(tw ·m logn), respectively.

Here, we observe that, by using tree-depth, this kind of divide-and-conquer algorithm
can be simplified and the analysis can be improved. Tree-depth is a graph parameter which
has been studied under various names [29, 20, 6, 25]. A graph has tree-depth td if and only
if there exists an elimination forest of depth td. See Section 2 for the precise definition of
the tree-depth and the elimination forest. An important property of tree-depth is that any
connected graph G of tree-depth td can be divided into connected components of tree-depth
at most td − 1 by removing a single vertex r. Therefore, if there exists an O(m)-time or
O(m+n logn)-time incremental algorithm, which constructs a solution for G from a solution
for G−r, we can solve the problem in O(td ·m) time or O(td ·(m+n logn)) time, respectively.
Now, the only thing to do is to develop such an incremental algorithm for each problem. We
present a detailed discussion of this framework in Section 3. Because any graph of tree-width
tw has tree-depth at most (tw + 1) log2 n [24], the running time can also be bounded by
O(tw ·m logn) or O(tw · (m + n logn) logn). Therefore, our analysis using tree-depth is
never worse than the existing results directly using tree-width. On the other hand, there are
infinitely many graphs whose tree-depth has asymptotically the same bound as tree-width.
For instance, if every N -vertex subgraph admits a balanced separator of size O(Nα) for some
constant α > 0 (e.g., α = 1

2 for H-minor free graphs), both tree-width and tree-depth are
O(nα). Hence, for such graphs, the time complexity using tree-depth is truly better than
that using tree-width.

Our results. Table 1 shows our results and the comparison to the existing results on fully
polynomial FPT algorithms parameterized by tree-width. The formal definition of each
problem is given in Section 4. Because obtaining an elimination forest of the lowest depth

e.g., we cannot bound the running time of the Gaussian elimination by O(tw2 ·m), where m is the
number of non-zero elements.

STACS 2018
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is NP-hard, we assume that an elimination forest is given as an input and the parameter
for our results is the depth d of the given elimination forest. Similarly, for the existing
results, the parameter is the width w of the given tree-decomposition. Note that, because a
tree-decomposition of width w can be converted into an elimination forest of depth O(w ·logn)
in linear time [29], we can always replace the factor d in our running time by w · logn. This
also means that we can use arbitrary approximation algorithms or heuristics for constructing
tree-decompositions for obtaining an elimination forest.

The first polynomial-time algorithms for Maximum Matching and Weighted Match-
ing were obtained by Edmonds [10], and the current fastest algorithms run in O(

√
nm)

time [5, 31, 15] and O(n(m+ n logn)) time [5], respectively. Fomin et al. [11] obtained the
O(w4n log2 n)-time randomized algorithm for Maximum Matching by using an algebraic
method and the fast computation of Gaussian elimination. They left as an open problem
whether a similar running time is possible for Weighted Matching. The general-case
algorithms for these problems compute a maximum matching by iteratively finding an aug-
menting path, and therefore, they are already incremental. Thus, we can easily obtain an
O(dm)-time algorithm for Maximum Matching and an O(d(m+ n logn))-time algorithm
for Weighted Matching. Note that the divide-and-conquer algorithms for planar matching
by Lipton and Tarjan [21] also use this augmenting-path approach, and our result can be
seen as extension to bounded tree-depth graphs. Our algorithm for Maximum Matching
is always faster than the one by Fomin et al. because we have m = O(kn) for any graph
of tree-width or tree-depth k and is faster than the general-case algorithm already when
d = O(n 1

2−ε). Our algorithm for Weighted Matching settles the open problem and is
faster than the general-case algorithm already when d = O(n1−ε).

The current fastest algorithm for Negative Cycle Detection is the classical O(nm)-
time Bellman-Ford algorithm. Planken et al. [27] obtained an O(w2n)-time algorithm by using
a Floyd-Warshall-like dynamic programming. In this paper, we give an O(d(m+n logn))-time
algorithm. While the algorithm by Planken et al. is faster than the general-case algorithm only
when w = O(m 1

2−ε), our algorithm achieves a faster running time already when d = O(n1−ε).

Both Minimum Weight Cycle (or Girth) and Replacement Paths are subcubic-
equivalent to APSP [33]. A naive algorithm can solve both problems in O(n3) time or O(n(m+
n logn)) time. For Minimum Weight Cycle of directed graphs, an improved O(nm)-time
algorithm was recently obtained by Orlin and Sedeño-Noda [26]. For Replacement Paths,
Malik et al. [22] obtained an O(m+n logn)-time algorithm for undirected graphs, and Roditty
and Zwick [28] obtained an O(

√
nm·polylogn)-time algorithm for unweighted graphs. For the

general case, Gotthilf and Lewenstein [17] obtained an O(n(m+ n log logn))-time algorithm,
and there exists an Ω(

√
nm)-time lower bound in the path-comparison model [19] (whenever

m = O(n
√
n)) [18]. In this paper, we give an O(d(m+ n logn))-time algorithm for each of

these problems, which is faster than the general-case algorithm already when d = O(n1−ε).
This result shows the following contrast to the known result of “Hardness in P”: Radius
is also subcubic-equivalent to APSP [1] but it cannot be solved in a similar running time
under some plausible assumptions [2].

2-hop cover [8] is a data structure for answering distance queries in an efficient manner.
Akiba et al. [3] obtained an O(w(m + n logn) logn)-time algorithm for constructing a 2-
hop cover answering each distance query in O(w logn) time. In this paper, we give an
O(d(m + n logn))-time algorithm for constructing a 2-hop cover answering each distance
query in O(d) time.
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Related work. Coudert, Ducoffe and Popa [9] have developed fully polynomial FPT al-
gorithms using several other graph parameters including clique-width. In contrast to the
tree-depth, their parameters are not polynomially bounded by tree-width, and therefore,
their results do not imply fully polynomial FPT algorithms parameterized by tree-width.
Mertzios, Nichterlein and Niedermeier [23] have obtained an O(m+ k1.5)-time algorithm for
Maximum Matching parameterized by feedback edge number k (= m− n+ 1 when the
graph is connected) by giving a linear-time kernel.

2 Preliminaries

Let G = (V,E) be a directed or undirected graph, where V is a set of vertices of G and E
is a set of edges of G. When the graph is clear from the context, we use n to denote the
number of vertices and m to denote the number of edges. All the graphs in this paper are
simple (i.e., they have no multiple edges nor self-loops). Let S ⊆ V be a subset of vertices.
We denote by E[S] the set of edges whose endpoints are both in S and denote by G[S] the
subgraph induced by S (i.e., G[S] = (S,E[S])).

A tree decomposition of a graph G = (V,E) is a pair (T,B) of a tree T = (X,F ) and a
collection of bags {Bx ⊆ V | x ∈ X} satisfying the following two conditions.

For each edge uv ∈ E, there exists some x ∈ X such that {u, v} ⊆ Bx.
For each vertex v ∈ V , the set {x ∈ X | v ∈ Bx} induces a connected subtree in T .

The width of (T,B) is the maximum of |Bx|−1 and the tree-width tw(G) of G is the minimum
width among all possible tree decompositions.

An elimination forest T of a graph G = (V,E) is a rooted forest on the same vertex set
V such that, for every edge uv ∈ E, one of u and v is an ancestor of the other. The depth of
T is the maximum number of vertices on a path from a root to a leaf in T . The tree-depth
td(G) of a graph G is the minimum depth among all possible elimination forests. Tree-width
and tree-depth are strongly related as the following lemma shows.

I Lemma 1 ([24, 29]). For any graph G, the following holds.

tw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) log2 n.

Moreover, given a tree decomposition of width k, we can construct an elimination forest of
depth O(k logn) in linear time.

3 Divide-and-conquer framework

In this section, we propose a divide-and-conquer framework that can be applicable to a wide
range of problems parameterized by tree-depth.

I Theorem 2. Let G = (V,E) be a graph and let f be a function defined on subsets of V .
Suppose that f(∅) can be computed in constant time and we have the following two algorithms
Increment and Union with time complexity T (n,m)(= Ω(n+m)).

Increment(X, f(X), x) 7→ f(X∪{x}). Given a set X ⊆ V , its value f(X), and a vertex
x 6∈ X, this algorithm computes the value f(X ∪ {x}) in T (|X ∪ {x}|, |E[X ∪ {x}]|) time.
Union((X1, f(X1)), . . . , (Xc, f(Xc))) 7→ f(

⋃
iXi). Given disjoint sets X1, . . . , Xc ⊆ V

such that G has no edges between Xi and Xj for any i 6= j, and their values f(X1), . . .,
f(Xc), this algorithm computes the value f(

⋃
iXi) in T (|

⋃
iXi|, |E[

⋃
iX]|) time.

Then, for a given elimination forest of G of depth k, we can compute the value f(V ) in
O(k · T (n,m)) time.

STACS 2018
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Algorithm 1 Algorithm for computing f(V ).
1: procedure Compute(S, TS) 7→ f(S) . TS is an elimination forest of G[S].
2: if S = ∅ then return f(∅)
3: T1, . . . , Tc ← the connected trees of TS

4: X1, . . . , Xc ← the sets of vertices of T1, . . . , Tc

5: for i ∈ {1, . . . , c} do
6: xi ← the root of Ti

7: fi ← Increment(Xi \ {xi}, Compute(Xi \ {xi}, Ti − xi), xi)
8: return Union((X1, f1), . . . , (Xc, fc))

Proof. Algorithm 1 describes our divide-and-conquer algorithm. We prove that for any set
S and any elimination forest TS of G[S] of depth kS , Compute(S, TS) correctly computes
the value f(S) in (2kS + 1) · T (|S|, |E[S]|) time by induction on the size of S.

The claim trivially holds when S = ∅. For a set S 6= ∅, let T1, . . . , Tc be the connected
trees of TS (c = 1 if TS is connected). For each i, let Xi be the set of vertices of Ti. From the
definition of the elimination forest, G has no edges between Xi and Xj for any i 6= j. For each
i, we compute the value f(Xi) as follows. Let xi be the root of Ti. By removing xi from Ti, we
obtain an elimination forest of G[Xi\{xi}] of depth at most kS−1. Therefore, by the induction
hypothesis, we can correctly compute the value f(Xi \ {xi}) in (2kS − 1) · T (|Xi|, |E[Xi]|)
time. Then, by applying Increment(Xi \ {xi}, f(Xi \ {xi}), xi), we obtain the value f(Xi)
in 2kS · T (|Xi|, |E[Xi]|) time. Because |S| =

∑
i |Xi| and |E[S]| =

∑
i |E[Xi]| hold, the total

running time of these computations is 2kS ·
∑
i T (|Xi|, |E[Xi]|) ≤ 2kS ·T (|S|, |E[S]|). Finally,

by applying the algorithm Union, we obtain the value f(S) in (2kS + 1) · T (|S|, |E[S]|)
time. J

Note that the algorithm Union is trivial in most applications. We have only one non-
trivial case in Section 4.5 in this paper. From the relation between tree-depth and tree-width
(Lemma 1), we obtain the following corollary.

I Corollary 3. Under the same assumption as in Theorem 2, for a given tree decomposition
of G of width k, we can compute the value f(V ) in O(k · T (n,m) logn) time.

4 Applications

4.1 Maximum matching
For an undirected graph G = (V,E), a matching M of G is a subset of E such that no edges
in M share a vertex. In this section, we prove the following theorem.

I Theorem 4. Given an undirected graph and its elimination forest of depth k, we can
compute a maximum-size matching in O(km) time.

As mentioned in the introduction, we use the augmenting-path approach, which is also
used for planar matching [21]. Let M be a matching. A vertex not incident to M is called
exposed. AnM -alternating path is a (simple) path whose edges are alternately out of and inM .
An M -alternating path connecting two different exposed vertices is called an M -augmenting
path. If there exists an M -augmenting path P , by taking the symmetric difference M∆E(P ),
where E(P ) is the set of edges in P , we can construct a matching of size |M |+1. In fact, M is
the maximum-size matching if and only if there exist no M -augmenting paths. Edmonds [10]
developed the first polynomial-time algorithm for computing an M -augmenting path by
introducing the notion of blossom, and an O(m)-time algorithm was given by Gabow and
Tarjan [14].
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I Lemma 5 ([14]). Given an undirected graph and its matching M , we can either compute a
matching of size |M |+ 1 or correctly conclude that M is a maximum-size matching in O(m)
time.

For S ⊆ V , we define f(S) as a function that returns a maximum-size matching of G[S]. We
now give Increment and Union.

Increment(X, f(X), x). Because the size of the maximum matching of G[X ∪ {x}] is at
most the size of the maximum matching of G[X] plus one, we can compute a maximum
matching of G[X ∪ {x}] in O(|E[X ∪ {x}]|) time by a single application of Lemma 5.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no edges between Xi and Xj

for any i 6= j, we can construct a maximum matching of G[
⋃
iXi] just by taking the union

of f(Xi).

Proof of Theorem 4. The algorithm Increment(X, f(X), x) correctly computes f(X∪{x})
in O(|E[X ∪ {x}]|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))) correctly
computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute a

maximum-size matching of G in O(km) time. J

4.2 Weighted matching
Let G = (V,E) be an undirected graph with an edge-weight function w : E → R. A weight
of a matching M , denoted by w(M), is simply defined as the total weight of edges in M . A
matching M of G is called perfect if G has no exposed vertices (or equivalently |M | = n

2 ). A
perfect matching is called a maximum-weight perfect matching if it has the maximum weight
among all perfect matchings of G. We can easily see that other variants of weighted matching
problems can be reduced to the problem of finding a maximum-weight perfect matching even
when parameterized by tree-depth. In this section, we prove the following theorem.

I Theorem 6. Given an edge-weighted undirected graph admitting at least one perfect
matching and its elimination forest of depth k, we can compute a maximum-weight perfect
matching in O(k(m+ n logn)) time.

In our algorithm, we use an O(n(m+n logn))-time primal-dual algorithm by Gabow [12].
In this primal-dual algorithm, we keep a pair of a matching M and dual variables (Ω, y, z),
where Ω is a laminar2 collection of odd-size subsets of V and y and z are functions y : V → R
and z : Ω→ R≥0, satisfying the following conditions:

ŷz(uv) := y(u) + y(v) +
∑

B∈Ω:u,v∈B
z(B) ≥ w(uv) for every uv ∈ E, (1)

ŷz(uv) = w(uv) for every uv ∈M, (2)

|{uv ∈M | u, v ∈ B}| =
⌊
|B|
2

⌋
for every B ∈ Ω. (3)

From the duality theory (see e.g. [13]), a perfect matching M is a maximum-weight perfect
matching if and only if there exist dual variables (Ω, y, z) satisfying the above conditions.
Gabow [12] obtained the O(n(m + n logn))-time algorithm by iteratively applying the
following lemma.

2 A collection Ω of subsets of a ground set V is called laminar if for any X, Y ∈ Ω, one of X ∩ Y = ∅,
X ⊆ Y , or X ⊆ Y holds. When Ω is laminar, we have |Ω| = O(|V |).

STACS 2018
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I Lemma 7 ([12]). Given an edge-weighted undirected graph and a pair of a matching M
and dual variables (Ω, y, z) satisfying the conditions (1)–(3), we can either compute a pair of
a matching M ′ of cardinality |M |+ 1 and dual variables (Ω′, y′, z′) satisfying the conditions
(1)–(3) or correctly conclude that M is a maximum-size matching3 in O(m+ n logn) time.

For S ⊆ V , we define f(S) as a function that returns a pair of a maximum-size matching
MS of G[S] and dual variables (ΩS , yS , zS) satisfying the conditions (1)–(3). We now give
Increment and Union.

Increment(X, f(X), x). Let W be a value satisfying W + yX(v) ≥ w(xv) for every
xv ∈ E[X ∪{x}]. Let y : X ∪{x} → R be a function defined as y(x) := W and y(v) := yX(v)
for v ∈ X. In the subgraph G[X ∪ {x}], a pair of the matching MX and dual variables
(ΩX , y, zX) satisfies the conditions (1)–(3). Therefore, we can apply Lemma 7. If MX is
a maximum-size matching of G[X ∪ {x}], we return MX and (ΩX , y, zX). Otherwise, we
obtain a matching M ′ of size |MX |+ 1 and dual variables (Ω′, y′, z′) satisfying the conditions
(1)–(3). Because the cardinality of maximum-size matching of G[X ∪ {x}] is at most the
cardinality of maximum-size matching of G[X] plus one, the obtained M ′ is a maximum-size
matching of G[X ∪ {x}]. Therefore, we can return M ′ and (Ω′, y′, z′).

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no edges between Xi and Xj

for any i 6= j, we can simply return a pair of a maximum-size matching obtained by taking
the union

⋃
iMXi

and dual variables (Ω, y, z) such that Ω :=
⋃
i ΩXi

, y(v) := yXi
(v) for

v ∈ Xi, and z(B) = zXi(B) for B ∈ ΩXi .

Proof of Theorem 6. The algorithm Increment(X, f(X), x) runs in O(|E[X ∪ {x}]| +
|X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))) runs in O(|

⋃
Xi|)

time. Therefore, from Theorem 2, we can compute f(V ) in O(k(m+ n logn)) time. From
the duality theory, the perfect matching obtained by computing f(V ) is a maximum-weight
perfect matching of G. J

4.3 Negative cycle detection and potentials
Let G = (V,E) be a directed graph with an edge-weight function w : E → R. For a function
p : V → R, we define an edge-weight function wp as wp(uv) := w(uv) + p(u)− p(v). If wp
becomes non-negative for all edges, p is called a potential on G.

I Lemma 8 ([30]). There exists a potential on G if and only if G has no negative cycles.

In this section, we prove the following theorem.

I Theorem 9. Given an edge-weighted directed graph and its elimination forest of depth k,
we can compute either a potential or a negative cycle in O(k(m+ n logn)) time.

Suppose that we have a potential p. Because wp is non-negative, we can compute a shortest-
path tree rooted at a given vertex s under wp in O(m + n logn) time with Dijkstra’s
algorithm. For any s − t path, its length under wp is exactly the length under w plus a
constant p(s)− p(t). Therefore, the obtained tree is also a shortest-path tree under w. Thus,
we obtain the following corollary.

3 Note that when M is not a perfect matching, this does not imply that M has the maximum weight
among all the maximum-size matchings.
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I Corollary 10. Given an edge-weighted directed graph without negative cycles, a vertex s,
and its elimination forest of depth k, we can compute a shortest-path tree rooted at s in
O(k(m+ n logn)) time.

For S ⊆ V , we define f(S) as a function that returns either a potential pS : S → R on
G[S] or a negative cycle contained in G[S]. We now give Increment and Union.

Increment(X, f(X), x). If f(X) is a negative cycle, we return it. Otherwise, let G′ =
(X ∪{x}, E′) be the graph obtained from G[X ∪{x}] by removing all the edges incoming to x.
Let W be a value satisfying w(xv) +W − pX(v) ≥ 0 for every xv ∈ E′. Let p′ : X ∪{x} → R
be a function defined as p′(x) := W and p′(v) := pX(v) for v ∈ X. Because x has no
incoming edges in G′, p′ is a potential on G′. Therefore, we can compute a shortest-path
tree rooted at x under wp′ in O(|E[X]|+ |X| log |X|) time with Dijkstra’s algorithm. Let
R be the set of vertices reachable from x in G′ and let d : R → R be the shortest-path
distance from x under wp′ . If there exists an edge vx ∈ E[X ∪ {x}] such that v ∈ R and
d(v) + wp′(vx) < 0, G[X ∪ {x}] contains a negative cycle starting from x, going to v along
the shortest-path tree, and coming back to x via the edge vx. Otherwise, let D be a value
satisfying wp′(uv) + D − d(v) ≥ 0 for every uv ∈ E[X ∪ {x}] with u ∈ X \ R and v ∈ R.
Then, we return a function p : X ∪ {x} → R defined as p(v) := p′(v) + d(v) if v ∈ R and
p(v) := p′(v) +D if v ∈ X \R.

I Claim 1. p is a potential on G[X ∪ {x}].

Proof. For every edge uv ∈ E[X ∪ {x}], we have

wp(uv) =


wp′(uv) + d(u)− d(v) ≥ 0 if u, v ∈ R,
wp′(uv) +D − d(v) ≥ 0 if u ∈ X \R, v ∈ R,
wp′(uv) +D −D ≥ 0 if u ∈ X \R, v ∈ X \R.

Note that there are no edges from R to X \R. J

Union((X1, f(X1)), . . . , (Xc, f(Xc))). If at least one of f(Xi) is a negative cycle, we
return it. Otherwise, we return a potential p defined as p(v) := pXi

(v) for v ∈ Xi.

Proof of Theorem 9. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc)))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Thus, from Theorem 2, we can compute

f(V ), i.e., either a potential on G or a negative cycle contained in G, in O(k(m+ n logn))
time. J

4.4 Minimum weight cycle
In this section, we prove the following theorem.

I Theorem 11. Given a non-negative edge-weighted undirected or directed graph and its
elimination forest of depth k, we can compute a minimum-weight cycle in O(k(m+ n logn))
time.

Note that when the graph is undirected, a closed walk of length two using the same edge
twice is not considered as a cycle. Therefore, we cannot simply reduce the undirected version
into the directed version by replacing each undirected edge by two directed edges of both
directions.
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Let G = (V,E) be the input graph with an edge-weight function w : E → R≥0. For
S ⊆ V , we define f(S) as a function that returns a minimum-weight cycle of G[S]. We
describe Increment and Union below.

Increment(X, f(X), x). Because we have a minimum-weight cycle f(X) of G[X], we only
need to find a minimum-weight cycle passing through x. First, we construct a shortest-path
tree of G[X ∪ {x}] rooted at x and let d : X ∪ {x} → R be the shortest-path distance.

When the graph is undirected, we find an edge uv ∈ E[X ∪ {x}] not contained in the
shortest-path tree minimizing d(u) + w(uv) + d(v). If this weight is at least the weight of
f(X), we return f(X). Otherwise, we return the cycle starting from x, going to u along
the shortest-path tree, jumping to v through the edge uv, and coming back to x along the
shortest-path tree. Note that this always forms a cycle because otherwise, it induces a cycle
contained in G[X] that has a smaller weight than f(X), which is a contradiction.

We can prove the correctness of this algorithm as follows. Let W be the weight of
the cycle obtained by the algorithm and let C be a cycle passing through x. Let v0 =
x, v1, . . . , v`−1, v` = x the vertices on C in order. Because a tree contains no cycles, there
exists an edge vivi+1 not contained in the shortest-path tree. Therefore, the weight of C is∑i−1
j=0 w(vjvj+1) + w(vivi+1) +

∑`−1
j=i+1 w(vjvj+1) ≥ d(vi) + w(vivi+1) + d(vi+1) ≥W .

When the graph is directed, we find an edge ux ∈ E[X ∪ {x}] with the minimum
d(u) + w(ux). If this weight is at least the weight of f(X), we return f(X). Otherwise, we
return the cycle starting from x, going to u along the shortest-path tree, and coming back to
x through the edge ux.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). We return a cycle of the minimum weight among
f(X1), . . . , f(Xc).

Proof of Theorem 11. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute

a minimum-weight cycle in O(k(m+ n logn)) time. J

4.5 Replacement paths
Fix two vertices s and t. For an edge-weighed directed graph G = (V,E) and an edge e ∈ E,
we denote the length of the shortest s− t path avoiding e by rG(e). In this section, we prove
the following theorem.

I Theorem 12. Given an edge-weighted directed graph G = (V,E), a shortest s − t path
P , and its elimination forest of depth k, we can compute rG(e) for all edges e on P in
O(k(m+ n logn)) time.

Let v0(= s), v1, . . . , v`−1, v`(= t) be the vertices on the given shortest s − t path P in
order. For i ∈ {0, . . . , `}, we denote the length of the prefix v0v1 . . . vi by pref(vi) and the
length of the suffix vivi+1 . . . v` by suf(vi). These can be precomputed in linear time.

For S ⊆ V , we define G[S] ∪ P as a graph consisting of vertices S ∪ {v0, . . . , v`} and
edges E[S] ∪ {v0v1, . . . , v`−1v`}, and define G[S] \ P as a graph consisting of vertices S and
edges E[S] \ {v0v1, . . . , v`−1v`}. We denote the shortest-path length from u to v in G[S] \ P
by dS(u, v). For convenience, we define dS(u, v) = ∞ when u 6∈ S or v 6∈ S. We use the
following lemma.
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I Lemma 13. For any S ⊆ V and any i ∈ {0, . . . , `− 1}, rG[S]∪P (vivi+1) is the minimum
of pref(va) + dS(va, vb) + suf(vb) for a ≤ i < b.

Proof. Any s− t path avoiding vivi+1 in G[S] ∪ P can be written as, for some a ≤ i < b, a
concatenation of s− va path Q1, va − vb path Q2 that is contained in G[S] \ P , and vb − t
path Q3. Because P is a shortest s− t path in G, we can replace Q1 by the prefix v0 . . . va,
Q2 by the shortest va − vb path in G[S] \P , and Q3 by the suffix vb . . . v` without increasing
the length. Therefore, the lemma holds. J

We want to define f(S) as a function that returns a list of rG[S]∪P (vivi+1) for all
i ∈ {0, . . . , `− 1}; however, we cannot do so because the length of this list is not bounded
by |S|. Instead, we define f(S) as a function that returns a list of rG[S]∪P (vivi+1) for all i
with vi ∈ S. This succinct representation has enough information because, for any vi 6∈ S,
we have rG[S]∪P (vivi+1) = rG[S]∪P (vi−1vi) (or ∞ when i = 0). We describe Increment and
Union below.

Increment(X, f(X), x). By running Dijkstra’s algorithm twice, we compute dX∪{x}(x, v)
and dX∪{x}(v, x) for all v ∈ X ∪ {x} in O(|E[X]| + |X| log |X|) time. For vi ∈ X ∪ {x},
we define Li := mina≤i,va∈X∪{x}(pref(va) + d(va, x)) and Ri := minb>i,vb∈X∪{x}(d(x, vb) +
suf(vb)). By a standard dynamic programming, we can compute Li and Ri for all i with
vi ∈ X ∪ {x} in O(|X|) time.

From Lemma 13, rG[X∪{x}]∪P (vivi+1) = pref(va) + dX∪{x}(va, vb) + suf(vb) holds for
some a ≤ i < b. If dX∪{x}(va, vb) = dX(va, vb) holds, we have rG[X∪{x}]∪P (vivi+1) =
rG[X]∪P (vivi+1), and otherwise, we have dX∪{x}(va, vb) = dX∪{x}(va, x) + dX∪{x}(x, vb).
Therefore, we can compute rG[X∪{x}]∪P (vivi+1) by taking the minimum of rG[X]∪P (vivi+1)
and mina≤i<b(pref(va) + d(va, x) + d(x, vb) + suf(vb)) = Li +Ri.

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Let X :=
⋃
iXi. Because there exist no edges

between Xi and Xj for any i 6= j, we have dX(u, v) = mini dXi
(u, v) for any u, v ∈ X.

Therefore, from Lemma 13, we have rG[X]∪P (vivi+1) = minj rG[Xj ]∪P (vivi+1). For efficiently
computing rG[X]∪P (vivi+1) for all i with vi ∈ X, we do as follows in increasing order of i.

For each Xj , we maintain a value rj so that rj = rG[Xj ]∪P (vivi+1) always holds. Initially,
these values are set to ∞. We use a heap for computing minj rj and updating rj in O(log c)
time. For processing i, we first update rj ← rG[Xj ]∪P (vivi+1) for the set Xj containing vi. We
do not need to update rj′ for any other set Xj′ because rG[Xj′ ]∪P (vivi+1) = rG[Xj′ ]∪P (vi−1vi)
holds. Then, we compute rG[X]∪P (vivi+1) = minj rj .

Proof of Theorem 12. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc)))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi| log c) = O(|

⋃
iXi| log |

⋃
iXi|) time. Therefore,

from Theorem 2, we can compute f(V ), i.e., rG∪P (e) = rG(e) for all edges e on P , in
O(k(m+ n logn)) time. J

4.6 2-hop cover
Let G = (V,E) be a directed graph with an edge-weight function w : E → R≥0. A 2-hop
cover of G is the following data structure (L+, L−) for efficiently answering distance queries.
For each vertex u ∈ V , we assign a set L+(u) of pairs (v, d+

uv) ∈ V ×R≥0 and a set L−(u) of
pairs (v, d−vu) ∈ V ×R≥0. We require that, for every pair of vertices s, t ∈ V , the shortest-path
distance from s to t is exactly the minimum of d+

sh + d−ht among all pairs (h, d+
sh) ∈ L+(s)
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and (h, d−ht) ∈ L−(t). The size of the 2-hop cover is defined as
∑
u∈V |L+(u)| + |L−(u)|,

and the maximum label size is defined as maxu∈V |L+(u)|+ |L−(u)|. Using a 2-hop cover of
maximum label size T , we can answer a distance query in O(T ) time. In this section, we
prove the following theorem.

I Theorem 14. Given a non-negative edge-weighted directed graph and its elimination forest
of depth k, we can construct a 2-hop cover of maximum label size 2k in O(k(m+ n logn))
time.

For S ⊆ V , we define f(S) as a function that returns a 2-hop cover of G[S]. We denote
the shortest-path distance from s to t in G[S] by dS(s, t). We denote the result of the distance
query from s to t for f(S) by qS(s, t). We now describe Increment and Union.

Increment(X, f(X), x). Let (L+, L−) be the 2-hop cover of G[X]. By running Dijkstra’s
algorithm twice, we compute the shortest-path distances from x and to x in G[X ∪ {x}].
Then, for each u ∈ X ∪{x}, we insert (x, dX∪{x}(u, x)) into L+(u) and (x, dX∪{x}(x, u)) into
L−(u). Finally, we return the updated (L+, L−) as f(X ∪ {x}).

I Claim 2. f(X ∪ {x}) is a 2-hop cover of G[X ∪ {x}].

Proof. It suffices to show that qX∪{x}(s, t) = dX∪{x}(s, t) holds for every s, t ∈ X∪{x}. The
claim clearly holds when s = x or t = x. For s, t ∈ X, let δ := dX∪{x}(s, x) + dX∪{x}(x, t).
Then, we have dX∪{x}(s, t) = min(dX(s, t), δ). From the construction of f(X ∪{x}), we have
qX∪{x} = min(qX(s, t), δ) = min(dX(s, t), δ). Therefore, the claim holds. J

Union((X1, f(X1)), . . . , (Xc, f(Xc))). Because there exist no paths connecting Xi and
Xj for any i 6= j, we can construct a 2-hop cover of G[

⋃
iXi] by simply concatenating the

2-hop covers f(X1), . . . , f(Xc).

Proof of Theorem 14. The algorithm Increment(X, f(X), x) correctly computes f(X ∪
{x}) in O(|E[X]|+ |X| log |X|) time and the algorithm Union((X1, f(X1)), . . . , (Xc, f(Xc))
correctly computes f(

⋃
iXi) in O(|

⋃
iXi|) time. Therefore, from Theorem 2, we can compute

a 2-hop cover in O(k(m + n logn)) time. Let (L+, L−) be the 2-hop cover obtained by
computing f(V ). For each element (u, d+

uv) ∈ L+(u) or (u, d−vu) ∈ L−(u), v is located on the
path from u to the root in the elimination forest. Therefore, we have |L+(u)|+ |L−(u)| ≤ 2k
for every vertex u ∈ V . J

5 Open problems

Is it possible to obtain a twO(1)m polylog(n)-time algorithm for the edge-disjoint maximum
s − t flow problem? Because it looks difficult to obtain a maximum flow for G from a
maximum flow for G − v in linear time, it will be difficult to apply our approach to this
problem. Another open question is whether the running time for (unweighted) Maximum
Matching is optimal. For this problem, as it can be solved in O(

√
nm) time, our algorithm

improves the general-case algorithm only when td = n
1
2−ε.
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