11 research outputs found

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Scheduling parallel jobs to minimize the makespan

    Get PDF
    We consider the NP-hard problem of scheduling parallel jobs with release dates on identical parallel machines to minimize the makespan. A parallel job requires simultaneously a prespecified, job-dependent number of machines when being processed. We prove that the makespan of any nonpreemptive list-schedule is within a factor of 2 of the optimal preemptive makespan. This gives the best-known approximation algorithms for both the preemptive and the nonpreemptive variant of the problem. We also show that no list-scheduling algorithm can achieve a better performance guarantee than 2 for the nonpreemptive problem, no matter which priority list is chosen. List-scheduling also works in the online setting where jobs arrive over time and the length of a job becomes known only when it completes; it therefore yields a deterministic online algorithm with competitive ratio 2 as well. In addition, we consider a different online model in which jobs arrive one by one and need to be scheduled before the next job becomes known. We show that no list-scheduling algorithm has a constant competitive ratio. Still, we present the first online algorithm for scheduling parallel jobs with a constant competitive ratio in this context. We also prove a new information-theoretic lower bound of 2.25 for the competitive ratio of any deterministic online algorithm for this model. Moreover, we show that 6/5 is a lower bound for the competitive ratio of any deterministic online algorithm of the preemptive version of the model jobs arriving over tim

    Machine scheduling with precedence constraints : (preprint)

    Get PDF

    Sequencing and scheduling : algorithms and complexity

    Get PDF

    Strengths and Limitations of Linear Programming Relaxations

    Get PDF
    Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than 22 and ω(1)\omega(1), respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than 1.51.5 for the Vertex Cover Problem, and better than 22 for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of 2−Δ2-\varepsilon for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture
    corecore