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Abstract—Secondary spectrum access is emerging as a promis-
ing approach for mitigating the spectrum scarcity in wireless
networks. Coordinated spectrum access for secondary users can
be achieved using periodic spectrum auctions. Recent studies on
such auction design mostly neglect the repeating nature of such
auctions, and focus on greedily maximizing social welfare. Such
auctions can cause subsets of users to experience starvation in the
long run, reducing their incentive to continue participating in the
auction. It is desirable to increase the diversity of users allocated
spectrum in each auction round, so that a trade-off between
social welfare and fairness is maintained. We study truthful
mechanisms towards this objective, for both local and global
fairness criteria. For local fairness, we introduce randomization
into the auction design, such that each user is guaranteed a
minimum probability of being assigned spectrum. Computing an
optimal, interference-free spectrum allocation is NP-Hard; we
present an approximate solution, and tailor a payment scheme
to guarantee truthful bidding is a dominant strategy for all
secondary users. For global fairness, we adopt the classic max-
min fairness criterion. We tailor another auction by applying
linear programming techniques for striking the balance between
social welfare and max-min fairness, and for finding feasible
channel allocations. In particular, a pair of primal and dual
linear programs are utilized to guide the probabilistic selection
of feasible allocations towards a desired tradeoff in expectation.

I. INTRODUCTION

Networking applications that rely on wireless technology
have enjoyed rapid growth in recent years. The proliferation of
wireless devices naturally results in an increase in demand for
usable spectrum, a scarce, goverment controlled commodity.
Spectrum availability and usage are usually regulated by gov-
ernmental agencies such as the Federal Communications Com-
mission (FCC) in the United States. Traditionally, spectrum
allocation has been conducted through the use of large-scale
auctions [1]. Recent studies show that such a static allocation
of spectrum is inefficient, with spectrum utilization varying
dramatically in both location and time [2], [3]. Consequently,
spectrum sharing through the use of a dynamic, real-time
secondary spectrum market has been proposed for mitigating
the problem of spectrum scarcity [4], [5]. In such a market,
primary users periodically hold auctions in order to lease
idle portions of its spectrum to unlicensed secondary users.
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- Technology Futures (AI-TF).
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Fig. 1. A secondary spectrum market – the primary user holds auctions
periodically to lease idle portions of spectrum to secondary users.

In fact, such markets are no longer merely theoretical, as
proved by the advent of companies like Spectrum Bridge [6],
who operate online marketplaces for selling spectrum leases,
through auctions along with other means.

Fig. 1 shows a secondary spectrum market, which consists
of a primary user, who owns the spectrum license, and a num-
ber of unlicensed secondary users. The spectrum utilization for
the primary user varies dynamically, and at any given time,
the primary user may have idle portions of spectrum. Due
to spectrum demand from secondary users, the primary user
pools this unused spectrum, and leases out chunks (channels)
to secondary users for short periods of time, through auctions.
A natural goal of such spectrum allocation is maximizing the
social welfare, i.e., allocating spectrum to users who value
it the most. Unlike traditional auctions, secondary spectrum
auctions are characterized by two unique properties. First, a
single chunk of spectrum, or a channel, has the possibility
for spatial reuse, and may be leased to multiple secondary
users, as long as they do not interfere. Second, the temporal
dynamics of spectrum usage by the primary user implies that
these leases are necessarily ephemeral [4], [7]–[9], and hence
the auction must be repeated periodically. Both properties
lead to interesting new challenges for the design of secondary
spectrum auctions.

Given that spectrum auctions are repeated, achieving some
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form of fairness along the temporal dimension is desired, when
computing the spectrum allocation. An auction that greedily
maximizes the total utility of all users (i.e., the social welfare)
in each round could lead to a subset of secondary users
starving for spectrum. Starvation is not only unsatisfactory
from the perspective of fairness, but also has other undesirable
consequences in repeated auctions. First, it discourages losing
users from continuing to participate in the auction [10], which
is in general detrimental to the revenue for the primary user
and to social welfare in the long run. Second, bidder starvation
can lead to vindictive bidding [10], [11], in which users with no
chance of winning increase their bids, causing winning users to
pay a higher price. In fact, such behaviour has been observed
in as much as 40% of bidders in Yahoo’s online ad auctions
[11]. Such harmful effects can be mitigated by increasing the
diversity of the set of users who win spectrum, in each auction
round. In conclusion, social welfare maximization in spectrum
auctions should be curbed by fairness constraints.

Let us make the argument for fairness in a spectrum
allocation setting more concrete. Consider the simple topology
of four interfering nodes, as shown in Fig. 1. Assume that all
the agents i, j, k and l, each has the valuation of V dollars
for the channel, compete through an auction. If the auction
greedily maximizes social welfare in each round, it always
allocates spectrum to every agent except for i. In fact, the
only way for i to be guaranteed spectrum is to bid higher than
3V , which is 3 times as much as other agents’ valuation in
the system. In this scenario, it’s not irrational for i to simply
drop out of the auction, which may reduce the primary user’s
revenue to 0, e.g., under Vickrey pricing [12]. Observe that
due to interference, i is forced to compete with the combined
valuation of agents j, k and l, whereas each of the latter
competes with i alone. In a repeating auction, we can mitigate
this form of unfairness and provide motivation for i to continue
bidding in each auction round, essentially by letting i win the
auction occasionally.

For the reasons stated above, it’s desirable to increase
the diversity of the winning set of users, so that there is a
trade-off between maximizing social welfare and providing
a minimum service guarantee. Designing an auction that
achieves this goal, without compromising the property of
incentive-compatibility (i.e. truthfulness) is precisely the goal
of our work. We design auction mechanisms that compute
an interference-free spectrum allocation that maximizes social
welfare, subject to fairness constraints. Our mechanisms are
flexible in that it provides the primary user with the freedom
to choose a trade-off between social welfare and fairness.
In repeating secondary spectrum auctions, our mechanisms
provably achieve the required trade-off in expectation. In
particular, we provide two mechanisms for achieving this
goal, targeting local and global fairness, respectively. The
first mechanism is a truthful, randomized auction framework
that can be used to provide fairness in the form of either
a fixed minimum probability of allocation for each agent,
or a restriced notion of envy-free fairness [13], in which
users are allocated spectrum if their valuation matches that

of their neighbours in the conflict graph. Since computing an
interference-free spectrum allocation is NP-Hard, we resort
to an approximation technique. It is known that the Vickrey-
Clarke-Groves (VCG) [12], [14], [15] payment scheme is
not truthful, when applied to approximate solutions [4], [16].
Consequently, we tailor an alternate payment scheme to ensure
users have no incentive to lie when bidding.

The previously described mechanism is useful for imple-
menting fairness measures that are “local”, in the sense that
we provide a minimum probabiliy of spectrum allocation by
prioritising users with respect to its neighbours. In the event
that the primary user is interested in providing a more global
measure of fairness, such as max-min fairness, we provide
a second mechanism for this purpose. This mechanism uses
a linear programming techniques to compute the fractional
share of a channel for each user, such that social welfare is
maximized subject to each user receiving a share that is at
least proportional to its max-min share in the conflict graph.
We then adapt a decomposition technique due to Lavi and
Swamy [17], to decompose the fractional shares to a set of
feasible spectrum allocations. We show how to compute a
probability distribution on this set, using a pair of primal
and dual linear programs, such that picking a solution with
the associated probability leads to the desired welfare-fairness
trade-off between, in expectation.

In the rest of the paper, we present our system model and
preliminaries in Sec. II. We design truthful auctions that strike
a balance between social welfare and fairness for local fairness
in Sec. III, and for max-min fairness in Sec. IV. We discuss
related work in Sec. V, and conclude in Sec. VI.

II. PRELIMINARIES

We now present the system model in Sec. II-A, and provide
some background in truthful auction design techniques in
Sec. II-B.

A. System Model

We adopt the convention in auction theory and refer to
secondary users as agents, and the primary license holder as
the auctioneer. The set of agents is M, and |M| = M . Each
agent i ∈M is equipped with a single cognitive radio, capable
of switching to different operating frequencies, or channels.
Denote by r(i) the transmission radius of the cognitive radio
belonging to agent i, with r(i) bounded for all agents i:
Rmin ≤ r(i) ≤ Rmax. In practical settings, these ranges
are somewhat similar, and the ratio Rmax

Rmin
= ∆ is a small

constant. Two agents i and j interfere if both are assigned
the same range of spectrum, and d(i, j) ≤ r(i) + r(j), where
d(i, j) is the spatial distance between their cognitive radios.
We capture these interference constraints using a conflict graph
G = (V, E), where V = M, and edge (i, j) ∈ E if radios
of agents i and j potentially interfere. The set of agents that
interfere with i will be denoted as N (i) where |N (i)| = N(i).
Since agents are also nodes in the conflict graphs, we will use
terms agents and nodes interchangeably.
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The auctioneer (primary spectrum user), owns large chunks
of spectrum, whose utilization varies across time. As such, the
auctioneer periodically pools unused spectrum together, which
it divides into fixed sized blocks or channels, to be leased or
assigned to secondary users. These leases are determined using
auctions. We denote the set of channels as K, with |K| =
K. A channel allocation x is an assignment of channels to
agents, such that for each i ∈M, x(i, k) = {0, 1} is a binary
variable indicating whether i is assigned channel k ∈ K. A
channel allocation is feasible if no two agents that interfere
are assigned the same channel. That is, for all channels k, if
x(i, k) = x(j, k) = 1, then (i, j) /∈ E .

We assume that every agent i ∈M is interested in obtaining
at most one channel, and ascribes a certain value to being
assigned one. Channels are indistinguishable, so that this value
is the same for receiving any channel. The agent’s valuation
is assumed to be private information, known only to the agent
itself. Let the valuation of agent i, vi, be measured in monetary
units. Spectrum auctions are held periodically. Each agent that
wins a channel is given a lease for that channel, which expires
at the beginning of the next round of the auction. At the start
of each auction round, the auctioneer solicits bids from each
agent. We denote agent i’s bid as bi, and alternately use either
b or (bib−i) to indicate the vector of all bids, where b−i is
the set of bids for all agents except i.

B. Strategyproof Auction Design

An auction can be viewed as a function that maps a given
set of bids to (i) a channel allocation x, and (ii) a payment
vector p, where p(i) is the payment of each agent i. The utility
of an agent is therefore a function of the set of submitted bids:

ui(bi,b−i) =

{
vi − p(i) if i receives a channel
0 otherwise

(1)

In terms of strategic behaviour, we will adopt the usual
convention in economics and assume that agents are selfish
and rational, in the sense that their goal is to maximize (1).

We consider sealed-bid auctions, in which agents submit
their bids at the beginning of each auction round. The auction-
eer then determines the channel allocation x, and the payment
for all agents p. Channel assigments expire at the beginning
of the next auction round, and thus agents must submit a bid
for each round in which it is interested in utilizing spectrum.
Since agent valuations are private information, an agent may
choose to submit a bid bi 6= vi, if this can lead to a higher
utility. The auctioneer instead wishes to achieve an outcome
that fits a pre-determined criteria such as maximizing social
welfare, or achieving a fair allocation, or an outcome that is a
tradeoff between both measures. In order to do, it is important
for the auctioneer to elicit truthful bids from agents.

An auction is called dominant-strategy truthful if reporting
the true valuation is the dominant strategy for an agent i,
regardless of other agents’ bids. More formally, an auction
is dominant-strategy truthful or strategyproof, if for any agent
i, for all bi 6= vi and for any b−i, the following always holds

in any auction outcome:

ui(vi,b−i) ≥ ui(bi,b−i) (2)

Similarly, an auction is truthful in expectation if (2) holds
in expectation. Besides the strategyproof property, we will
also require that the auction mechanisms we design fulfill the
following as well:

ui ≥ 0, and pi ≥ 0,∀i ∈M

These two properties are known in the literature as individual
rationality and no positive transfers, respectively [18]. The
first ensures that agents do not suffer as a result of participating
in the auction, while the second prevents the auctioneer from
having to pay agents.

The best known mechanism for securing truthful bids
from agents is the celebrated Vickrey-Clarke-Groves (VCG)
mechanism [12], [14], [15]. Within the context of spectrum
allocation, the VCG mechanism computes an optimal channel
allocation x∗, and charges each user the following

p(i) =
∑
j 6=i

∑
k

vjz
∗(j, k)−

∑
j 6=i

∑
k

vjx
∗(j, k) (3)

where the allocation z∗ is computed by setting vi = 0. It
is easy to show that the payment scheme induces truthful
behaviour, and we refer the reader to the text of Nisan et
al. [18] for details.

Unfortunately, the VCG mechanism fails to be strategyproof
when one does not have access to the optimal solution [16].
The problem of channel assignment is equivalent to graph
colouring, which is NP-hard [19]. Hence, the auctioneer needs
to resort to approximation algorithms in general. In Sec. III-B,
we will design a truthful auction that employs an approxima-
tion algorithm to compute the channel allocation. Towards this
direction, we will rely on Myerson’s [20] characterization of
truthful mechanisms.

Lemma 1. [Myerson, 1981] Let Pi(bi) be the probability
of bidder i with bid bi winning an auction. A mechanism is
strategyproof if and only if the followings hold for a fixed
b−i:

• Pi(bi) is monotonically non-decreasing in bi
• Bidder i bidding bi is charged biPi(bi)−

∫ bi
0
Pi(b)db

There are two equivalent ways to interpret Lemma 1: (i)
there exists a minimum bid b′i such that i will win only if it
bids at least b′i, or (ii) the payment charged to i for a fixed b−i
is independent of bi. We will use the first point of view when
designing a payment scheme for our auction in Sec. III-B.

III. A FRAMEWORK FOR TRUTHFUL AUCTIONS FOR
BALANCING SOCIAL WELFARE WITH FAIRNESS

In this section, we will present our truthful auction frame-
work for computing a channel allocation that provides a trade-
off between approximately optimal social welfare and fairness.
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A. Social Welfare Maximization
A common goal of designing auctions is maximizing the

social welfare [18], which is the total utility of all agents in
the system, including the auctioneer. Since the auctioneer’s
utility is the sum of all payments received, one can state
the social welfare simply as the total utility of all agents,∑
i∈M

∑
k∈K vix(i, k). We can state the optimal social wel-

fare s as a function of the set of agent valuations, v, the set
of available channels K and the conflict graph G. One can
compute s using the following integer program (IP):

Maximize s(v,K,G) =
∑
i∈M

∑
k∈K

vix(i, k) (4)

Subject To:

x(i, k) + x(j, k) ≤ 1 ∀(i, j) ∈ E , ∀k ∈ K∑
k∈K x(i, k) ≤ 1 ∀i ∈M

x(i, k) ∈ {0, 1} ∀i ∈M, ∀k ∈ K

The problem of maximizing social welfare in this setting
is equivalent to the well studied graph colouring problem,
which is NP-Hard [19]. In practice, solving (4) optimally is
infeasible, especially in the setting of a real-time secondary
spectrum auction. We next design an auction that is truthful,
but computes only an approximately optimal solution to the
social welfare maximization problem.

B. A Truthful Auction for Approximately Max Social Welfare

Our auction mechanism is shown in Algorithm 1. The
algorithm takes as input the conflict graph G, the vector of
bids b solicited from agents interested in obtaining spectrum,
as well as a set of random variables {Xi}i∈M. The random
variable Xi is defined for each agent i, and we will show
in Sec. III-C how to set their values, to help achieve various
objectives such as ensuring a particular form of fairness, or
preventing agents from starving. The only requirement for Xi

is that it remains independent of i’s bid, bi. The auction begins
by computing a virtual bid for each agent i, φ(i) = biXi

N(i)+1 ,
which is proportional to the agent’s bid and the value of Xi,
but inversely proportional to its degree in the conflict graph.
This term in the denominator helps us to rank high-degree
agents lower when allocating channels. This idea is similar to
the solution of Sakai et al. [21] for approximating a maximum
weighted independent set. The auction then greedily assigns
the available channels to agents, as long as it is feasible, in
descending order of the virtual bid φ(i).

The allocation mechanism is simple, but we also need to
ensure that our mechanism is able to compute payments for
each winning agent that can guarantee truthful bidding. We
will rely on Lemma 1 towards this direction. One way to
interpret Myerson’s lemma is to notice that if the allocation
rule posits a threshold bid b′i, for which i is guaranteed to win
as long as i bids bi ≥ b′i, then charging i the price b′i ensures
that the mechanism is strategyproof. We refer the reader to
the work by Archer and Tardos [22] for a concise treatment
of Myerson’s principle of truthfulness in one-dimensional
settings. For now, let us focus on how one would be able to
compute such a threshold bid given the allocation protocol

Algorithm 1: A truthful auction for approximately maxi-
mizing social welfare with fairness constraints.

Input: Conflict graph G, bid vector b, set of random
variables {Xi}i∈M

Output: Channel allocation x, payment vector p
1 foreach i ∈ setM do
2 x(i, k) := 0 ∀ ∈ K ;
3 p(i) := 0 ;
4 paid(i) := False;
5 saturated(i) := False;
6 φ(i) := Xibi

N(i)+1 ∀i ∈ N ;
7 Let H := {φ(i)}i∈M ;
8 while H 6= ∅ do
9 i := arg maxφ(i){H};

10 H := H \ {i} ;
11 if saturated(i) = True then
12 C := {j|j ∈ N(i) and paid(j) = False and∑

k x(j, k) = 1} ;
13 φ(l) := minφ(j) C ;
14 p(l) := φ(i)

(N(l)+1
Xl

)
;

15 paid(l) := True;
16 else if

∑
k∈K

(
x(i, k) +

∑
j∈N (i) x(j, k)

)
= K then

17 saturated(i) := True;
18 else
19 foreach k ∈ 1 . . .K do
20 if

∑
j∈N (i) x(j, k) = 0 then

21 x(i, k) := 1 ;
22 Break;
23 Return (x,p) ;

used in Algorithm 1. Notice that since we greedily assign
channels based on the virtual bid φ(i), the threshold bid of
some winning agent i can be found by setting φ(i) = 0 and
running Algorithm 1 again with the rest of the input fixed as
before. Then, the first agent j that gets assigned a channel
such that it is no longer feasible to assign a channel to i is i’s
threshold agent. Clearly, if φ(i) < φ(j), then i would not be
assigned a channel. We can then charge agent i the minimum
bid required to ensure φ(i) ≥ φ(j). We can see that computing
payments in this way will yield a strategyproof mechanism;
we will make our argument more formally later.

The previous reasoning shows a simple recipe for computing
the threshold bids for all agents, but it requires us to run the
allocation protocol once to compute the channel allocation, and
another O(M) times to compute the payments for the winning
agents. Such a solution is clearly undesirable in the context
of real-time spectrum auctions that need to be lightweight.
Instead, we design a method for computing payments in a
single run of the allocation algorithm, based on the following
simple observation:

Lemma 2. Let φ(j) be the threshold virtual bid for a winning
agent i in the outcome computed by Algorithm 1. We can
claim that j is not assigned a channel in this outcome.
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We say i is saturated when all K channels have been
allocated to the set {{i} ∪ N (i)}. Lemma 2 shows that
whenever we are unable to assign a channel to some agent
i, then it must imply that i is a threshold agent for another
agent l that was previously allocated a channel. Further, agent
l’s payment must not have been previously computed, and l
must (i), be a neighbour of i, and (ii), be saturated. Therefore,
in Algorithm 1, whenever we find a saturated agent i, we
compute the agent l with the minimum virtual bid of all agents
that fit requirements (i) and (ii), and use φ(i) to compute agent
l’s payment in the following way

p(l) =
N(l) + 1

Xl
φ(i) (5)

We next show that our auction is individually rational, and
truthful. We prepare by proving two lemmas first.

Lemma 3. The probability of i being allocated a channel is
monotonically non-decreasing in its bid bi. If an agent i is
assigned a channel when bidding bi, then it is also assigned a
channel when bidding any b′i ≥ bi.

This lemma is true since bidding higher can only increase
an agent’s expected virtual bid φ(i), and therefore increase its
rank when being considered for allocation.

Lemma 4. The payment scheme of (5) is individually rational.

Proof: Since l wins when bidding bl, it must be the case
that φ(l) ≥ φ(i), where φ(i) is the threshold bid of agent l.
This implies bl ≥ biXi

N(i)+1
N(l)+1
Xl

= p(l)

Theorem 1. The auction of Algorithm 1 is strategyproof.

Proof: Let vi and bi be agent i’s bid when being truthful
and not truthful respectively, and let x(vi), x(bi) ∈ {0, 1}
be the allocation outcome, as a result of each bid. Fix all
other agents’ bids to be b−i. We examine the outcome of the
auction on a case-by-case basis. First, assume that bi < vi.
If x(bi) > x(vi), then we get a contradiction due to Lemma
3. If x(bi) < x(vi) or if x(bi) = x(vi) = 0, then clearly, i
has no incentive to lie. If x(bi) = x(vi) = 1, then observe
that the threshold bid is the same in both cases. Further,
note that the random variables Xi and Xj are independent
of i’s bid. Since i’s payment is given as bkXk

Xi

|N (i)|+1
|N (k)|+1 , i’s

payment stays the same in both cases. Thus i once again
has no incentive to lie. Now, assume that vi < bi instead.
If x(bi) < x(vi), we get a contradiction due to Lemma 3. If
x(vi) = x(bi) = 0, then i has no incentive to lie. The same is
true for the case when x(bi) = x(vi) = 1, since the payment
for agent i remains the same. Assume that x(vi) < x(bi), then
it means i is not allocated a channel when bidding truthfully.
This suggests some neighbour k of i is allocated a channel,
such that φ(k) ≥ φ(i), where φ(i) is i’s virtual bid when
bidding truthfully. But this implies vi ≤ bkXk

N(k)+1
N(i)+1
Xi

. Since
i’s threshold bid is at least φ(k), i’s payment when bidding
bi is also at least bkXk

N(k)+1
N(i)+1
Xi

≥ vi, which means that i’s
utility is at most 0.

C. Ensuring Fairness

In Sec. III-B, we designed a truthful auction framework
through the use of virtual bids. The virtual bids were pro-
portional to agents’ true bids as well as the random variable
Xi. We proved that such an auction can be made truthful and
individually rational, as long as Xi was independent of the bid
vector. We now show how we can use these random variables
to enforce 2-tier fairness, and prevent cognitive radios from
starving. A key idea here is that the set of random variables
{Xi}i∈M provide the auctioneer with a way to perturb the
ranking of the virtual bids, without breaking the strategyproof
property of the auction.

Algorithm 2: Computing random variables {Xi}i∈M
Input: Set of agents M, trade-off parameter ω, fairness

function g
Output: Set of random variables {Xi}i∈M

1 Xi := 0 ∀i ;
2 Draw r uniformly at random from [0, 1] ;
3 if r < 1− ω then
4 Xi := 1 ∀i ;
5 else
6 Let π be random permutation of agents in M;
7 for j ∈ 1 . . .M do
8 if Xπ(j) 6= 0 then
9 Xπ(j) := g(π(j)) ;

10 foreach k ∈ N (π(j)) do
11 Xk := 1 ;
12 return {Xi}i∈M ;

Algorithm 2 shows our algorithm for computing the random
variables {Xi}i∈M. It takes as input the set of agents M, a
parameter ω that controls the trade-off between social welfare
and fairness, and a function g for implementing different types
of fair allocations. We will describe examples of g later. First,
recall that the definition of two-tier fairness which attempts to
guarantee a minimum service to all agents, before maximizing
the performance of the system. In Algorithm 2, we use the
parameter 0 ≤ ω ≤ 1 to control the trade-off between social
welfare and fairness. If ω = 0, then with probability 1, we
set Xi = 1 for all agents i. This then reduces the mechanism
of Algorithm 1 to an auction that maximizes social welfare,
with no fairness constraint. For ω > 0, the auction guarantees
a return of (1− ω)-fraction of the available social welfare, in
expectation.

Let us next see how different functions g can achieve
different notions of fairness for ω > 0. The simplest function
is one that ensures each agent receives a minimum share,
regardless of its bid. Then, let VMAX be the max bid possible
by any agent. The following function achieves our objective:

g(i) = VMAX (6)

In Algorithm 2, each agent i has probability 1
M of appearing

before its neighbours in the permutation π. In this event, we
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set Xi = VMAX and for each neighbour j ∈ N (i), we set
Xj = 1, thereby ensuring any agent i is assigned a channel
with probability at least ω

M . Choosing a small ω, the primary
user can ensure that no agent starves regardless of how small
its bid is. Nonetheless, it is still in the best interest of every
agent to bid truthfully, since bidding higher can only improve
its chances of being assigned a channel.

Of course, the primary user may desire a more realistic
notion of fairness. Going back to the example of Fig. 1, the
primary user may only be interested in ensuring that agents
who suffer from high interference be occasionally allocated a
channel, as long as their valuation is at least as high as their
neighbours. The following function can be used to achieve this
objective:

g(i) =
N(i) + 1

2
(7)

Observe that since every neighbour of i has degree at least 1,
setting Xi = N(i)+1

2 guarantees that if an agent has valuation
no lower than its neighbours’, then it will receive a channel
with probability at least ω

M .

IV. MAX-MIN FAIR AUCTION

In this section, we will design a randomized auction that
achieves a desired trade-off between maximizing social wel-
fare, as well as max-min fairness, as a global fairness criterion.
Max-min fairness is a common measure for achieving fairness
when allocating resources in a network. We will use random-
ization as well as linear programming as our main tools. In
order to simplify the notation and exposition in this section,
we will assume K = 1, but note that it is straightforward to
extend our technique for any K.

We start by examining how to compute max-min shares in a
conflict graph. Let C(G) be the set of all cliques in G. We can
use the standard water-filling procedure shown in Algorithm
3 to compute the max-min share of each agent, m(i), where
0 ≤ mi ≤ 1, ∀i. This algorithm is expensive, since it requires
the computation of all cliques in the conflict graph. However,
this can be justified in the sense that it is only executed once,
prior to the auction taking place.

Our goal is to compute a randomized channel allocation
that achieves a trade-off between max-min fairness and social
welfare maximization. Let 0 ≤ θ ≤ 1 be a tunable parameter
that allows the auctioneer to achieve this tradeoff, stated in a
more formal way below:

Definition 1. A randomized allocation rule is said to be ω-
max-min fair, if it maximizes social welfare, subject to the
constraint that for each agent i with max-min share m(i),
agent i’s probability of being assigned a channel is at least
ωm(i).

Our definition of ω-max-min fairness is intended to ensure
that agents do not suffer from starvation. All agents can be
assigned a minimum probability of being allocated a channel.
Setting ω = 1 implies that the auctioneer neglects the goal
of social welfare maximization completely. Similarly, setting
ω = 0 means that the auctioneer places no weight on max-min

Algorithm 3: Water-filling type algorithm to compute base
max-min share for each agent i in the interference graph
G

Input: Conflict graph G
Output: Max-min share of agents m

1 Let C(G) be set of all cliques in G ;
2 For each agent i, let c(i) ∈ C be the largest clique

containing i ;
3 Initialize I :=M ;
4 Initialize m(i) := 0,∀i ∈M ;
5 while I 6= ∅ do
6 Increase m(i) uniformly for all i ∈ I until for some

i,
∑
j∈c(i)m(j) = 1 ;

7 I := I \ c(i) ;
8 return y ;

fairness, and is interested only in maximizing social welfare.
Next, we show how to compute such an allocation, and then
focus on designing a mechanism that can achieve such an
allocation in a truthful fashion.

Naturally, no feasible integral channel assignment can meet
the requirement of each agent having a minimum fractional
channel allocation. Instead, we will first compute the desired
fractional allocation. Later, we willl show how to use a
decomposition technique to build a set of feasible integral
solutions, each associated with a probability, such that picking
a feasible assignment with this probability leads to our desired
goal of ω-max-min fairness in expectation. Consider the fol-
lowing linear program for computing a fractional allocation
that maximizes social welfare, subject to each agent being
assigned a minimum share:

Maximize f(θ,v) =
∑
i

vix(i) (8)

Subject To:
x(i) ≥ θm(i) ∀i ∈M
x(i) + x(j) ≤ 1 ∀(i, j) ∈ E
x(i) +

∑
j∈N (i) x(j) ≤ I(G) ∀iM

x(i) ≥ 0 ∀i ∈M

The objective function of LP (8), f(θ,v) is a function of both
the valuations of agents as well as the parameter 0 ≤ θ ≤ 1.
Observe that for θ = 0, maximizing f(0,v) reduces to
maximizing the fractional social welfare. Furthermore, since
LP (8) is a maximization problem, f(0,v) ≥ f(θ,v) for any
θ > 0. The first constraint in LP (8) requires that each agent
be assigned a minimum share proportional to its max-min
share, θm(i). The second constraint is sufficient to ensure a
feasible solution. However, note that f(0,v) without the third
set of constraints is equivalent to the LP relaxation of the IP
s(v, 1,G). Therefore, leaving out the third set of constraints
defines a polytope such that the optimal solution for f(0,v)
has an integrality gap of O(M) with respect to the optimal
feasible integral solution of s(v, 1,G). To see this, consider
the case when θ = 0 for the complete graph with M nodes. It
is known that the polytope of the LP relaxation of (4) always
has a vertex solution that is half-integral [23]. In the complete
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graph, this leads to an optimal solution of M
2 , obtained by

setting x(i) = 1
2 for all i. Since the optimal solution is 1,

the integrality gap is O(M). However, the performance of the
auction we will design depends crucially on this integrality
gap. Hence, we circumvent this problem by adding the third
set of constraints to LP (8). For this set of constraints, I(G)
is a function of the conflict graph G, that measures the size
of the maximum independent set consisting of the set of
neighbours N (i) for any node i. Clearly, adding this constraint
ensures that the polytope of LP (8) will continue to enclose
all feasible integral channel assignment. The next two lemmas
prove that (i) I(G) is a constant in our network model, and
(ii), the integrality gap is a constant that depends on the graph
parameter ∆:

Lemma 5. For any node i, the size of the maximum inde-
pendent set consisting of nodes in N (i), I(G), is at most
b 2π

arcsin( 1
2∆ +1)

c − 1.

Proof: We employ a geometric argument. For a given
i, we need to find the max number of nodes that interfere
with i but do not interfere with one another. The worst case
occurs by letting r(i) = Rmax, and placing n non mutually
interfering nodes j with r(j) = Rmin on the circumference of
a disk centered at i with radius Rmax +Rmin. Now, consider
placing these n nodes at equidistance from each other along
the circumference of this disk. We have

n =
2π

arcsin( Rmin

2Rmax+Rmin
)

=
2π

arcsin( 1
2∆+1 )

The maximum number of nodes that can be placed along the
circumference without mutually interfering is bnc − 1, which
yields the lemma.

Lemma 6. The integrality gap between f(0,v) and s(v, 1,G)
is I(G) = b 2π

arcsin( 1
2∆ +1)

c − 1 .

Proof: From Lemma 5, the size of the maximum in-
dependent set for any set of nodes {{i} ∪ N (i)} is the
constant I(G), which is also the upper-bound of the constraint
x(i) +

∑
j∈N (i) x(j). In the worst case, the integral solution

picks only one node from this set (it must pick at least one).
Since this is true for any node, and x(i) ≤ 1 for all i, the
lemma follows.

Next, we will employ a technique first shown by Lavi
and Swamy [17] to decompose the fractional solution of
LP (8) into a set of feasible solutions, L. We denote by
l ∈ L each feasible solution, such that for any i, j ∈ l,
(i, j) /∈ E . For each solution l ∈ L, we will find an associated
probability P (l), such that

∑
l∈L P (l) = 1. Ideally, given an

optimal solution x∗ of LP (8), we would like to compute
a probability distribution over feasible solutions such that∑
l:i∈l P (l) = x∗(i). This implies that picking a solution l ∈ L

at random with probability P (l) yields an allocation that is θ-
max-min fair in expectation. Unfortunately, it turns out that
this is not possible, since it would require us to compute all
possible feasible channel assignments [17], which is NP-Hard.
Instead, we will compute a set of probabilities such that for
any i,

∑
l:i∈l P (l) = x∗(i)

C , where C is a small constant to be
determined later. The decomposition technique relies on the

ellipsoid algorithm [24] for solving linear programs. Denote by
yl a feasible channel allocation corresponding to the solution
l. That is, yl(i) = 1 means that in solution l, i is assigned a
channel. Let x∗ be the optimal solution to LP (8). Then the
following linear program computes probability assignments
P (l) for each solution l ∈ L, such that the probability of
agent i being assigned a channel is exactly x∗(i)

C :

Minimize
∑
l∈L

P (l) (9)

Subject To:∑
l∈L

xl(i)P (l) = x∗(i)
C

∀i ∈M∑
l∈L

P (l) ≥ 1

P (l) ≥ 0 ∀l ∈ L

The dual of LP (9) is:

Maximize λ+
∑
i∈M

x∗(i)

C
γ(i) (10)

Subject To:∑
i∈M

xl(i)γ(i) ≤ 1− λ ∀l ∈ L

γ(i) ≥ 0 ∀i ∈M

The variable γ(i) in the dual corresponds to the first con-
straint of LP (9), while λ corresponds to the second. The
decomposition technique will require the use of an algorithm
to solve the maximum weighted independent set problem. We
choose the polynomial time approximation scheme (PTAS)
of Erlebach et al. [25], which we denote as A. Algorithm
A computes a (1 − ε) approximation to the social welfare
maximization problem, f(0,v) for any set of valuations v,
for any ε > 0. We will see later that the constant C in LP (9)
depends on the approximation factor of A, but for now, define
C = (1 − ε)α(G). We are now ready to show the following
lemma, using complementary slackness conditions:

Lemma 7. The optimal solution to LP (9) is 1.

Proof: From the second constraint of LP (10), the solution
is at least one. We next prove that the optimal solution (λ∗, γ∗)
is at most 1 by way of contradiction. Assume this is not true
for some instance of the LP. Then in the optimal solution, the
second constraint of LP (9) is not tight. By complementary
slackness, this implies λ∗ > 0. Furthermore, by LP duality,
we must have λ∗ +

∑
i∈M

x∗(i)
C γ∗(i) > 1. If we treat the

dual variable γ∗(i) as the valuation of agent i, then, using the
(1− ε)-approximation algorithm A, we can compute a social
welfare maximizing feasible solution xl, such that∑

i

γ∗(i)xl(i) ≥ 1

1− ε
s(γ∗, 1,G) (11)

Further, from Lemma 6, we have

f(θ, γ∗) ≤ f(0, γ∗) ≤ α(G)s(γ∗, 1,G) (12)

Substituting C = (1 − ε)α(G), and using equations (11) and
(12), we get

f(θ, γ∗) =
∑
i

γ∗(i)x∗(i) ≤ C
∑
i

γ∗(i)xl(i)
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Combined with λ∗ > 0, this implies that
∑
i γ
∗(i)xl(i)+λ∗ ≥

1
C

∑
i γ
∗(i)x∗(i) + λ∗ > 1, i.e., we have violated the second

inequality of LP (10) for the solution xl, contradicting the
optimality of the solution (λ∗, γ∗).

We have shown that the set {P (l)}l∈L constitutes a valid
probability distribution. However, solving LP (9) is difficult,
primarily because we need to consider the variable xl for all
possible feasible solutions l ∈ L, which is exponential in size.
Instead of doing this directly, we will consider the dual LP
(10), which has M + 1 variables, but an exponential number
of constraints. The dual LP can be solved using the ellipsoid
algorithm while employing the (1−ε)-PTAS A as a separation
oracle [24]. The key insight here is that one can use a similar
argument to the proof of Lemma 7, to show that for any
solution where λ +

∑
i∈M

x∗(i)
C γ(i) < 1, there must be an

integral solution xl for which the constraints of LP (10) is
violated. Further, we can use A to find this solution. Since the
ellipsoid algorithm is guaranteed to take at most a polynomial
number of steps, it can be used to return a set of solutions
{xl}l∈L that is polynomial in size. We can then plug these
solutions back into LP (9) to compute the set of probabilities
{P (l)}l∈L.

Algorithm 4: A truthful ω-max-min fair in expectation
auction
Input: Conflict graph G, bid vector b, max-min shares

{m(i)}i∈M, fairness parameter ω
Output: Channel assignment xl, payment p

1 θ := Cω ;
2 Compute f(θ,b) using LP (8), let x∗ be solution ;
3 Use ellipsoid algorithm and A on LP (10) with x∗ to

compute the polynomially sized set of solutions {xl}l∈L ;
4 Solve LP (9) to compute probabilities {P (l)}l∈L ;
5 Pick some solution l′ with probability P (l′) ;
6 Initialize p(i) := 0 ∀i ∈M ;
7 foreach i such that xl(i) = 1 do
8 Compute f(θ, (bi = 0,b−i)) with LP (8), let z be

solution ;
9 p(i) := 1

x∗(i)

(∑
j 6=i bjz(j)−

∑
j 6=i bjx

∗(j)
)

;
10 return (xl, p) ;

The auction then works as shown in Algorithm 4. We first
fix the parameter ε > 0 for the PTAS A, which gives us a
trade-off between the running time of A and the optimality
of the solution obtained. We then set θ = Cω, where
C = (1 − ε)α(G). The fractional allocation f(θ,b) is next
computed using LP (8). We apply the decomposition technique
previously described to build a set of feasible solutions as well
as an associated probability distribution. A channel allocation
xl is then picked with probability p(l). For each bidder i that
is allocated a channel in xl, we charge them the following:

p(i) =
1

x(i)∗
(∑
j 6=i

vjz(j)−
∑
j 6=i

vjx
∗(j)

)
(13)

The solution z in (13) is obtained by computing the fractional

allocation of LP (8) with bi = 0. It can be shown that this
payment scheme results in an auction that is truthful.

Theorem 2. Algorithm 4 is truthful in expectation.

Proof: Let ui(vi) and ui(bi) be the utility of agent i when
bidding vi and bi 6= vi respectively. Similarly, let x and y be
the solutions to LP (8) when i bids either vi or bi. Fix all other
bids b−i. The expected utility of i when bidding truthfully is

E[ui(vi)] =
x(i)

C

[
vi −

1

x(i)

(∑
j 6=i

bjz(j)−
∑
j 6=i

bjx(j)
)]

=
1

C

[
vix(i) +

∑
j 6=i

bjx(j)−
∑
j 6=i

bjz(j)
]

Since the polytope remains unchanged when the bid vector
is (bi,b−i) instead of (vi,b−i), the solution y is a feasible
solution for the latter. This, together with the optimality of x
for the bid vector (bi,v−i) yields

E[ui(vi)] ≥
1

C

(
viy(i) +

∑
j 6=i

bjy(j)−
∑
j 6=i

bjz(j)
)

= E[ui(bi)]

thus proving the theorem.
Algorithm 4 picks each agent i with probability x∗(i)

C ,
and from the first constraint of LP (8), it must be that
x∗(i) ≥ θm(i) = Cωm(i). Hence, each agent has a minimum
probability of ωm(i) of being allocated a channel, which leads
to the following:

Theorem 3. The mechanism shown in Algorithm 4 computes
a ω-max-min fair allocation in expectation.

V. RELATED WORK

A plethora of recent studies show that the currently allocated
spectrum sees usage that varies drastically, both geographically
and temporally [2], [3]. For much of the time, licensed
spectrum is idle [26]. With increased demand for spectrum due
to the rapid growth of wireless applications, dynamic spectrum
access has been proposed as a solution for this problem.
Dynamic spectrum access schemes primarily rely on cognitive
radios [26], [27], which are flexible wireless devices capable
of switching its operating frequency. In the uncoordinated
approach to dynamic spectrum sharing, cognitive radios are
required to perform complex spectrum sensing operations in
order to ensure that its transmissions do not interfere with the
transmissions of the primary user [26], [28]. The coordinated
approach on the other hand gives control of spectrum usage
to the primary user directly. In such schemes, the primary
user pools unused spectrum, which is then periodically leased
to secondary users for short time durations using spectrum
auctions [6], [8].

Auctions have long been used as a mechanism for dis-
tributing scarce resources or goods amongst competing users.
An excellent treatment of auction theory can be found in the
monograph of Krishna [29]. A celebrated result in auction
theory is the VCG mechanism, which is due to the seminal
series of work by Vickrey [12], Clarke [14] and Groves [15].
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The VCG mechanism is the best known truthful mechanism,
but crucially, loses this property when applied to suboptimal
algorithms [16]. This renders VCG unsuitable for use in
real-time secondary spectrum auctions, since computing the
optimal interference-free channel allocation is NP-Hard.

Auctions for allocating spectrum for dynamic spectrum
access has received considerable attention recently. Subra-
manian et al. [8] designed a greedy graph-colouring based
algorithm for allocating spectrum while maximizing revenue in
cellular networks. Revenue-maximization is also the objective
of Gandhi et al. [7], who employed linear programming to
model interference constraints. However, both studies ignore
the possibility for strategic behaviour. In contrast, Jia et al. [9]
design an auction for maximizing revenue, while also guar-
anteeing truthful bidding is a dominant strategy for bidders.
Zhou et al. [4] also consider bidding behaviour of secondary
users, and showed that due to interference, greedy channel
assignment coupled with a VCG payment scheme yields a
mechanism that is not strategyproof. Instead, they propose
a greedy channel allocation scheme coupled with a tailored
payment scheme to ensure truthful bidding is a dominant
strategy of secondary users bidding for spectrum. Wu et al. [5]
propose a semi-definite programming based solution instead
for allocating channels, and design a mechanism that is not
only truthful, but scalable and resistant to collusion. The above
work all neglect the repeated nature of secondary spectrum
auctions, and do not take fair allocation into consideration.

VI. CONCLUSION

Secondary spectrum auctions are a promising approach for
spectrum sharing. In the interest of fairness, the outcome of
these repeating auctions should strive to increase the diversity
of users allocated spectrum, instead of greedily maximizing
social welfare. This mitigates starvation among users, encour-
ages users to continue taking part in the auction and reduces
the incentive for vindictive bidding. In this paper, we provide
two mechanisms that are provably strategyproof to achieve
this goal, for local and global fairness respectively. Our first
mechanism allows the primary user to ensure a minimum
level of service to secondary users in the system, while the
second mechanism computes an allocation that maximizes
social welfare subject to max-min constraints in expectation.
In the future, we plan to extend our work to consider additonal
measures of fairness, while considering more general models
of the secondary spectrum market.
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