3,878 research outputs found

    Checkpoint and run-time adaptation with pluggable parallelisation

    Get PDF
    Enabling applications for computational Grids requires new approaches to develop applications that can effectively cope with resource volatility. Applications must be resilient to resource faults, adapting the behaviour to available resources. This paper describes an approach to application-level adaptation that efficiently supports application-level checkpointing. The key of this work is the concept of pluggable parallelisation, which localises parallelisation issues into multiple modules that can be (un)plugged to match resource availability. This paper shows how pluggable parallelisation can be extended to effectively support checkpointing and run-time adaptation. We present the developed pluggable mechanism that helps the programmer to include checkpointing in the base (sequential). Based on these mechanisms and on previous work on pluggable parallelisation, our approach is able to automatically add support for checkpointing in parallel execution environments. Moreover, applications can adapt from a sequential execution to a multi-cluster configuration. Adaptation can be performed by checkpointing the application and restarting on a different mode or can be performed during run-time. Pluggable parallelisation intrinsically promotes the separation of software functionality from fault-tolerance and adaptation issues facilitating their analysis and evolution. The work presented in this paper reinforces this idea by showing the feasibility of the approach and performance benefits that can be achieved.(undefined

    A Heuristic Approach for the Automatic Insertion of Checkpoints in Message-Passing Codes

    Get PDF
    [Abstract] Checkpointing tools may be typically implemented at two different abstraction levels: at the system level or at the application level. The latter has become a more popular alternative due to its flexibility and the possibility of operating in different environments. However, application-level checkpointing tools often require the user to manually insert checkpoints in order to ensure that certain requirements are met (e.g. forcing checkpoints to be taken at the user code and not inside kernel routines). The approach presented in this work is twofold. First, a spatial coordination protocol for checkpointing parallel SPMD applications is proposed, based on forcing checkpoints to be taken at the same places in the application code by all processes. Thus, global consistency is achieved without adding any new runtime communications or piggybacked data, and without the need to use specific fault-tolerant message-passing implementations. Second, the paper also introduces a compilation technique for the automatic insertion of checkpoints using the spatial coordination protocol, based on a static analysis of communications and a heuristic analysis of computational load. These analyses can also be used to achieve automatic checkpoint insertion in approaches based on classical protocols, such as uncoordinated checkpointing or distributed snapshots.Ministerio de Ciencia e Innovación; TIN-2007-67537-C03-0

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks

    Algorithmic Based Fault Tolerance Applied to High Performance Computing

    Full text link
    We present a new approach to fault tolerance for High Performance Computing system. Our approach is based on a careful adaptation of the Algorithmic Based Fault Tolerance technique (Huang and Abraham, 1984) to the need of parallel distributed computation. We obtain a strongly scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of a computation. To assess the viability of our approach, we have developed a fault tolerant matrix-matrix multiplication subroutine and we propose some models to predict its running time. Our parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster jacquard.nersc.gov) and returns a correct result while one process failure has happened. This represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free implementation. We predict (and have observed) that, as we increase the processor count, the overhead of the fault tolerance drops significantly

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
    • …
    corecore