48,738 research outputs found

    An advanced meshless method for time fractional diffusion equation

    Get PDF
    Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations

    Nonlocal operators are chaotic

    Full text link
    [EN] We characterize for the first time the chaotic behavior of nonlocal operators that come from a broad class of time-stepping schemes of approximation for fractional differential operators. For that purpose, we use criteria for chaos of Toeplitz operators in Lebesgue spaces of sequences. Surprisingly, this characterization is proved to be-in some cases-dependent of the fractional order of the operator and the step size of the scheme.C. Lizama is partially supported by FONDECYT (Grant No. 1180041) and DICYT, Universidad de Santiago de Chile, USACH. M. Murillo-Arcila is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project GVA/2018/110. A. Peris is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEO/2017/102.Lizama, C.; Murillo Arcila, M.; Peris Manguillot, A. (2020). Nonlocal operators are chaotic. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(10):1-8. https://doi.org/10.1063/5.0018408183010Abadias, L., & Miana, P. J. (2018). Generalized Cesàro operators, fractional finite differences and Gamma functions. Journal of Functional Analysis, 274(5), 1424-1465. doi:10.1016/j.jfa.2017.10.010Atici, F. M., & Eloe, P. (2009). Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, (3), 1-12. doi:10.14232/ejqtde.2009.4.3Atıcı, F. M., & Eloe, P. W. (2011). Two-point boundary value problems for finite fractional difference equations. Journal of Difference Equations and Applications, 17(4), 445-456. doi:10.1080/10236190903029241Atici, F. M., & Eloe, P. W. (2008). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137(03), 981-989. doi:10.1090/s0002-9939-08-09626-3Atıcı, F. M., & Şengül, S. (2010). Modeling with fractional difference equations. Journal of Mathematical Analysis and Applications, 369(1), 1-9. doi:10.1016/j.jmaa.2010.02.009Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332-334. doi:10.1080/00029890.1992.11995856Baranov, A., & Lishanskii, A. (2016). Hypercyclic Toeplitz Operators. Results in Mathematics, 70(3-4), 337-347. doi:10.1007/s00025-016-0527-xBayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675Edelman, M. (2014). Caputo standard α-family of maps: Fractional difference vs. fractional. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2), 023137. doi:10.1063/1.4885536Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834Edelman, M. (2015). Fractional Maps and Fractional Attractors. Part II: Fractional Difference Caputo α- Families of Maps. The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 4(4), 391-402. doi:10.5890/dnc.2015.11.003Erbe, L., Goodrich, C. S., Jia, B., & Peterson, A. (2016). Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Advances in Difference Equations, 2016(1). doi:10.1186/s13662-016-0760-3Ferreira, R. A. C. (2012). A discrete fractional Gronwall inequality. Proceedings of the American Mathematical Society, 140(5), 1605-1612. doi:10.1090/s0002-9939-2012-11533-3Ferreira, R. A. C. (2013). Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. Journal of Difference Equations and Applications, 19(5), 712-718. doi:10.1080/10236198.2012.682577Goodrich, C., & Peterson, A. C. (2015). Discrete Fractional Calculus. doi:10.1007/978-3-319-25562-0Goodrich, C. S. (2012). On discrete sequential fractional boundary value problems. Journal of Mathematical Analysis and Applications, 385(1), 111-124. doi:10.1016/j.jmaa.2011.06.022Goodrich, C. S. (2014). A convexity result for fractional differences. Applied Mathematics Letters, 35, 58-62. doi:10.1016/j.aml.2014.04.013Goodrich, C., & Lizama, C. (2020). A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Israel Journal of Mathematics, 236(2), 533-589. doi:10.1007/s11856-020-1991-2Gray, H. L., & Zhang, N. F. (1988). On a new definition of the fractional difference. Mathematics of Computation, 50(182), 513-529. doi:10.1090/s0025-5718-1988-0929549-2Li, K., Peng, J., & Jia, J. (2012). Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. Journal of Functional Analysis, 263(2), 476-510. doi:10.1016/j.jfa.2012.04.011Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326Lizama, C., & Murillo-Arcila, M. (2020). Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes. Discrete & Continuous Dynamical Systems - A, 40(1), 509-528. doi:10.3934/dcds.2020020Martínez-Giménez, F. (2007). Chaos for power series of backward shift operators. Proceedings of the American Mathematical Society, 135(6), 1741-1752. doi:10.1090/s0002-9939-07-08658-3Radwan, A. G., AbdElHaleem, S. H., & Abd-El-Hafiz, S. K. (2016). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research, 7(2), 193-208. doi:10.1016/j.jare.2015.07.002Radwan, A. G., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5(1), 125-132. doi:10.1016/j.jare.2013.01.003Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7Wu, G.-C., Baleanu, D., & Zeng, S.-D. (2014). Discrete chaos in fractional sine and standard maps. Physics Letters A, 378(5-6), 484-487. doi:10.1016/j.physleta.2013.12.01

    VI Workshop on Computational Data Analysis and Numerical Methods: Book of Abstracts

    Get PDF
    The VI Workshop on Computational Data Analysis and Numerical Methods (WCDANM) is going to be held on June 27-29, 2019, in the Department of Mathematics of the University of Beira Interior (UBI), CovilhĂŁ, Portugal and it is a unique opportunity to disseminate scientific research related to the areas of Mathematics in general, with particular relevance to the areas of Computational Data Analysis and Numerical Methods in theoretical and/or practical field, using new techniques, giving especial emphasis to applications in Medicine, Biology, Biotechnology, Engineering, Industry, Environmental Sciences, Finance, Insurance, Management and Administration. The meeting will provide a forum for discussion and debate of ideas with interest to the scientific community in general. With this meeting new scientific collaborations among colleagues, namely new collaborations in Masters and PhD projects are expected. The event is open to the entire scientific community (with or without communication/poster)
    • …
    corecore