533 research outputs found

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF

    Towards Viable Large Scale Heterogeneous Wireless Networks

    Get PDF
    We explore radio resource allocation and management issues related to a large-scale heterogeneous (hetnet) wireless system made up of several Radio Access Technologies (RATs) that collectively provide a unified wireless network to a diverse set of users through co-ordination managed by a centralized Global Resource Controller (GRC). We incorporate 3G cellular technologies HSPA and EVDO, 4G cellular technologies WiMAX and LTE, and WLAN technology Wi-Fi as the RATs in our hetnet wireless system. We assume that the user devices are either multi-modal or have one or more reconfigurable radios which makes it possible for each device to use any available RAT at any given time subject to resource-sharing agreements. For such a hetnet system where resource allocation is coordinated at a global level, characterizing the network performance in terms of various conflicting network efficiency objectives that takes costs associated with a network re-association operation into account largely remains an open problem. Also, all the studies to-date that try to characterize the network performance of a hetnet system do not account for RAT-specific implementation details and the management overhead associated with setting up a centralized control. We study the radio resource allocation problem and the implementation/management overhead issues associated with a hetnet system in two research phases. In the first phase, we develop cost models associated with network re-association in terms of increased power consumption and communication downtime taking into account various user device assumptions. Using these cost models in our problem formulations, the first phase focuses on resource allocation strategies where we use a high-level system modeling approach to study the achievable performance in terms of conflicting network efficiency measures of spectral efficiency, overall power consumption, and instantaneous and long-term fairness for each user in the hetnet system. Our main result from this phase of study suggests that the gain in spectral efficiency due to multi-access network diversity results in a tremendous increase in overall power consumption due to frequent re-associations required by user devices. We then develop a utility function-based optimization algorithm to characterize and achieve a desired tradeoff in terms of all four network efficiency measures of spectral efficiency, overall power consumption and instantaneous and long-term fairness. We show an increase in a multi-attribute system utility measure of up to 56.7% for our algorithm compared to other widely studied resource allocation algorithms including max-sum rate, proportional fairness, max-min fairness and min power. The second phase of our research study focuses on practical implementation issues including the overhead required to implement a centralized GRC solution in a hetnet system. Through detailed protocol level simulations performed in ns-2, we show an increase in spectral efficiency of up to 99% and an increase in instantaneous fairness of up to 28.5% for two sort-based user device-to-Access Point (AP)/Base Station (BS) association algorithms implemented at the GRC that aim to maximize system spectral efficiency and instantaneous fairness performance metrics respectively compared to a distributed solution where each user makes his/her own association decision. The efficiency increase for each respective attribute again results in a tremendous increase in power consumption of up to 650% and 794% for each respective algorithm implemented at the GRC compared to a distributed solution because of frequent re-associations

    Strategyproof auctions for balancing social welfare and fairness in secondary spectrum markets

    Get PDF
    Secondary spectrum access is emerging as a promising approach for mitigating the spectrum scarcity in wireless networks. Coordinated spectrum access for secondary users can be achieved using periodic spectrum auctions. Recent studies on such auction design mostly neglect the repeating nature of such auctions, and focus on greedily maximizing social welfare. Such auctions can cause subsets of users to experience starvation in the long run, reducing their incentive to continue participating in the auction. It is desirable to increase the diversity of users allocated spectrum in each auction round, so that a trade-off between social welfare and fairness is maintained. We study truthful mechanisms towards this objective, for both local and global fairness criteria. For local fairness, we introduce randomization into the auction design, such that each user is guaranteed a minimum probability of being assigned spectrum. Computing an optimal, interference-free spectrum allocation is NP-Hard; we present an approximate solution, and tailor a payment scheme to guarantee truthful bidding is a dominant strategy for all secondary users. For global fairness, we adopt the classic maxmin fairness criterion. We tailor another auction by applying linear programming techniques for striking the balance between social welfare and max-min fairness, and for finding feasible channel allocations. In particular, a pair of primal and dual linear programs are utilized to guide the probabilistic selection of feasible allocations towards a desired tradeoff in expectation. © 2011 IEEE.published_or_final_versionThe IEEE INFOCOM 2011, Shanghai, China, 10-15 April 2011. In Conference Proceedings, 2011, p. 3020-302

    Improving Inter-service bandwidth fairness in Wireless Mesh Networks

    Get PDF
    Includes bibliographical references.We are currently experiencing many technological advances and as a result, a lot of applications and services are developed for use in homes, offices and out in the field. In order to attract users and customers, most applications and / or services are loaded with graphics, pictures and movie clips. This unfortunately means most of these next generation services put a lot of strain on networking resources, namely bandwidth. Efficient management of bandwidth in next generation wireless network is therefore important for ensuring fairness in bandwidth allocation amongst multiple services with diverse quality of service needs. A number of algorithms have been proposed for fairness in bandwidth allocation in wireless networks, and some researchers have used game theory to model the different aspects of fairness. However, most of the existing algorithms only ensure fairness for individual requests and disregard fairness among the classes of services while some other algorithms ensure fairness for the classes of services and disregard fairness among individual requests
    • …
    corecore