983 research outputs found

    A new approach to automated retinal vessel segmentation using multiscale analysis

    Get PDF
    Author name used in this publication: David ZhangRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A New Approach to Automated Retinal Vessel Segmentation Using Multiscale Analysis

    Full text link

    Joint segmentation and classification of retinal arteries/veins from fundus images

    Full text link
    Objective Automatic artery/vein (A/V) segmentation from fundus images is required to track blood vessel changes occurring with many pathologies including retinopathy and cardiovascular pathologies. One of the clinical measures that quantifies vessel changes is the arterio-venous ratio (AVR) which represents the ratio between artery and vein diameters. This measure significantly depends on the accuracy of vessel segmentation and classification into arteries and veins. This paper proposes a fast, novel method for semantic A/V segmentation combining deep learning and graph propagation. Methods A convolutional neural network (CNN) is proposed to jointly segment and classify vessels into arteries and veins. The initial CNN labeling is propagated through a graph representation of the retinal vasculature, whose nodes are defined as the vessel branches and edges are weighted by the cost of linking pairs of branches. To efficiently propagate the labels, the graph is simplified into its minimum spanning tree. Results The method achieves an accuracy of 94.8% for vessels segmentation. The A/V classification achieves a specificity of 92.9% with a sensitivity of 93.7% on the CT-DRIVE database compared to the state-of-the-art-specificity and sensitivity, both of 91.7%. Conclusion The results show that our method outperforms the leading previous works on a public dataset for A/V classification and is by far the fastest. Significance The proposed global AVR calculated on the whole fundus image using our automatic A/V segmentation method can better track vessel changes associated to diabetic retinopathy than the standard local AVR calculated only around the optic disc.Comment: Preprint accepted in Artificial Intelligence in Medicin

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Delineation of line patterns in images using B-COSFIRE filters

    Get PDF
    Delineation of line patterns in images is a basic step required in various applications such as blood vessel detection in medical images, segmentation of rivers or roads in aerial images, detection of cracks in walls or pavements, etc. In this paper we present trainable B-COSFIRE filters, which are a model of some neurons in area V1 of the primary visual cortex, and apply it to the delineation of line patterns in different kinds of images. B-COSFIRE filters are trainable as their selectivity is determined in an automatic configuration process given a prototype pattern of interest. They are configurable to detect any preferred line structure (e.g. segments, corners, cross-overs, etc.), so usable for automatic data representation learning. We carried out experiments on two data sets, namely a line-network data set from INRIA and a data set of retinal fundus images named IOSTAR. The results that we achieved confirm the robustness of the proposed approach and its effectiveness in the delineation of line structures in different kinds of images.Comment: International Work Conference on Bioinspired Intelligence, July 10-13, 201

    Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy

    Get PDF
    Automated image processing has the potential to assist in the early detection of diabetes, by detecting changes in blood vessel diameter and patterns in the retina. This paper describes the development of segmentation methodology in the processing of retinal blood vessel images obtained using non-mydriatic colour photography. The methods used include wavelet analysis, supervised classifier probabilities and adaptive threshold procedures, as well as morphology-based techniques. We show highly accurate identification of blood vessels for the purpose of studying changes in the vessel network that can be utilized for detecting blood vessel diameter changes associated with the pathophysiology of diabetes. In conjunction with suitable feature extraction and automated classification methods, our segmentation method could form the basis of a quick and accurate test for diabetic retinopathy, which would have huge benefits in terms of improved access to screening people for risk or presence of diabetes

    RETINAL MICROVASCULATURE EXTRACTION USING GABOR WAVELET

    Get PDF
    This project discusses diabetic retinopathy which contributes to adult major vision loss. It is caused by abnormal changes in blood vessels on retina.[1] Therefore, a system is developed to enable early inspection. Using 2-D Gabor wavelet vascular pattern is enhanced and further classified by comparing the result from a set of database available on DRIVE

    Deep Neural Ensemble for Retinal Vessel Segmentation in Fundus Images towards Achieving Label-free Angiography

    Full text link
    Automated segmentation of retinal blood vessels in label-free fundus images entails a pivotal role in computed aided diagnosis of ophthalmic pathologies, viz., diabetic retinopathy, hypertensive disorders and cardiovascular diseases. The challenge remains active in medical image analysis research due to varied distribution of blood vessels, which manifest variations in their dimensions of physical appearance against a noisy background. In this paper we formulate the segmentation challenge as a classification task. Specifically, we employ unsupervised hierarchical feature learning using ensemble of two level of sparsely trained denoised stacked autoencoder. First level training with bootstrap samples ensures decoupling and second level ensemble formed by different network architectures ensures architectural revision. We show that ensemble training of auto-encoders fosters diversity in learning dictionary of visual kernels for vessel segmentation. SoftMax classifier is used for fine tuning each member auto-encoder and multiple strategies are explored for 2-level fusion of ensemble members. On DRIVE dataset, we achieve maximum average accuracy of 95.33\% with an impressively low standard deviation of 0.003 and Kappa agreement coefficient of 0.708 . Comparison with other major algorithms substantiates the high efficacy of our model.Comment: Accepted as a conference paper at IEEE EMBC, 201

    Computational Analysis of Fundus Images: Rule-Based and Scale-Space Models

    Get PDF
    Fundus images are one of the most important imaging examinations in modern ophthalmology because they are simple, inexpensive and, above all, noninvasive. Nowadays, the acquisition and storage of highresolution fundus images is relatively easy and fast. Therefore, fundus imaging has become a fundamental investigation in retinal lesion detection, ocular health monitoring and screening programmes. Given the large volume and clinical complexity associated with these images, their analysis and interpretation by trained clinicians becomes a timeconsuming task and is prone to human error. Therefore, there is a growing interest in developing automated approaches that are affordable and have high sensitivity and specificity. These automated approaches need to be robust if they are to be used in the general population to diagnose and track retinal diseases. To be effective, the automated systems must be able to recognize normal structures and distinguish them from pathological clinical manifestations. The main objective of the research leading to this thesis was to develop automated systems capable of recognizing and segmenting retinal anatomical structures and retinal pathological clinical manifestations associated with the most common retinal diseases. In particular, these automated algorithms were developed on the premise of robustness and efficiency to deal with the difficulties and complexity inherent in these images. Four objectives were considered in the analysis of fundus images. Segmentation of exudates, localization of the optic disc, detection of the midline of blood vessels, segmentation of the vascular network and detection of microaneurysms. In addition, we also evaluated the detection of diabetic retinopathy on fundus images using the microaneurysm detection method. An overview of the state of the art is presented to compare the performance of the developed approaches with the main methods described in the literature for each of the previously described objectives. To facilitate the comparison of methods, the state of the art has been divided into rulebased methods and machine learningbased methods. In the research reported in this paper, rulebased methods based on image processing methods were preferred over machine learningbased methods. In particular, scalespace methods proved to be effective in achieving the set goals. Two different approaches to exudate segmentation were developed. The first approach is based on scalespace curvature in combination with the local maximum of a scalespace blob detector and dynamic thresholds. The second approach is based on the analysis of the distribution function of the maximum values of the noise map in combination with morphological operators and adaptive thresholds. Both approaches perform a correct segmentation of the exudates and cope well with the uneven illumination and contrast variations in the fundus images. Optic disc localization was achieved using a new technique called cumulative sum fields, which was combined with a vascular enhancement method. The algorithm proved to be reliable and efficient, especially for pathological images. The robustness of the method was tested on 8 datasets. The detection of the midline of the blood vessels was achieved using a modified corner detector in combination with binary philtres and dynamic thresholding. Segmentation of the vascular network was achieved using a new scalespace blood vessels enhancement method. The developed methods have proven effective in detecting the midline of blood vessels and segmenting vascular networks. The microaneurysm detection method relies on a scalespace microaneurysm detection and labelling system. A new approach based on the neighbourhood of the microaneurysms was used for labelling. Microaneurysm detection enabled the assessment of diabetic retinopathy detection. The microaneurysm detection method proved to be competitive with other methods, especially with highresolution images. Diabetic retinopathy detection with the developed microaneurysm detection method showed similar performance to other methods and human experts. The results of this work show that it is possible to develop reliable and robust scalespace methods that can detect various anatomical structures and pathological features of the retina. Furthermore, the results obtained in this work show that although recent research has focused on machine learning methods, scalespace methods can achieve very competitive results and typically have greater independence from image acquisition. The methods developed in this work may also be relevant for the future definition of new descriptors and features that can significantly improve the results of automated methods.As imagens do fundo do olho são hoje um dos principais exames imagiológicos da oftalmologia moderna, pela sua simplicidade, baixo custo e acima de tudo pelo seu carácter nãoinvasivo. A aquisição e armazenamento de imagens do fundo do olho com alta resolução é também relativamente simples e rápida. Desta forma, as imagens do fundo do olho são um exame fundamental na identificação de alterações retinianas, monitorização da saúde ocular, e em programas de rastreio. Considerando o elevado volume e complexidade clínica associada a estas imagens, a análise e interpretação das mesmas por clínicos treinados tornase uma tarefa morosa e propensa a erros humanos. Assim, há um interesse crescente no desenvolvimento de abordagens automatizadas, acessíveis em custo, e com uma alta sensibilidade e especificidade. Estas devem ser robustas para serem aplicadas à população em geral no diagnóstico e seguimento de doenças retinianas. Para serem eficazes, os sistemas de análise têm que conseguir detetar e distinguir estruturas normais de sinais patológicos. O objetivo principal da investigação que levou a esta tese de doutoramento é o desenvolvimento de sistemas automáticos capazes de detetar e segmentar as estruturas anatómicas da retina, e os sinais patológicos retinianos associados às doenças retinianas mais comuns. Em particular, estes algoritmos automatizados foram desenvolvidos segundo as premissas de robustez e eficácia para lidar com as dificuldades e complexidades inerentes a estas imagens. Foram considerados quatro objetivos de análise de imagens do fundo do olho. São estes, a segmentação de exsudados, a localização do disco ótico, a deteção da linha central venosa dos vasos sanguíneos e segmentação da rede vascular, e a deteção de microaneurismas. De acrescentar que usando o método de deteção de microaneurismas, avaliouse também a capacidade de deteção da retinopatia diabética em imagens do fundo do olho. Para comparar o desempenho das metodologias desenvolvidas neste trabalho, foi realizado um levantamento do estado da arte, onde foram considerados os métodos mais relevantes descritos na literatura para cada um dos objetivos descritos anteriormente. Para facilitar a comparação entre métodos, o estado da arte foi dividido em metodologias de processamento de imagem e baseadas em aprendizagem máquina. Optouse no trabalho de investigação desenvolvido pela utilização de metodologias de análise espacial de imagem em detrimento de metodologias baseadas em aprendizagem máquina. Em particular, as metodologias baseadas no espaço de escalas mostraram ser efetivas na obtenção dos objetivos estabelecidos. Para a segmentação de exsudados foram usadas duas abordagens distintas. A primeira abordagem baseiase na curvatura em espaço de escalas em conjunto com a resposta máxima local de um detetor de manchas em espaço de escalas e limiares dinâmicos. A segunda abordagem baseiase na análise do mapa de distribuição de ruído em conjunto com operadores morfológicos e limiares adaptativos. Ambas as abordagens fazem uma segmentação dos exsudados de elevada precisão, além de lidarem eficazmente com a iluminação nãouniforme e a variação de contraste presente nas imagens do fundo do olho. A localização do disco ótico foi conseguida com uma nova técnica designada por campos de soma acumulativos, combinada com métodos de melhoramento da rede vascular. O algoritmo revela ser fiável e eficiente, particularmente em imagens patológicas. A robustez do método foi verificada pela sua avaliação em oito bases de dados. A deteção da linha central dos vasos sanguíneos foi obtida através de um detetor de cantos modificado em conjunto com filtros binários e limiares dinâmicos. A segmentação da rede vascular foi conseguida com um novo método de melhoramento de vasos sanguíneos em espaço de escalas. Os métodos desenvolvidos mostraram ser eficazes na deteção da linha central dos vasos sanguíneos e na segmentação da rede vascular. Finalmente, o método para a deteção de microaneurismas assenta num formalismo de espaço de escalas na deteção e na rotulagem dos microaneurismas. Para a rotulagem foi utilizada uma nova abordagem da vizinhança dos candidatos a microaneurismas. A deteção de microaneurismas permitiu avaliar também a deteção da retinopatia diabética. O método para a deteção de microaneurismas mostrou ser competitivo quando comparado com outros métodos, em particular em imagens de alta resolução. A deteção da retinopatia diabética exibiu um desempenho semelhante a outros métodos e a especialistas humanos. Os trabalhos descritos nesta tese mostram ser possível desenvolver uma abordagem fiável e robusta em espaço de escalas capaz de detetar diferentes estruturas anatómicas e sinais patológicos da retina. Além disso, os resultados obtidos mostram que apesar de a pesquisa mais recente concentrarse em metodologias de aprendizagem máquina, as metodologias de análise espacial apresentam resultados muito competitivos e tipicamente independentes do equipamento de aquisição das imagens. As metodologias desenvolvidas nesta tese podem ser importantes na definição de novos descritores e características, que podem melhorar significativamente o resultado de métodos automatizados
    corecore