8,685 research outputs found

    A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.

    Get PDF
    Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs). Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics

    Exploiting Homology Information in Nontemplate Based Prediction of Protein Structures

    Get PDF
    In this paper we describe a novel strategy for exploring the conformational space of proteins and show that this leads to better models for proteins the structure of which is not amenable to template based methods. Our strategy is based on the assumption that the energy global minimum of homologous proteins must correspond to similar conformations, while the precise profiles of their energy landscape, and consequently the positions of the local minima, are likely to be different. In line with this hypothesis, we apply a replica exchange Monte Carlo simulation protocol that, rather than using different parameters for each parallel simulation, uses the sequences of homologous proteins. We show that our results are competitive with respect to alternative methods, including those producing the best model for each of the analyzed targets in the CASP10 (10th Critical Assessment of techniques for protein Structure Prediction) experiment free modeling category

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Protein Structure Prediction Using Basin-Hopping

    Full text link
    Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development

    Multiple structural alignment for distantly related all b structures using TOPS pattern discovery and simulated annealing

    Get PDF
    Topsalign is a method that will structurally align diverse protein structures, for example, structural alignment of protein superfolds. All proteins within a superfold share the same fold but often have very low sequence identity and different biological and biochemical functions. There is often signi®cant structural diversity around the common scaffold of secondary structure elements of the fold. Topsalign uses topological descriptions of proteins. A pattern discovery algorithm identi®es equivalent secondary structure elements between a set of proteins and these are used to produce an initial multiple structure alignment. Simulated annealing is used to optimize the alignment. The output of Topsalign is a multiple structure-based sequence alignment and a 3D superposition of the structures. This method has been tested on three superfolds: the b jelly roll, TIM (a/b) barrel and the OB fold. Topsalign outperforms established methods on very diverse structures. Despite the pattern discovery working only on b strand secondary structure elements, Topsalign is shown to align TIM (a/b) barrel superfamilies, which contain both a helices and b strands
    • …
    corecore