917 research outputs found

    Microarray sub-grid detection: A novel algorithm

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis LtdA novel algorithm for detecting microarray subgrids is proposed. The only input to the algorithm is the raw microarray image, which can be of any resolution, and the subgrid detection is performed with no prior assumptions. The algorithm consists of a series of methods of spot shape detection, spot filtering, spot spacing estimation, and subgrid shape detection. It is shown to be able to divide images of varying quality into subgrid regions with no manual interaction. The algorithm is robust against high levels of noise and high percentages of poorly expressed or missing spots. In addition, it is proved to be effective in locating regular groupings of primitives in a set of non-microarray images, suggesting potential application in the general area of image processing

    A fully automatic gridding method for cDNA microarray images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Processing cDNA microarray images is a crucial step in gene expression analysis, since any errors in early stages affect subsequent steps, leading to possibly erroneous biological conclusions. When processing the underlying images, accurately separating the sub-grids and spots is extremely important for subsequent steps that include segmentation, quantification, normalization and clustering.</p> <p>Results</p> <p>We propose a parameterless and fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach, first, detects and corrects rotations in the images by applying an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm used to find the positions of the sub-grids in the image and the positions of the spots in each sub-grid. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the image, and the correct number of spots in each sub-grid. Moreover, a refinement procedure is used to correct possible misalignments and increase the accuracy of the method.</p> <p>Conclusions</p> <p>Extensive experiments on real-life microarray images and a comparison to other methods show that the proposed method performs these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approach can be used in various type of microarray images with different resolutions and spot sizes and does not need any parameter to be adjusted.</p

    Automatic gridding of microarray images based on spatial constrained K-means and Voronoi diagrams

    Get PDF
    Images from complementary DNA (cDNA) microarrays need to be processed automatically due to the huge amount of information that they provide. In addition, automatic processing is also required to implement batch processes able to manage large image databases. Most of existing softwares for microarray image processing are semiautomatic, and they usually need user intervention to select several parameters such as positional marks on the grids, or to correct the results of different stages of the automatic processing. On the other hand, many of the available automatic algorithms fail when dealing with rotated images or misaligned grids. In this work, a novel automatic algorithm for cDNA image gridding based on spatial constrained K-means and Voronoi diagrams is presented. The proposed algorithm consists of several steps, viz., image denoising by means of median filtering, spot segmentation using Canny edge detector and morphological reconstruction, and gridding based on spatial constrained K-means and Voronoi diagrams computation. The performance of the algorithm was evaluated on microarray images from public databases yielding promising results. The algorithm was compared with other existing methods and it shows to be more robust to rotations and misalignments of the grids.Red de Universidades con Carreras en InformĂĄtica (RedUNCI

    A New Gridding Technique for High Density Microarray Images Using Intensity Projection Profile of Best Sub Image

    Get PDF
    As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two.  Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination. Keywords: microarray, gridding, image processing, gridding accurac

    An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Get PDF
    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.</p

    A New Method of Gridding for Spot Detection in Microarray Images

    Get PDF
    A Deoxyribonucleic Acid (DNA) microarray is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip forming an array. The analysis of DNA microarray images allows the identification of gene expressions to draw biological conclusions for applications ranging from genetic profiling to diagnosis of cancer. The DNA microarray image analysis includes three tasks: gridding, segmentation and intensity extraction. The gridding process is usually divided into two main steps: sub-gridding and spot detection. In this paper, a fully automatic approach to detect the location of spots is proposed. Each spot is associated with a gene and contains the pixels that indicate the level of expression of that particular gene. After gridding, the image is segmented using fuzzy c-means clustering algorithm for separation of spots from the background pixels.  The result of the experiment shows that the method presented in this paper is accurate and automatic without human intervention and parameter presetting. Keywords: Microarray Image, Mathematical Morphology, Image Processin

    Novel pattern recognition approaches for transcriptomics data analysis

    Get PDF
    We proposed a family of methods for transcriptomics and genomics data analysis based on multi-level thresholding approach, such as OMTG for sub-grid and spot detection in DNA microarrays, and OMT for detecting significant regions based on next generation sequencing data. Extensive experiments on real-life datasets and a comparison to other methods show that the proposed methods perform these tasks fully automatically and with a very high degree of accuracy. Moreover, unlike previous methods, the proposed approaches can be used in various types of transcriptome analysis problems such as microarray image gridding with different resolutions and spot sizes as well as finding the interacting regions of DNA with a protein of interest using ChIP-Seq data without any need for parameter adjustment. We also developed constrained multi-level thresholding (CMT), an algorithm used to detect enriched regions on ChIP-Seq data with the ability of targeting regions within a specific range. We show that CMT has higher accuracy in detecting enriched regions (peaks) by objectively assessing its performance relative to other previously proposed peak finders. This is shown by testing three algorithms on the well-known FoxA1 Data set, four transcription factors (with a total of six antibodies) for Drosophila melanogaster and the H3K4ac antibody dataset. Finally, we propose a tree-based approach that conducts gene selection and builds a classifier simultaneously, in order to select the minimal number of genes that would reliably predict a given breast cancer subtype. Our results support that this modified approach to gene selection yields a small subset of genes that can predict subtypes with greater than 95%overall accuracy. In addition to providing a valuable list of targets for diagnostic purposes, the gene ontologies of the selected genes suggest that these methods have isolated a number of potential genes involved in breast cancer biology, etiology and potentially novel therapeutics

    Robust Microarray Image Processing

    Get PDF
    • …
    corecore