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Microarray Sub-Grid Detection: A Novel Algorithm
(code: SI-ZW)

Daniel Morris, Zidong Warigand Xiaohui Liu

Abstract— In this paper, a novel algorithm for detecting roamray sub-grids is proposed. The only
input to the proposed algorithm is the raw micragiimage, which can be at any resolution, and tibe s
grid detection is performed with no prior assummsioThe algorithm consists of a series of methdds o
spot shape detection, spot filtering, spot spaestgnation, and sub-grid shape detection. The dkgor

is shown to be successful in dividing images ofyiay quality into sub-grid regions with no manual
interaction. The algorithm is robust against higbels of noise, and high percentages of poorlyesqad

or missing spots. In addition, the developed atpariis proven to be effective in locating regular
groupings of primitives in a set of non-microarrayages, suggesting that the algorithm may have

application potential in the general area of imageessing.
Index terms— Microarray, Gridding, Image filter, Shape detenti Sub-grid detection

I. INTRODUCTION

Microarray technology has provided the biology camity with a powerful tool for exploring the genome
A robotic arrayer prints thousands of DNA sequenme® glass slides. Each slide will typically canta
several sub-grids: two dimensional arrays of DNAtspThe slides are hybridised with mRNA from two
sources that will be typically dyed red and gre&iter hybridisation the slides are scanned witled and a
green laser, the difference in fluorescence betvtleeriwo colour channels shows the relative difieesof
gene expression between the two sources (BrowrBatglein, 1999). For more information on microarray
technology please see Brown and Botstein (199%id@g is the process of identifying the sub-grdthin

an image and then the rows and columns of spotinmtach sub-grid. Gridding is the first main shep
extracting data from a microarray image. After dpottions have been identified values for each ap®
extracted and analysis of the difference in thellewf gene expression between the two sourcebegin.
Gridding is clearly the most critical stage of abtag data from a microarray image, as misidentidyi
which spots represent which genes will significantislead the results analysis.

The task of gridding is often complicated by thédfeing factors. (1) The spot shapes within an image
not consistently uniform. Within the gridding lisgare spots are often categorised as circular autdo
shaped, however due to the creation process ot@anray slide, spots can be almost any shap@©ftah
many spots within an image will be poorly expressedich can make even manual grid row and column
identification difficult. (3) The grids within ammiage can be rotated with respect to the image e{4eBue

to the wet lab creation of microarray slides, theme often noise artefacts and scratches on tihesslrhese
can completely hide some spots from view, or péytebscure them. (5) The image background is often
uneven with some areas significantly higher or lotl&n others. This can severely hinder threshakkt
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techniques, as a threshold may return purely spetin one area of an image, and return both apdt
background pixels in another. (6) Spots and sutbsgran be printed slightly away from their ideadtions.

Figure 1, a typical microarray image. This image Figure 2, a typical microarray image. This image
features 24 sub-grids. features 48 sub-grids.

Figure 1 shows a typical microarray image featu@dgsub-grids, each sub-grid contains 12 rows &hd 3
columns of spots. Figure 2 shows another typicagien but with a different structure: 48 sub-grielach
one with 15 rows and 16 columns. Both images aatufe clearly visible noise covering large regions

As discussed in Morris and Wang (2006), initial Marray Image Processing tools were completely
manual, with users having to define the locatioewdry spot within the image. Due to the numbespuits

on the average microarray slide numbering in tferigands and the demand for high throughput; semi-
automated tools were created. Users could speodyntumber of rows and columns and then position a
template grid over the image. Over time, these sertomated tools have become more sophisticated and
have required less and less user interaction. Wnélee has been a large amount of work carriedemently

into automated microarray gridding, many of therapphes require some degree of human intervention.
Although a great deal of time has been spent relsiggy automated microarray gridding, the focus has
tended to be away from the tasksob-grid detection. Many relevant papers in the literature do noeo#
solution for this critical phase of microarray ineagrocessing and begin with the subsequent taskinf
grid addressing (identifying the rows and columrithiw an individual sub-grid). The main purposetlut
paper is therefore to shorten such a gap by exelystackling the sub-grid identification probleraad
developing novel algorithms that differ from thesting ones.

Microarray gridding (or sub-gridding) approachee generally viewed as either being template-based o
data-driven with various levels of automation (Bgjc2006). Template based approaches can only be
applied to images that do not feature any sigmifidavel of deviation from the expected model se ot
suitable for wide spread use (Axon Instruments)lfiithe vast majority of data-driven approachesbased
around the use of 1D projections, so much so tiattérm ‘data-driven’ has almost become synonymous
with ‘1D projection’ in regard to microarray imageocessing. 1D projections are typically created by
summing an image along its horizontal and verto@s. The summation may not necessarily be ofaive r
image values but can be of some transform of ttegénfor instance the output of an edge detectajcs,
2004). For examples of the widespread use of 1QeBfon analysis in microarray image processing see
Bajcsy, 2004; Let. al., 2005; Hirateet. al., 2001; Lonardi and Luo, 2004; Steinfahal., 2001; Brandlet.

al., 2000; Wang and Huang, 2004; Bozinov, 2003; Fagtbal., 2002; Blekast. al., 2003. Unfortunately,
there appears to be several problems when the &@ddpbn algorithms are applied to microarray image
processing.

The first problem with using 1D projection for nmoerray image analysis is that microarray images can
feature varying degrees of rotation; sub-grid edgesnot always parallel to the image edges. Tidblpm
can be countered by calculating the angle of mmtatind either rotating the image back throughahige or



using the calculated angle value as a parametsubisequent gridding steps (Bajcsy, 2004; Higatal.,
2001; Steinfatltet. al., 2001; Brandlest. al., 2000; Wang and Huang, 2004; Bozinov, 2003). Manyhef
methods used to calculate the rotation angle requirltiple rotations of the image, which due to tyygcal
dimensions of a microarray image, is computatignakpensive. Rotating the image back to solve the
problem is also undesirable as it will alter spatrphmology.

The second problem with using basic 1D projectisrbat this inherently assumes that a microamzgge
can be divided into its constituent sub-grids vettaight lines drawn from one side of the imaganother.
As stated above, some microarray printing devigescapable of misprinting sub-grids away from their
desired locations, so it is not always possiblsuocessfully segment an image using only straiges!
Figures 3 & 4 illustrate this problem. Figure 3si8a microarray image (included in the test setifernew
approach described in this paper) which featurelearly visible sub-grid ‘drift’. Figure 4 showselsame
image with a vertical line placed alongside thé égfge of the top right sub-grid, this line intetsewith the
bottom left sub-grid, illustrating that with thisnage sub-grid separation is not possible usinggsitra
vertical and horizontal lines.

Figur 4, the same |mge from Fiure 3, with aieairt
line illustrating the difficulty of dividing the imge into
its’ component sub-grids using straight lines.

Figure 3, An image featuring significant sub-grid
‘drift’

An important assumption of using 1D projectionddcate sub-grids is that the grids within the image
arranged in a regularly spaced 2D grid structufgs T a safe assumption to make, as currentlyrtbst
commonly found microarray technology does print-gutds in a 2D structure. However as microarray
technology evolves it is conceivable that the $tmecof the images will change, so it is desirabléave a
sub-grid detection algorithm that is future proofh-the sense that it can detect sub-grids of spbether
they are arranged in a 2D structure or in any ch@ngement.

Another issue to be addressed in this paper igssgmyrid shape detection. The majority of docurment
techniques for locating spots/sub-grids have soreddfined notion of the spot/sub-grid shape/size. F
example in Antoniol and Ceccarelli (2005) the agstiom is made that the spots within the image to be
processed are circular and have a radius thatlsnwredefined values. As these values do notappebe
calculated automatically, the assumption must béenthat they are hard coded. In Steinfithal. (2001),

the method of spot detection relies upon a “thézakspot size”, which, again, must be assumecdetbodrd
coded as no calculation method has been provideHomardi and Luo (2004), smoothing windows have
been set to 25 and 4 pixels, when attempting tatéosub-grids and spots, but no calculation mefbod
these values has been given, so this techniqueoniyl work with images featuring sub-grids and spot
within a specific size range. The approach docuetkint this paper includes steps for detecting ithe and
shape of the spots within the image as well asapiproximate dimensions of the image’s sub-grids€bda
on previous work in Morris and Wang (2006)). Thekapes and the values obtained with them can be of
further use after the sub-grid detection phasejeasonstrated in our previous work (Morris and Wang,
2006). Detecting spot shape and sub-grid shapehedgas to future proof the process. Developments in



microarray technology resulting in different spbapes can already be seen in technologies sudhmeas t
Affymetrix GeneChip (http://www.affymetrix.com).

In this paper, we deal with the microarray sub-giédection problem. A novel algorithm is proposddol
consists of a series of methods including; spopstdetection, spot filtering, spot spacing estioratsub-
grid shape detection and finally sub-grid detectiimle main contributions of this paper can be surised

as follows: 1) a new method of sub-grid shape dieteds developed, which builds on previous work in
Morris and Wang (2006); 2) a new method of meagutite reliability of the detected shape is proppsed
which allows for a mechanism of recalculation if @rsuitable shape is returned; 3) a new methodilof s
grid detection, utilising multiple transformatiookthe original image is developed.

It is worth mentioning that, unlike many of thedtéonal gridding approaches, the sub-grid detectio
method developed in this paper does not utilisgfdpections. Our new methods are proven experinignta
to be very robust against high levels of noisehipgrcentages of poorly expressed spots and #ieadther
problems associated with microarray sub-grid detecFurthermore, while the algorithm is developeu
tested for use with microarray images, its applicest are far wider. Essentially this paper presemts
algorithm for locating reoccurring shaped groupimasobjects within an image. The groupings when
applied to microarray images are the sub-gridsthadbjects are the spots. As well as being suftdbss
tested with 50 real microarray images of varyinglify, the algorithm has been tested on a series of
artificial images and has proven experimentallypéomore likely to be future proof against any clemnip
microarray gridding technology than previous suidk-getection techniques.

The rest of this paper is organised as followsti@e@, describes the first two contributions dktpaper: a
new method of sub-grid shape detection and the adethobtaining reliability score for the detectthpe.
Section 3 documents the major contribution of graper, a method for searching a microarray image fo
sub-grids. Section 4 presents the results of vartests performed with the algorithm on 50 micraxarr
images and a series of artificial images.

II. SUB-GRID SHAPE DETECTION AND SHAPE RELIABILITY CALOLATION

To scan an image for sub-grids it is first necgssaidentify the shape of the sub-grids within thnage. In
this section a method of sub-grid shape deteciatotumented. The only inputs to this process aeala
valued spot filtered imageStl) and the horizontal and vertical spot spacingadisgs (in pixels)hSpacing
& vacing). TheS-I and thehSpacing & vSpacing values can be calculated from the raw microamsgge
using techniques documented in our previous woManris and Wang (2006).

The process uses two key variablsesh & dilateMultiplier. Initial values forthresh & dilateMultiplier
can be randomly set, witlresh taking any value between 0 and 1 alildteMultiplier taking any value
between 0.5 and 2.

The key idea behind this stage is that if workinighva perfect image (no noise and all spots retular
shaped and expressed above the background letké dage) where the distance between spots in the
same grid is smaller than the distance of any tpatssin adjacent clusters. If tt#| is subjected to a
threshold and then dilated with a structuring elenhwéith dimensions equal to the spot spacing valibe
resulting binary image should feature connectedpmomants that identify each of the sub-grids witthia
image.

Figure 5a, shows a manually created ‘perfect imagei 4 sub-grids of 5 rows and 5 columns and nisao
Figure 5b shows the result of dilating the imagéhva rectangular structuring element with dimension
equal to the calculatdtBpacing & vSoacing values for this image.



Figure 5a, an artificial ‘perfect image’, featurifgsub-

grids.

Figure 5b, Figure 5a dilated with a rectangular
structuring element.

In reality it is not always possible with tI81 created from most microarray images to perforningles
threshold and dilation to identify every sub-grithis is mainly due to high numbers of poorly expesbs
spots which will disappear after the thresholdadidition if the threshold is set too low then fagesitives
between sub-grids will merge them together durimg dilation operation. But it is typically possitie
threshold & dilate a microarray image3| so that many sub-grids are successfully identiflédure 6a
shows an area from a typical imag&sl. This image is subjected to a binary threshtidegh = 0.5) and
dilated using a rectangular structuring elemerd, dimensions of which are calculated by multiplythe
hSpacing & vSpacing values by thadilationMultiplier (dilationMultiplier = 1.5), the resulting image is
shown in figure 6b. It is clear in figure 6b thate large connected components covering the mgjofithe
nine sub-grids from the original image have beeméal by the dilation.

Figure 6b, Same area from Figure 6a having been
subjected a threshold and a dilation. Each condecte
object is displayed in a different colour / shade

Figure 6a, An area from ttg| of a typical
microarray image.

To obtain the approximate shape of the sub-gridsinvthe image the mass of each object within thage

is calculated, any objects with a mass smaller ®%% of the largest object are disregarded. Thik wi
remove the small objects which will often be crdat®y isolated spots (spots whose neighbours were
removed during the threshold operation) or sometifatse positives. The remaining objects are coetpar
to each other - there are many methods of caloglat similarity value between objects, the decided
measure was arbitrarily chosen as height and widthe object that is found to closely resemblertiust
objects in the image and all of the objects thasely resemble it are merged together to form émate of

the sub-grid shape. Figure 7 shows the outputisfatocess on the image in Figure 6a.



Figure 7, the approximate sub-grid shape.

A reliability measure for the output shape can d&lewdated by dividing the mass of all objects tiesemble

the representative object by the total mass ofrtiagye after the initial dilation. If the reliabifitmeasure is
below a predefined value (set to 0.5 in the beladed then the process can be repeated with a differ
value forthresh and/or a different value fatilationMultiplier. If the reliability measure does not meet the
predefined value after several iterations (set Qoirll the below code), then the shape with the Hghe
reliability score can be taken as the sub-grid shathe detected shape is stored into the variable
subGridShape.

The outline of the whole sub-grid shape detectimtgss is as follows:
Input: SFI, hSpacing, vSpacing

bestScore =0
bestShape = null
rScore =0
loopCounter =0

while rScore < 0.5 AND loopCounter < 10
loopCounter = loopCounter + 1
dilateMultiplier = random value between 0.5 and 2
thresh = random value between 0 and 1

Create a rectangular structuring element se wittedsions of hSpacing*dilateMultiplier by
ySpacing*dilateMultiplier.

temp = (SFI > thresh) + (SFI < thresh*-1)
dilate temp with se
massl = sum(Temp)

find the mass of the largest connected objeatrimpt
remove any objects that are smaller than 25% efuhiue

tempShape = the most frequently occurring shapenip
mass2 = sum the mass of all objects in temp #s#mble tempShape
rScore = mass2/massl
if rScore > bestScore then
bestScore = rScore
bestShape = merge all shapes in temp that reegethpShape
end if
end while

output: rScore, bestShape



Ill. SUB-GRID DETECTION

Using theSFI, subGridShape and the row and column spot spacing valudgpdcing & vSpacing) it is
possible to search the image for sub-grids. As Mastrated in section 2, subjecting ti$el to a binary
threshold then dilating the result will often idiéptmany sub-grids within the image. But it is aft@ot
possible to identify a single pair of values thresh anddilationMultiplier that will successfully highlight
every individual sub-grid in the image.

Therefore a threshold & dilation based approachd uselocate all sub-grids within the image mustetak
multiple views of the image created with a rangleies forthresh & dilationMultiplier. The set of threshold
values used in our experiment were between 0.3l adithtionMultiplier was set to take values between 0.5
and 2. The notion that multiple views of a micragrimage are often required to obtain better kndgéeof
the image was previously exploited in Fragteal. (2004).

After each threshold and dilation operation thepatitmage is searched for sub-grids. This is acdishmgxd
by comparing each of the connected objects witthéinnew image to the known sub-grid shape. Any tbjec
that closely resemblsubGridShape are added to the final output imafipal Output provided that they do
not significantly overlap any other objects whicva previously been added to the output image.

Figures 8a,8b,8c & 8d show the state offthalOutput over 4 iterations when the algorithm was used en th
image from Figure 3. The initial processing of tliage is performed witthresh = 0.3 & dilateMultiplier =

2 (see figure 8a) and correctly identifies 16 & 84 sub-grids within the image. Figure 8b showessircond
iteration withthresh = 0.3 & dilateMultiplier = 1.5, 2 more sub-grids are added toftha Output. Figure 8c
shows thdinalOutput afterthresh = 0.3 & dilateMultiplier = 1, 4 more sub-grids identified. And in 8d with
thresh = 0.5 &dilateMultiplier = 2 the remaining 2 sub-grids are added tditig@Output.

Figure 8athresh = 0.3 &dilateMultiplier = 2 Figure 8bthresh = 0.3 &dilateMultiplier = 1.5



Figure 8cthresh = 0.3 &dilateMultiplier = 1

Figure 8dthresh = 0.5 &dilateMultiplier = 2

The algorithmic description of the process is digfes:
Input: SFI, subGridShape, hSpacing, vSpacing

finalOutput = empty image, the same size as SFI

terminate = false

thresh = 0.3

while thresh < 1 AND terminate = false
dilateMultiplier = 0.5

while dilateMultiplier <= 2 AND terminate = false

Create a rectangular structuring element se wittedsions of hSpacing*dilateMultiplier by
ySpacing*dilateMultiplier.

temp = (SFI > thresh) + (SFI < thresh*-1)
dilate temp with se

find any shapes in temp that resemble subGridShape
add shapes to outputlmage, provided they don’tlapeany shapes already in the image

terminate = imageFull (finalOutput, subGridShape)

end while
thresh = thresh + 0.1
end while

Output: finalOutput

A time saving device has been built into the akon; where if the output image can no longer fif exore
sub-grid shapes (without overlapping shapes thatbleady in the image) then the process will teatd.
This can be accomplished by eroding an invershebtnary output image with a structuring elembat {s
the same shape as thdbGridShape. The process is in the function imageFull andescdibed as follows:

Function imageFull
Input: finalOutput, se

temp = finalOutput > 0
temp=temp*-1+1

test = erode temp by se

if sum(test) ==



then x = true
else x = false

Output: x
End Function

Once the process has terminated it has been shewnefitial to subsequent stages to place the known
subGridShape over each of the detected sub-grids. The most abwenefit being that many of the detected
sub-grids will contain gaps and holes that will filled by placing thesubGridShape on top. Figure 9a
shows an example of thimal Output from a typical image, many of the sub-grids feamismall holes and
chips around the edges. Th& €ub-grid down in the right hand column featuraggy noticeable missing

region. Figure 9b shows the same image afterstb&ridShape was added on top of each sub-grid. The
improvement is clear.

. .
= - 4 D
L ] .
- IR
R R Y
[ - _ .. I
- I
P T IR
s = R
=P IR
e o - 1 ]
Figure 9afinal Output image featuring many holes and Figure 9b, The image from figure Al having had the
one sub-grid with a very noticeable chunk missing. subGridShape placed over each sub-grid.

Some sub-grids may be slightly smaller in eithadttvior height than the knowsubGridShape due to entire
rows/columns of poorly expressed spots. When tlmvkrsubGridShape is wider that a detected sub-grid
the output image is tested to see whether the placeof the knowrsubGridShape against the detected
sub-grid’s right or left edge will overlap any othgrids. If placement is possible without any oaprthen it

is made. The same operation is performed with m@sfpethe sub-grid’s height and the top and bottom
edges. Figure 10a shows ftiwvealOutput from another image in the test set, this imagkudes several sub-
grids which have several missing columns on thghtrhand sides (bottom right corner). Figure 1€imws
the finalOutput after the edge placement procepsiformed.

Figure 10a, finalOutput from a typical image Figure 10b, Figure 10a after edge placement process
featuring several sub-grids with missing columns.
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It is desirable to assign every pixel in the outipodge to a specific sub-grid. This means thatcimput
image can then be used as a sub-grid map for tgmalrmicroarray image. This can be accomplished b
dilating every sub-grid iteratively by a single @ixusing a 3x3 structuring element. Any sub-grige}s
created by the dilation which overlap any other-gtill are removed. Figure 10c shows the resulhe$e
dilations on the image from Figure 10b.

Figure 10c, Shows the result of passingftha Output image from figure 10b through the sub-grid dilatjrocess.

IV. RESULTS

The most logical, and also the simplest way ofrigshe approach was to apply it to a set of rdat@array
images. The only input given to the algorithm facle image was the image itself and no data wagedarr
over between images. The algorithm was testedavitht of 50 images, comprising two types of imdge
first featuring 24 sub-grids arranged in a 12x2rfat (see figure 1) the second containing 48 suttsgri
arranged in 12x4 structure (see figure 2). Theityuaf the images were typical of the varying qtiabf
images seen in microarray technology; some relgtigiean, others with very high levels of noise /nd
high numbers of poorly expressed spots. In allhd@ges the algorithm successfully divided the imaiges
their constituent sub-grids, with all spots corecbntained in the appropriate grid.

Some of the poorest quality images are shown m gbction to illustrate the robustness of this aggin.
Figure 11a shows a microarray image which featswese very sparse sub-grids. Each sub-grid in tlagém
contains 384 spots (12 rows x 32 columns). In dtpeléft sub-grid only 22 spots are visible — ldsant 6%.
The top left sub-grid is shown close up in figud1One of the lower sub-grids is shown in figule for
contrast. The approach was still able to succdgsfigtect all 24 sub-grids within this image. Figutlb
shows the grid map for the image.



Figurella an image featuring several sub-gridis wi Figure 11b, the grid map for the image from figlife.
very few visible spots

Figure 11c, the top left sub-grid from the image Figure 11d, a more visible sub-grid from the image
shown in figure 11a shown in figure 11a

Figures 12a & 13a show images with very high lewedlaoise. Figures 12b & 13b show the corresponding
grid maps created using the approach. All sub-gvidse successfully identified, and valid boundaries
created. It should be noted that in the image fedtin Figure 12a (and several other images indbieset)
that the level of background noise did severelgéiri prevent correct gridding using some of thditronal

1D approaches described in the first part of thisep.

Figure 12a, an image ith very high levels of noise Figure 12b, the grid for the image from figure 124,
48 sub-grids successfully identified.



Figur 13a, othe image with high levels of noise
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Figure 13b, the gridmap for the image in figure.13a

After testing with all 50 images at their origirsite, the tests were repeated with resized versibai 50
images at 50% and 25% of the original size. Theltesvere identical, in all images the sub-gridseve
correctly identified, with all spots being contain@ithin the correct region. As well as demonshgtihe
robustness of the approach this also provides amesaving mechanism. By working with smaller gaa
the run time was significantly reduced. Table loveh the run time of the entire proce$sacing &
vSpacing calculation, sub-grid shape detection and sub-datkction) for a typical image at 4 different

sizes.
Size Scale (% Run time (second
10C 122:
50 94
25 47
16.66¢ 25

Table 1, run times for the entire process at vari@sized scales.

The algorithm was also tested with a series oficel images, to test its’ robustness againstedliffg
primitive shapes and differing arrangements of gub-primitives and sub-grid arrangements. Figu4a 1
shows one of the artificial test images, an imagth wegular groupings of triangular primitives, the
groupings arranged randomly. Figure 14b shows thitpub of the approach, the algorithm successfully
determined the shape of the primitive, the shapth@fgroupings of the primitives within the imagad

then identified all of the groupings in the image.
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Figure 14a, an image with groupings of triangular
primitives.

Figure 14b, output of the approach, all groupings
clearly identified.



13

Figure 15a shows another artificial image fromtist set. This image features triangular groupofgstar
shaped primitives. The groupings arranged in aange packing’ structure. Figure 15b shows the duipu
the approach, all groupings successfully identified
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Figure 15a, an image with triangular groupingstaf s Figure 15b, output of the approach, again all grogsp
shaped primitives. The groupings arranged in an found.

‘orange packing’ structure.

For obvious reasons the more traditional 1D bagguioaches were unable to successfully demarcate the
artificial images featured here.

V. CONCLUSIONS

In this paper it has been proven that the descradmatoach for microarray sub-grid detection is sibu
against high levels of noise, high percentagesisimy spots and all of the other factors that darage the
task of microarray sub-grid detection. The algonifh) tested have also proven to be potentially sbbu
against future changes in microarray technologthag can cope with different shaped primitives,-gtild
configurations and sub-grid distributions. The aagh can also work with a range of image resolstion
offering time saving benefits and proving robustnagainst an increase/decrease in primitive sibe. T
documented method is clearly more robust than ¢inenaon place 1D projection based approaches atefutur
changes in microarray technology. The method msxy affer application in other area’s, as provernlie
artificial image set, providing a method of ideyitiig and locating regularly appearing groupingsthaf
same primitive within an image.
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