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 Microarray Sub-Grid Detection: A Novel Algorithm 
(code: SI-ZW) 

 
Daniel Morris, Zidong Wang* and Xiaohui Liu  

Abstract— In this paper, a novel algorithm for detecting microarray sub-grids is proposed. The only 

input to the proposed algorithm is the raw microarray image, which can be at any resolution, and the sub-

grid detection is performed with no prior assumptions. The algorithm consists of a series of methods of 

spot shape detection, spot filtering, spot spacing estimation, and sub-grid shape detection. The algorithm 

is shown to be successful in dividing images of varying quality into sub-grid regions with no manual 

interaction. The algorithm is robust against high levels of noise, and high percentages of poorly expressed 

or missing spots. In addition, the developed algorithm is proven to be effective in locating regular 

groupings of primitives in a set of non-microarray images, suggesting that the algorithm may have 

application potential in the general area of image processing. 

Index terms— Microarray, Gridding, Image filter, Shape detection, Sub-grid detection   

I. INTRODUCTION 

 
Microarray technology has provided the biology community with a powerful tool for exploring the genome. 
A robotic arrayer prints thousands of DNA sequences onto glass slides. Each slide will typically contain 
several sub-grids: two dimensional arrays of DNA spots. The slides are hybridised with mRNA from two 
sources that will be typically dyed red and green. After hybridisation the slides are scanned with a red and a 
green laser, the difference in fluorescence between the two colour channels shows the relative difference of 
gene expression between the two sources (Brown and Botstein, 1999). For more information on microarray 
technology please see Brown and Botstein (1999). Gridding is the process of identifying the sub-grids within 
an image and then the rows and columns of spots within each sub-grid. Gridding is the first main step in 
extracting data from a microarray image. After spot locations have been identified values for each spot are 
extracted and analysis of the difference in the levels of gene expression between the two sources can begin. 
Gridding is clearly the most critical stage of obtaining data from a microarray image, as misidentifying 
which spots represent which genes will significantly mislead the results analysis. 
 
The task of gridding is often complicated by the following factors. (1) The spot shapes within an image are 
not consistently uniform. Within the gridding literature spots are often categorised as circular or donut 
shaped, however due to the creation process of a microarray slide, spots can be almost any shape. (2) Often 
many spots within an image will be poorly expressed, which can make even manual grid row and column 
identification difficult. (3) The grids within an image can be rotated with respect to the image edges. (4) Due 
to the wet lab creation of microarray slides, there are often noise artefacts and scratches on the slides. These 
can completely hide some spots from view, or partially obscure them. (5) The image background is often 
uneven with some areas significantly higher or lower than others. This can severely hinder threshold based 
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techniques, as a threshold may return purely spot pixels in one area of an image, and return both spot and 
background pixels in another. (6) Spots and sub-grids can be printed slightly away from their ideal locations. 
 

 

Figure 1, a typical microarray image. This image 
features 24 sub-grids. 

 

Figure 2, a typical microarray image. This image 
features 48 sub-grids. 

 
Figure 1 shows a typical microarray image featuring 24 sub-grids, each sub-grid contains 12 rows and 32 
columns of spots. Figure 2 shows another typical image, but with a different structure: 48 sub-grids, each 
one with 15 rows and 16 columns. Both images also feature clearly visible noise covering large regions. 
 
As discussed in Morris and Wang (2006), initial Microarray Image Processing tools were completely 
manual, with users having to define the location of every spot within the image. Due to the number of spots 
on the average microarray slide numbering in the thousands and the demand for high throughput; semi-
automated tools were created. Users could specify the number of rows and columns and then position a 
template grid over the image. Over time, these semi-automated tools have become more sophisticated and 
have required less and less user interaction. While there has been a large amount of work carried out recently 
into automated microarray gridding, many of the approaches require some degree of human intervention. 
Although a great deal of time has been spent researching automated microarray gridding, the focus has 
tended to be away from the task of sub-grid detection. Many relevant papers in the literature do not offer a 
solution for this critical phase of microarray image processing and begin with the subsequent task of sub-
grid addressing (identifying the rows and columns within an individual sub-grid). The main purpose of this 
paper is therefore to shorten such a gap by exclusively tackling the sub-grid identification problems and 
developing novel algorithms that differ from the existing ones.  
 
Microarray gridding (or sub-gridding) approaches are generally viewed as either being template-based or 
data-driven with various levels of automation (Bajcsy, 2006). Template based approaches can only be 
applied to images that do not feature any significant level of deviation from the expected model so are not 
suitable for wide spread use (Axon Instruments Inc.). The vast majority of data-driven approaches are based 
around the use of 1D projections, so much so that the term ‘data-driven’ has almost become synonymous 
with ‘1D projection’ in regard to microarray image processing. 1D projections are typically created by 
summing an image along its horizontal and vertical axes. The summation may not necessarily be of the raw 
image values but can be of some transform of the image, for instance the output of an edge detector (Bajcsy, 
2004). For examples of the widespread use of 1D Projection analysis in microarray image processing see 
Bajcsy, 2004; Li et. al., 2005; Hirata et. al., 2001; Lonardi and Luo, 2004; Steinfath et. al., 2001; Brändle et. 
al., 2000; Wang and Huang, 2004; Bozinov, 2003; Fabbri et. al., 2002; Blekas et. al., 2003. Unfortunately, 
there appears to be several problems when the 1D Projection algorithms are applied to microarray image 
processing. 
 
The first problem with using 1D projection for microarray image analysis is that microarray images can 
feature varying degrees of rotation; sub-grid edges are not always parallel to the image edges. This problem 
can be countered by calculating the angle of rotation and either rotating the image back through this angle or 
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using the calculated angle value as a parameter in subsequent gridding steps (Bajcsy, 2004; Hirata et. al., 
2001; Steinfath et. al., 2001; Brändle et. al., 2000; Wang and Huang, 2004; Bozinov, 2003). Many of the 
methods used to calculate the rotation angle require multiple rotations of the image, which due to the typical 
dimensions of a microarray image, is computationally expensive. Rotating the image back to solve the 
problem is also undesirable as it will alter spot morphology.  
 
The second problem with using basic 1D projections is that this inherently assumes that a microarray image 
can be divided into its constituent sub-grids with straight lines drawn from one side of the image to another. 
As stated above, some microarray printing devices are capable of misprinting sub-grids away from their 
desired locations, so it is not always possible to successfully segment an image using only straight lines. 
Figures 3 & 4 illustrate this problem. Figure 3 shows a microarray image (included in the test set for the new 
approach described in this paper) which features a clearly visible sub-grid ‘drift’. Figure 4 shows the same 
image with a vertical line placed alongside the left edge of the top right sub-grid, this line intersects with the 
bottom left sub-grid, illustrating that with this image sub-grid separation is not possible using straight 
vertical and horizontal lines. 

 

 

Figure 3, An image featuring significant sub-grid 
‘drift’ 

 
Figure 4, the same image from Figure 3, with a vertical 
line illustrating the difficulty of dividing the image into 

its’ component sub-grids using straight lines. 
 
An important assumption of using 1D projections to locate sub-grids is that the grids within the image are 
arranged in a regularly spaced 2D grid structure. This is a safe assumption to make, as currently the most 
commonly found microarray technology does print sub-grids in a 2D structure. However as microarray 
technology evolves it is conceivable that the structure of the images will change, so it is desirable to have a 
sub-grid detection algorithm that is future proof – in the sense that it can detect sub-grids of spots whether 
they are arranged in a 2D structure or in any other arrangement. 
 
Another issue to be addressed in this paper is spot/sub-grid shape detection. The majority of documented 
techniques for locating spots/sub-grids have some predefined notion of the spot/sub-grid shape/size. For 
example in Antoniol and Ceccarelli (2005) the assumption is made that the spots within the image to be 
processed are circular and have a radius that is within predefined values. As these values do not appear to be 
calculated automatically, the assumption must be made that they are hard coded. In Steinfath et. al. (2001), 
the method of spot detection relies upon a “theoretical spot size”, which, again, must be assumed to be hard 
coded as no calculation method has been provided. In Lonardi and Luo (2004), smoothing windows have 
been set to 25 and 4 pixels, when attempting to locate sub-grids and spots, but no calculation method for 
these values has been given, so this technique will only work with images featuring sub-grids and spots 
within a specific size range. The approach documented in this paper includes steps for detecting the size and 
shape of the spots within the image as well as the approximate dimensions of the image’s sub-grids (based 
on previous work in Morris and Wang (2006)). These shapes and the values obtained with them can be of 
further use after the sub-grid detection phase, as demonstrated in our previous work (Morris and Wang, 
2006). Detecting spot shape and sub-grid shape also helps to future proof the process. Developments in 
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microarray technology resulting in different spot shapes can already be seen in technologies such as the 
Affymetrix GeneChip (http://www.affymetrix.com). 
 
In this paper, we deal with the microarray sub-grid detection problem. A novel algorithm is proposed which 
consists of a series of methods including; spot shape detection, spot filtering, spot spacing estimation, sub-
grid shape detection and finally sub-grid detection. The main contributions of this paper can be summarised 
as follows: 1) a new method of sub-grid shape detection is developed, which builds on previous work in 
Morris and Wang (2006); 2) a new method of measuring the reliability of the detected shape is proposed, 
which allows for a mechanism of recalculation if an unsuitable shape is returned; 3) a new method of sub-
grid detection, utilising multiple transformations of the original image is developed. 
 
It is worth mentioning that, unlike many of the traditional gridding approaches, the sub-grid detection 
method developed in this paper does not utilise 1D projections. Our new methods are proven experimentally 
to be very robust against high levels of noise, high percentages of poorly expressed spots and all of the other 
problems associated with microarray sub-grid detection. Furthermore, while the algorithm is developed and 
tested for use with microarray images, its applications are far wider. Essentially this paper presents an 
algorithm for locating reoccurring shaped groupings of objects within an image. The groupings when 
applied to microarray images are the sub-grids and the objects are the spots. As well as being successfully 
tested with 50 real microarray images of varying quality, the algorithm has been tested on a series of 
artificial images and has proven experimentally to be more likely to be future proof against any changes in 
microarray gridding technology than previous sub-grid detection techniques. 
 
The rest of this paper is organised as follows. Section 2, describes the first two contributions of this paper: a 
new method of sub-grid shape detection and the method of obtaining reliability score for the detected shape. 
Section 3 documents the major contribution of this paper, a method for searching a microarray image for 
sub-grids. Section 4 presents the results of various tests performed with the algorithm on 50 microarray 
images and a series of artificial images. 
 
 

II.  SUB-GRID SHAPE DETECTION AND SHAPE RELIABILITY CALCULATION 
 
To scan an image for sub-grids it is first necessary to identify the shape of the sub-grids within the image. In 
this section a method of sub-grid shape detection is documented. The only inputs to this process are a real 
valued spot filtered image (SFI) and the horizontal and vertical spot spacing distances (in pixels) (hSpacing 
& vSpacing). The SFI and the hSpacing & vSpacing values can be calculated from the raw microarray image 
using techniques documented in our previous work in Morris and Wang (2006). 
 
The process uses two key variables: thresh & dilateMultiplier. Initial values for thresh & dilateMultiplier 
can be randomly set, with thresh taking any value between 0 and 1 and dilateMultiplier taking any value 
between 0.5 and 2. 
 
The key idea behind this stage is that if working with a perfect image (no noise and all spots regularly 
shaped and expressed above the background level of the image) where the distance between spots in the 
same grid is smaller than the distance of any two spots in adjacent clusters. If the SFI is subjected to a 
threshold and then dilated with a structuring element with dimensions equal to the spot spacing values. The 
resulting binary image should feature connected components that identify each of the sub-grids within the 
image.  
 
Figure 5a, shows a manually created ‘perfect image’ with 4 sub-grids of 5 rows and 5 columns and no noise. 
Figure 5b shows the result of dilating the image with a rectangular structuring element with dimensions 
equal to the calculated hSpacing & vSpacing values for this image. 
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Figure 5a, an artificial ‘perfect image’, featuring 9 sub-

grids. 

 
Figure 5b, Figure 5a dilated with a rectangular 

structuring element. 
 

In reality it is not always possible with the SFI created from most microarray images to perform a single 
threshold and dilation to identify every sub-grid. This is mainly due to high numbers of poorly expressed 
spots which will disappear after the threshold. In addition if the threshold is set too low then false positives 
between sub-grids will merge them together during the dilation operation. But it is typically possible to 
threshold & dilate a microarray image’s SFI so that many sub-grids are successfully identified. Figure 6a 
shows an area from a typical image’s SFI. This image is subjected to a binary threshold (thresh = 0.5) and 
dilated using a rectangular structuring element, the dimensions of which are calculated by multiplying the 
hSpacing & vSpacing values by the dilationMultiplier (dilationMultiplier = 1.5), the resulting image is 
shown in figure 6b. It is clear in figure 6b that nine large connected components covering the majority of the 
nine sub-grids from the original image have been formed by the dilation. 

 

 
Figure 6a, An area from the SFI of a typical 

microarray image. 
 

 
Figure 6b, Same area from Figure 6a having been 

subjected a threshold and a dilation. Each connected 
object is displayed in a different colour / shade 

 
To obtain the approximate shape of the sub-grids within the image the mass of each object within the image 
is calculated, any objects with a mass smaller than 25% of the largest object are disregarded. This will 
remove the small objects which will often be created by isolated spots (spots whose neighbours were 
removed during the threshold operation) or sometimes false positives. The remaining objects are compared 
to each other - there are many methods of calculating a similarity value between objects, the decided 
measure was arbitrarily chosen as height and width – the object that is found to closely resemble the most 
objects in the image and all of the objects that closely resemble it are merged together to form an estimate of 
the sub-grid shape. Figure 7 shows the output of this process on the image in Figure 6a. 
 



6 

 

 
Figure 7, the approximate sub-grid shape. 

 
A reliability measure for the output shape can be calculated by dividing the mass of all objects that resemble 
the representative object by the total mass of the image after the initial dilation. If the reliability measure is 
below a predefined value (set to 0.5 in the below code) then the process can be repeated with a different 
value for thresh and/or a different value for dilationMultiplier. If the reliability measure does not meet the 
predefined value after several iterations (set to 10 in the below code), then the shape with the highest 
reliability score can be taken as the sub-grid shape. The detected shape is stored into the variable 
subGridShape. 
 
The outline of the whole sub-grid shape detection process is as follows: 
 

Input: SFI, hSpacing, vSpacing 
 
bestScore = 0 
bestShape = null 
rScore = 0 
loopCounter = 0 
 
while rScore < 0.5 AND loopCounter < 10 
 loopCounter = loopCounter + 1 

dilateMultiplier = random value between 0.5 and 2 
thresh = random value between 0 and 1 

 
Create a rectangular structuring element se with dimensions of hSpacing*dilateMultiplier by  

ySpacing*dilateMultiplier. 
 
 temp = (SFI > thresh) + (SFI < thresh*-1) 
 dilate temp with se 
 mass1 = sum(Temp) 
 
 find the mass of the largest connected object in temp 

remove any objects that are smaller than 25% of this value 
 
 tempShape = the most frequently occurring shape in temp 
 mass2 = sum the mass of all objects in temp that resemble tempShape 
 rScore = mass2/mass1 
 if rScore > bestScore then 
  bestScore = rScore 
  bestShape = merge all shapes in temp that resemble tempShape 

end if 
end while 
 
output: rScore, bestShape 



7 

 

III.  SUB-GRID DETECTION 
 
Using the SFI, subGridShape and the row and column spot spacing values (hSpacing & vSpacing) it is 
possible to search the image for sub-grids. As was illustrated in section 2, subjecting the SFI to a binary 
threshold then dilating the result will often identify many sub-grids within the image. But it is often not 
possible to identify a single pair of values for thresh and dilationMultiplier that will successfully highlight 
every individual sub-grid in the image. 
 
Therefore a threshold & dilation based approach used to locate all sub-grids within the image must take 
multiple views of the image created with a range values for thresh & dilationMultiplier. The set of threshold 
values used in our experiment were between 0.3 and 1, dilationMultiplier was set to take values between 0.5 
and 2. The notion that multiple views of a microarray image are often required to obtain better knowledge of 
the image was previously exploited in Fraser et. al. (2004). 
 
After each threshold and dilation operation the output image is searched for sub-grids. This is accomplished 
by comparing each of the connected objects within the new image to the known sub-grid shape. Any objects 
that closely resemble subGridShape are added to the final output image finalOutput provided that they do 
not significantly overlap any other objects which have previously been added to the output image. 
 
Figures 8a,8b,8c & 8d show the state of the finalOutput over 4 iterations when the algorithm was used on the 
image from Figure 3. The initial processing of the image is performed with thresh = 0.3 & dilateMultiplier = 
2 (see figure 8a) and correctly identifies 16 of the 24 sub-grids within the image. Figure 8b shows the second 
iteration with thresh = 0.3 & dilateMultiplier = 1.5, 2 more sub-grids are added to the finalOutput. Figure 8c 
shows the finalOutput after thresh = 0.3 & dilateMultiplier = 1, 4 more sub-grids identified. And in 8d with 
thresh = 0.5 & dilateMultiplier = 2 the remaining 2 sub-grids are added to the finalOutput. 
 

 
Figure 8a, thresh = 0.3 & dilateMultiplier = 2 

 
Figure 8b, thresh = 0.3 & dilateMultiplier = 1.5 
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Figure 8c, thresh = 0.3 & dilateMultiplier = 1 

 
Figure 8d, thresh = 0.5 & dilateMultiplier = 2 

 
The algorithmic description of the process is as follows: 
 

Input: SFI, subGridShape, hSpacing, vSpacing 
 
finalOutput = empty image, the same size as SFI 
 
terminate = false 
 
thresh = 0.3 
while thresh < 1 AND terminate = false 
 dilateMultiplier = 0.5 
 while dilateMultiplier <= 2 AND terminate = false 

Create a rectangular structuring element se with dimensions of hSpacing*dilateMultiplier by  
ySpacing*dilateMultiplier. 

 
temp = (SFI > thresh) + (SFI < thresh*-1) 
dilate temp with se 
  
find any shapes in temp that resemble subGridShape 
add shapes to outputImage, provided they don’t overlap any shapes already in the image 

 
  terminate = imageFull (finalOutput, subGridShape) 
 
 end while 
 thresh = thresh + 0.1 
end while 
 
Output: finalOutput 
 

A time saving device has been built into the algorithm, where if the output image can no longer fit any more 
sub-grid shapes (without overlapping shapes that are already in the image) then the process will terminate. 
This can be accomplished by eroding an inverse of the binary output image with a structuring element that is 
the same shape as the subGridShape.  The process is in the function imageFull and is described as follows: 

 
Function imageFull 

Input: finalOutput, se 
 

temp = finalOutput > 0 
temp = temp * -1 + 1 

 
test = erode temp by se 

 
if sum(test) == 0  
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then x = true 
else x = false 

 
Output: x 

End Function 
 
Once the process has terminated it has been shown beneficial to subsequent stages to place the known 
subGridShape over each of the detected sub-grids. The most obvious benefit being that many of the detected 
sub-grids will contain gaps and holes that will be filled by placing the subGridShape on top. Figure 9a 
shows an example of the finalOutput from a typical image, many of the sub-grids featuring small holes and 
chips around the edges. The 6th sub-grid down in the right hand column features a very noticeable missing 
region. Figure 9b shows the same image after the subGridShape was added on top of each sub-grid. The 
improvement is clear. 

 

 
Figure 9a, finalOutput image featuring many holes and 

one sub-grid with a very noticeable chunk missing. 

 
Figure 9b, The image from figure A1 having had the 

subGridShape placed over each sub-grid. 
 

Some sub-grids may be slightly smaller in either width or height than the known subGridShape due to entire 
rows/columns of poorly expressed spots. When the known subGridShape is wider that a detected sub-grid 
the output image is tested to see whether the placement of the known subGridShape against the detected 
sub-grid’s right or left edge will overlap any other grids. If placement is possible without any overlap then it 
is made. The same operation is performed with respect to the sub-grid’s height and the top and bottom 
edges. Figure 10a shows the finalOutput from another image in the test set, this image includes several sub-
grids which have several missing columns on their right hand sides (bottom right corner). Figure 10b, shows 
the finalOutput after the edge placement process is performed. 
 

 
Figure 10a, finalOutput from a typical image 

featuring several sub-grids with missing columns. 

 
Figure 10b, Figure 10a after edge placement process. 
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It is desirable to assign every pixel in the output image to a specific sub-grid. This means that the output 
image can then be used as a sub-grid map for the original microarray image. This can be accomplished by 
dilating every sub-grid iteratively by a single pixel using a 3x3 structuring element. Any sub-grid pixels 
created by the dilation which overlap any other sub-grid are removed. Figure 10c shows the result of these 
dilations on the image from Figure 10b. 
 

 
Figure 10c, Shows the result of passing the finalOutput image from figure 10b through the sub-grid dilation process. 

 

IV. RESULTS 
 
The most logical, and also the simplest way of testing the approach was to apply it to a set of real microarray 
images. The only input given to the algorithm for each image was the image itself and no data was carried 
over between images. The algorithm was tested with a set of 50 images, comprising two types of image. The 
first featuring 24 sub-grids arranged in a 12x2 format (see figure 1) the second containing 48 sub-grids 
arranged in 12x4 structure (see figure 2). The quality of the images were typical of the varying quality of 
images seen in microarray technology; some relatively clean, others with very high levels of noise and/or 
high numbers of poorly expressed spots. In all 50 images the algorithm successfully divided the images into 
their constituent sub-grids, with all spots correctly contained in the appropriate grid.  
 
Some of the poorest quality images are shown in this section to illustrate the robustness of this approach. 
Figure 11a shows a microarray image which features some very sparse sub-grids. Each sub-grid in the image 
contains 384 spots (12 rows x 32 columns). In the top left sub-grid only 22 spots are visible – less than 6%. 
The top left sub-grid is shown close up in figure 11b. One of the lower sub-grids is shown in figure 11c for 
contrast. The approach was still able to successfully detect all 24 sub-grids within this image. Figure 11b 
shows the grid map for the image. 
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Figure 11a, an image featuring several sub-grids with 

very few visible spots 

 
Figure 11b, the grid map for the image from figure 11a. 
 
 

 
Figure 11c, the top left sub-grid from the image 

shown in figure 11a 

 
Figure 11d, a more visible sub-grid from the image 

shown in figure 11a 
 
Figures 12a & 13a show images with very high levels of noise. Figures 12b & 13b show the corresponding 
grid maps created using the approach. All sub-grids were successfully identified, and valid boundaries 
created. It should be noted that in the image featured in Figure 12a (and several other images in the test set) 
that the level of background noise did severely hinder / prevent correct gridding using some of the traditional 
1D approaches described in the first part of this paper. 
 

 
Figure 12a, an image with very high levels of noise. 

 
Figure 12b, the grid for the image from figure 12a, all 

48 sub-grids successfully identified. 
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Figure 13a, another image with high levels of noise. 

 

 
Figure 13b, the gridmap for the image in figure 13a. 

After testing with all 50 images at their original size, the tests were repeated with resized versions of all 50 
images at 50% and 25% of the original size. The results were identical, in all images the sub-grids were 
correctly identified, with all spots being contained within the correct region. As well as demonstrating the 
robustness of the approach this also provides a run time saving mechanism. By working with smaller images 
the run time was significantly reduced. Table 1, shows the run time of the entire process (hSpacing & 
vSpacing calculation, sub-grid shape detection and sub-grid detection) for a typical image at 4 different 
sizes. 

Size Scale ( % ) Run time (seconds) 
100 1223 
50 94 
25 47 

16.666 25 
Table 1, run times for the entire process at various resized scales. 

 
The algorithm was also tested with a series of artificial images, to test its’ robustness against differing 
primitive shapes and differing arrangements of sub-grid primitives and sub-grid arrangements. Figure 14a 
shows one of the artificial test images, an image with regular groupings of triangular primitives, the 
groupings arranged randomly. Figure 14b shows the output of the approach, the algorithm successfully 
determined the shape of the primitive, the shape of the groupings of the primitives within the image, and 
then identified all of the groupings in the image. 
 

 
Figure 14a, an image with groupings of triangular 

primitives. 

 
Figure 14b, output of the approach, all groupings 

clearly identified. 
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Figure 15a shows another artificial image from the test set. This image features triangular groupings of star 
shaped primitives. The groupings arranged in an ‘orange packing’ structure. Figure 15b shows the output of 
the approach, all groupings successfully identified. 
 

 
Figure 15a, an image with triangular groupings of star 

shaped primitives. The groupings arranged in an 
‘orange packing’ structure. 

 

 
Figure 15b, output of the approach, again all groupings 

found. 

For obvious reasons the more traditional 1D based approaches were unable to successfully demarcate the 
artificial images featured here. 

V. CONCLUSIONS 
 
In this paper it has been proven that the described approach for microarray sub-grid detection is robust 
against high levels of noise, high percentages of missing spots and all of the other factors that complicate the 
task of microarray sub-grid detection. The algorithm(s) tested have also proven to be potentially robust 
against future changes in microarray technology as they can cope with different shaped primitives, sub-grid 
configurations and sub-grid distributions. The approach can also work with a range of image resolutions, 
offering time saving benefits and proving robustness against an increase/decrease in primitive size. The 
documented method is clearly more robust than the common place 1D projection based approaches at future 
changes in microarray technology. The method may also offer application in other area’s, as proven with the 
artificial image set, providing a method of identifying and locating regularly appearing groupings of the 
same primitive within an image. 
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