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Abstract
Many of the currently best-known approximation algorithms for NP-hard optimiza-
tion problems are based on Linear Programming (LP) and Semi-definite Programming
(SDP) relaxations. Given its power, this class of algorithms seems to contain the most
favourable candidates for outperforming the current state-of-the-art approximation
guarantees for NP-hard problems, for which there still exists a gap between the inap-
proximability results and the approximation guarantees that we know how to achieve in
polynomial time. In this thesis, we address both the power and the limitations of these
relaxations, as well as the connection between the shortcomings of these relaxations and
the inapproximability of the underlying problem.

In the first part, we study the limitations of LP relaxations of well-known graph problems
such as the Vertex Cover problem and the Independent Set problem. We prove that
any small LP relaxation for the aforementioned problems, cannot have an integrality
gap strictly better than 2 and ω(1), respectively. Furthermore, our lower bound for the
Independent Set problem also holds for any SDP relaxation. Prior to our work, it was
only known that such LP relaxations cannot have an integrality gap better than 1.5 for
the Vertex Cover Problem, and better than 2 for the Independent Set problem.

In the second part, we study the so-called knapsack cover inequalities that are used
in the current best relaxations for numerous combinatorial optimization problems of
covering type. In spite of their widespread use, these inequalities yield LP relaxations
of exponential size, over which it is not known how to optimize exactly in polynomial
time. We address this issue and obtain LP relaxations of quasi-polynomial size that are
at least as strong as that given by the knapsack cover inequalities.

In the last part, we show a close connection between structural hardness for k-partite
graphs and tight inapproximability results for scheduling problems with precedence
constraints. This connection is inspired by a family of integrality gap instances of a
certain LP relaxation. Assuming the hardness of an optimization problem on k-partite
graphs, we obtain a hardness of 2− ε for the problem of minimizing the makespan
for scheduling with preemption on identical parallel machines, and a super constant
inapproximability for the problem of scheduling on related parallel machines. Prior
to this result, it was only known that the first problem does not admit a PTAS, and
the second problem is NP-hard to approximate within a factor strictly better than 2,
assuming the Unique Games Conjecture.
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Résumé
La majorité des algorithmes d’approximation dédiés à l’optimisation des problèmes de
type NP-difficile sont basés sur des relaxations de type Programmation Linéaire (LP)
et Programmation Semi-Définie (SDP). Cette classe d’algorithmes semble englober le
nombre le plus important de candidats qui pourraient surpasser les garanties d’approxi-
mations actuelles de pointe des problèmes de type NP-difficile, pour lesquels il existe
toujours un écart entre les résultats d’inaproximabilité et les garanties d’approximations
qui peuvent être résolus en temps polynomial. Nous examinons dans cette thèse la
puissance et les limites de ces relaxations, ainsi que la relation entre les défaillances de
ces dernières et l’inapproximabilité du problème sous-jacent.

Dans un premier temps, nous analysons les limites des relaxations de type LP relatifs à
des problèmes classiques du domaine de la théorie des graphes tels que le problème du
transversal minimum (Vertex Cover) et le problème du stable maximum (Independent
Set). Nous démontrons que n’importe quelle relaxation de type LP est incapable de réali-
ser un écart d’intégralité strictement inférieur à 2 et ω(1) pour les problèmes mentionnés
respectivement ci-dessus. De plus, le minorant relatif au problème du stable maximum
est également applicable à n’importe quelle relaxation de type SDP. Les études précé-
dentes avaient démontré que ces relaxations de type LP sont incapables d’avoir un écart
d’intégralité inférieur à 1.5 pour le problème du transversal minimum, et inférieur à 2
pour le problème du stable maximum.

Dans la deuxième partie, nous étudions les inégalités de couverture de Sac à Dos
(knapsack cover inequalities) utilisées dans les meilleures relaxations actuelles pour
de nombreux problèmes d’optimisation combinatoire de couverture (combinatorial
problems of covering type). Malgré leur application répandue, ces inégalités génèrent
des relaxations LP de taille exponentielle pour lesquelles les optimisations en temps
polynomial demeurent inconnues. Cette thèse traite ce problème et parvient à obtenir
des relaxations linèaires de taille quasi-polynomiale qui sont au moins aussi puissantes
que celles obtenues par les inégalités de couverture de Sac à Dos.

Dans la dernière partie nous démontrons l’existence d’un lien étroit entre la difficulté
de structure (structural hardness) pour les graphs k-partites et les résultats d’inapproxi-
mabilité étroite pour des problèmes de planification avec des relations de préséances
(scheduling with precedence constraints). Cette connexion est essentiellement basée sur
un groupe d’instances d’écarts d’intégralité d’une certaine relaxation de type LP. En sup-
posant qu’un problème d’optimisation sur des graphes k-partites est NP-difficile, nous
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obtenons une NP-difficulté égale à 2− ε pour le problème de "makespan minimization
for scheduling with preemption on identical parallel machines" et une super constante
d’inapproximabilité pour le problème de "scheduling on related parallel machines".
Avant les résultats de cette thèse, il était uniquement connu que le premier problème
n’admet pas de PTAS, et qu’il est NP-difficile d’approximer le second avec un facteur
strictement inférieur à 2, compte tenu de la conjecture des jeux uniques (Unique Games
Conjecture).

Mots clefs : Programmation Linéaire, Écart d’intégralité, Problèmes des Graphes, Pro-
blème de Sac à Dos, Problèmes de Planification
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1 Introduction

Perhaps the most basic goal in the field of computer science is to assess how rapidly we
can solve a given problem. The notion of speed in the theoretical branch of this field is
measured asymptotically with respect to the size n of the input. As time is an expensive
resource, the running time of an efficient algorithm is preferred to be at most polynomial
in n.

For many optimization problems, we are able to design efficient algorithms that always
return an optimal solution. In some of these cases, we can also prove that it is impossible
to find a faster algorithm. This resulted in a rich literature of efficient optimization
algorithms for problems that might seem to be very hard at first sight.

Nonetheless, for many other interesting problems, this goal is still out of reach due to the
unresolved status of the P vs. NP question. In other words, our current understanding
of computational complexity is short of designing efficient algorithms for NP-hard
combinatorial optimization problems, or ruling out such an option. To cope with this,
a long line of research in this area has focused on settling for a solution that is not
necessarily optimal, yet provably not very far from it. This paved the way for the
area of approximation algorithms, where a polynomial time algorithm is said to be
α-approximate if its solution is guaranteed to be at most α away from the optimal value.

It has been shown, however, that even with this kind of compromise, our task is not
necessarily easier in the worst case. For instance, finding an assignment that satisfies
99% of the clauses in a 3-SAT formula, or even 88% of them, is as hard as satisfying
all the clauses [57]. The study of the limits of approximation for this class of problems
resulted in the rich area of the hardness of approximation, where various approaches
have been used to understand these limits for approximation.

For example, the design of an α-approximation algorithm for certain problems, which
runs in polynomial time, would (dis)prove certain complexity assumptions, such as
P �=NP or the stronger Unique Games Conjecture (UGC). Alternatively, a parallel line

1



Chapter 1. Introduction

of research addresses the unconditional inapproximability of these problems when the
underlying algorithm belongs to a certain restricted family of approximation algorithms.

In particular, many of the currently best known approximation algorithms for NP-
hard optimization problems are based on Linear Programming (LP) and Semi-definite
Programming (SDP) relaxations. Given its power, this class of algorithms seems to
contain the most favourable candidates for outperforming the current state-of-the-art
approximation guarantees for NP-hard problems for which there still exists a gap
between the inapproximability results, and the approximation guarantees that we know
how to achieve.

In this thesis we will address both the power and the limitations of these relaxations.
On the one hand, we will focus on the limits of approximation algorithms that arise
from LP relaxations for the (generalization of the) VERTEX COVER problem, and from
LP and SDP relaxations for the INDEPENDENT SET problem. On the other hand, we
will prove that the strongest-to-date LP formulations for certain optimization problems
that required exponential size, can actually be approximated by quasi-polynomial size
LP formulations. In particular, we will prove that the exponentially many knapsack
cover inequalities which have been successfully used in the best known LP for many
optimization problems, can in fact be approximated with a quasi-polynomial number
of inequalities. Furthermore, we study the inapproximability of scheduling problems
with precedence constraints. Inspired by a family of integrality gap instances that fools
a powerful LP relaxation of the problem of scheduling precedence-constrained jobs on
identical parallel machines with preemption, we hypothesize that a certain k-partite
graphs ordering problem is hard. Assuming this hypothesis, we are able to prove tight
inapproximability results for the aforementioned scheduling problem and rule out any
constant factor approximation for the problem of scheduling precedence-constrained
jobs on related machines. A special case of this theorem for bipartite graphs is known to
hold, assuming a variant of the UGC, and it yields tight inapproximability results for
two other important scheduling problems. Thus, our hypothesis seems to capture the
intrinsic hardness of scheduling problems with precedence constraints.

This chapter serves as a general introduction for the remaining chapters of this thesis
and it introduces the basic notions that will be repeatedly used thereafter. In particular,
we give a general definition of approximation algorithms in Section 1.1, and then focus
in Section 1.2 on those algorithms that are based on LP relaxations. We also define in
Section 1.2 how to asses the performance of an LP relaxation in terms of its size and its
integrality gap. Following that, we then summarize the contributions of this thesis in
Section 1.3, and give a general outline of the remaining chapters in Section 1.4.

2



1.1. Approximation Algorithms

1.1 Approximation Algorithms

Let I be an instance of an NP-hard optimization problem L, and let OPTL(I) denote
the optimal value for this instance. Assuming P �=NP, designing a polynomial time
algorithm that returns OPTL(I) for every instance I of L is not possible. To cope
with the intractability of such problems, we design an approximation algorithm ALGL

for L, that returns a value ALGL(I) for every instance I of L. ALGL is then called an
α-approximation algorithm for L if ALGL(I) is at most a factor of α away from OPTL(I)

for every instance I of L. Formally, an α-approximation algorithm is defined as follows:

Definition 1.1. Let α ≥ 1 be the approximation factor. Given a minimization problem L,
we say that ALGL is an α-approximation algorithm for L, if for every instance I ∈ L,
ALGL(I)
OPTL(I)

≤ α. Alternatively an α-approximation algorithm for a maximization1 problem L

should satisfy OPTL(I)
ALGL(I)

≤ α for every instance I ∈ L.

Remark 1.2. Hereinafter, we define the various notions in terms of minimization problems
for ease of presentation. These concepts can then be generalized to maximization
problems in the natural way.

Given that the VERTEX COVER problem is one of the main problems that we tackle in this
thesis, we will use it as a running example in the introduction to illustrate the various
concepts of interest.

Formally, given a graph G = (V, E), we say that a subset S ⊆ V of vertices is a vertex
cover of G if every edge e ∈ E is covered by S, i.e., at least one of the endpoints of e is in
S. Equipped with this, the VERTEX COVER problem can be defined as follows:

Definition 1.3. In the VERTEX COVER problem, we are given a graph G = (V, E), and
the goal is to find a minimum cardinality2 set S ⊆ V such that S is a vertex cover of G.

The (decision version of the) VERTEX COVER problem is perhaps one of the most used
examples of NP-complete problems, and appeared in Karp’s list of 21 NP-complete
problems [66]. Thus desigining a polynomial time algorithm that is guaranteed to return
an optimal vertex cover for any graph G, is equivalent to proving that P=NP.

However, if we are willing to settle for a 2-approximation of the VERTEX COVER problem,
then an easy algorithm such as the one presented in Algorithm 1 does the job.

It is not hard to see that Algorithm 1 runs in polynomial time, and that its output S is
a vertex cover. To see that it indeed returns a 2-approximation of the vertex cover (i.e.,
the cardinality of the returned vertex cover S is at most twice the size of the minimum

1One can equivalently define an α-approximation algorithm for a maximization problem L for 0 < α ≤ 1
by requiring ALGL(I)

OPTL(I)
≥ α

2Alternatively, if G is vertex-weighted, then the goal is to find a minimum weight vertex cover S.

3



Chapter 1. Introduction

Algorithm 1 Greedy 2-approximation algorithm for the VERTEX COVER problem.

1: S ←− ∅.
2: ES ←− ∅.
3: E′ ←− E.
4: repeat
5: Let e = (u, v) be an arbitrary edge of E′.
6: S ←− S ∪ {u, v}.
7: ES ←− ES ∪ {e}.
8: Remove any edge incident to either u or v from E′.
9: until E′ = ∅

10: return S.

cardinality vertex cover of G), note that the edges in ES are vertex disjoint, hence any
vertex cover (and in particular the optimal vertex cover S∗), must contain at least one
endpoint of each edge in ES. Thus |S∗| ≥ |ES|. Moreover, the size of S, the output of
Algorithm 1, is exactly twice that of ES. Combining all of these we obtain that

|S| = 2|ES| ≤ 2|S∗| .

In the next section, we present another easy 2-approximation algorithm for the VERTEX

COVER problem that is based on LP relaxations, the main topic of this thesis.

1.2 Relaxation-based Approximation Algorithms

One strong and consistent way for designing approximation algorithms is to solve exactly
a relaxed version of the problem at hand, and then translate the result to an approximate
solution to the original problem.

Similarly to the previous section, we use the VERTEX COVER problem to explain this
family of approximation algorithms.

LP Relaxation for the VERTEX COVER Problem. Given a graph G = (V, E) over n =

|V| vertices, the VERTEX COVER problem can be formulated exactly as the following
optimization problem:

Minimize: |S|
Such that: S ⊆ V and S is a vertex cover of G,

or equivalently as:

Minimize: ∑
v∈V

xv (VC-ILP)

4



1.2. Relaxation-based Approximation Algorithms

Subject to: xu + xv ≥ 1 ∀e = (u, v) ∈ E (ILP.I)

x ∈ {0, 1}n , (ILP.II)

where we think of each binary vector x ∈ {0, 1}n as the indicator vector of some set
S ⊆ V. It is not hard to see that satisfying the constraints of type (ILP.I) for every edge
e = (u, v) ∈ E, guarantees that x is indeed an indicator vector for an actual vertex cover
Sx ⊆ V of G, where Sx = {v : xv = 1} is the set indicated by the binary vector x.

We refer to (VC-ILP) as the Integer Linear Programming (ILP) formulation of the VERTEX

COVER problem, as the underlying objective function and the constraints are linear, and
the feasible solution x are restricted to being integral (boolean in this case).

Solving ILPs in general is an NP-hard problem itself, but dropping the integrality
constraints renders the problem much easier. In particular, if we relax the integrality
constraints (ILP.II), and allow x to take fractional values instead, we get an LP that we
know how to solve efficiently in polynomial time, at the expense of allowing feasible
solutions x ∈ [0, 1]n that do not necessarily correspond directly to actual subsets of
vertices.

By relaxing the integrality constraints (ILP.II) of (VC-ILP), we get the following well-
known LP relaxation of the VERTEX COVER problem:

Minimize: ∑
v∈V

xv (VC-LP)

Subject to: xu + xv ≥ 1 ∀e = (u, v) ∈ E (LP.I)

0 ≤ xv ≤ 1 ∀v ∈ V . (LP.II)

Since any vertex cover of G (and hence any feasible solution for (VC-ILP)) corresponds
to a feasible solution of (VC-LP), it follows that the optimal value of (VC-LP) is a lower
bound on the optimal cardinality vertex cover. Formally, if we let OPT(G) and LP(G)

denote the cardinality of the optimal vertex cover of G, and the optimal value of (VC-LP)
respectively, then we get that

LP(G) ≤ OPT(G) , (1.1)

for any graph G = (V, E).

Albeit trivial, Equation 1.1 is at the essence of most LP based approximation algorithms
and, in some sense, suggests a natural way of designing them, as we will see in the
following section.

LP-Based Approximation Algorithm for the VERTEX COVER Problem. We will re-
strict ourselves in most of the chapters of this thesis to algorithms arising from LP and
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SDP relaxations. In order to quantify the complexity of a problem in this context, we
resort to studying the minimum size of a relaxation that could be useful in providing a
good approximation guarantee.

To this end, we measure the quality of a relaxation by its integrality gap that roughly
translates to how well this relaxation can approximate the original problem. The complex-
ity of the relaxation (also known as the size of the relaxation) is measured by the number
of required inequalities. Hence, the task of proving unconditional inapproximability
results for this model of computation boils down to proving that any relaxation that has
an integrality gap of at most α must have a large size.

To begin with, it is easy to see that the size of (VC-LP) is (|E|+ 2|V|) since we have
|E|-many inequalities of type (LP.I) and 2|V|-many inequalities of type (LP.II)3.

Moreover, given any (fractional) solution x′ ∈ Rn
+ of (VC-LP) of value valLP(x′) =

∑v∈V x′v, we can easily translate it to an actual vertex cover of cost no more than twice of
valLP(x′). To see this, define the operator �.
 : [0, 1]n → {0, 1}n to be

�z
v =

{
1 if zv ≥ 1

2

0 o.w. ,
(1.2)

for any z ∈ [0, 1]n. Since x′ is a feasible solution for (VC-LP), and in particular satisfies
every constraint of type (LP.I), we get that for every edge e = (u, v) ∈ E, at least one
of x′u or x′v is greater than or equal to 1

2 . Thus �x′
 also satisfies all the constraints of
type (LP.I). Moreover, �x′
 ∈ {0, 1}n has only boolean entries by construction (hence
satisfies (LP.II)), so we get that �x′
 is also a feasible integer solution for (VC-LP). Hence
by viewing �x′
 as an indicator vector of a set S�x′
 in the natural way, we get that S�x′

is a vertex cover and∣∣S�x′
∣∣ = ∑

v∈V
�x′
v ≤ 2 ∑

v∈V:x′v≥1/2
x′v ≤ 2 ∑

v∈V
x′v = 2 valLP(x′) .

It follows from the above reasoning and Equation (1.1) that Algorithm 2 provides a
2-approximation for the VERTEX COVER problem:

Algorithm 2 LP-bases 2-approximation algorithm for the VERTEX COVER problem.

1: x ←− optimal solution of (VC-LP).
2: z ←− �x
.
3: return Sz.

We can actually show that Algorithm 2 is in fact tight, in the sense that we cannot design

3Since (VC-LP) is a minimization problem, constraint (LP.II) can be replaced by xv ≥ 0, hence after
removing redundant constraints, the size of the relaxation becomes |V|+ |E|.
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an approximation algorithm that returns an integral solution of cost strictly better than
twice the cost of (VC-LP), even if we employ a more sophisticated rounding scheme.
This is due to the fact that the approximation guarantee of an LP-based algorithm cannot
be better than the integrality gap of the underlying LP, and the integrality gap of (VC-LP)
is 2. Formally, the integrality gap is defined as follows:

Definition 1.4. Let L be an minimization problem, and let LPL be an LP formulation of
L. For every instance I ∈ L, let OPTL(I) be the optimal value of I, and LPL(I) be
the optimal value of the LP formulation for the instance I. Then the integrality gap of
LPL is defined as

sup
I∈L

OPTL(I)

LPL(I)
.

In order to prove that the integrality gap of an LP relaxation LPL of a minimization
problem L is at least α, it would then be enough to construct an instance Ibad of L such
that OPTL(Ibad)

LPL(Ibad)
= α.

For instance, to see that the integrality gap of (VC-LP) is 2 as the number of vertices n
tends to infinity, consider Kn, the complete graph over n vertices. It is not hard to see
that any subset S of vertices such that |S| ≤ n− 2 would leave at least 1 edge uncovered,
thus any vertex cover of Kn has size at least n− 1. However, x = (1/2, 1/2, · · · , 1/2) ∈
[0, 1]n is a feasible solution for (VC-LP) with cost ∑v∈V xv = n

2 . It then follows from
Definition 1.4 that the integrality gap of (VC-LP) is at least

OPTVC(Kn)

VC-LP(Kn)
=

n− 1
n/2

= 2− 2
n

.

The importance of the integrality gap of an LP stems from the fact that most LP based
approximation algorithm can be seen as the (generic) Algorithm 3, where round(.) is
any procedure with the following guarantee:

if x is a feasible solution of the LP relaxation LPL with cost LPL(x), then z =

round(x) is an integral feasible solution of LPL such that LPL(z) ≤ αLPL(x).

It is not hard to see that Definition 1.4 implies that the integrality gap is a lower bound
on α of round(.), since OPTL(I) ≤ LPL(z) for any integral feasible solution z, hence
α ≥ OPTL(I)

LPL(x) = OPTL(I)
LPL(I)

.

For the VERTEX COVER problem, the round(.) procedure corresponds to the simple �.

operator defined in Equation 1.2 that has a guarantee α ≤ 2.

In most of the chapters of this thesis, we will mainly be interested in the minimum size
of an LP relaxation required to guarantee a good integrality gap. For example, we prove
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Algorithm 3 Generic LP based α-approximation algorithm of problem L.

1: Input: Instance I of L.
2: Output: Integral solution x of I.
3: Let LPL be an LP relaxation of L.
4: x ←− optimal solution of LPL(I).
5: z ←− round(x).
6: Return z.

in Chapter 4 that even sub-exponential size LPs for the VERTEX COVER problem will still
have an integrality gap of 2. On the positive side, we prove in Chapter 5 that for certain
other problems whose LP relaxations were known to be of exponential size because they
are strengthened by the so-called knapsack cover inequalities, we can in fact obtain a
quasi-polynomial size relaxation without affecting the integrality gap by much.

1.3 Overview of our Contributions

As it has become apparent thus far, LP relaxations constitute the main theme of this
thesis. In particular, we study the following three aspects of these relaxations:

Limitations: In this context, our task is to prove LP lower bounds for a certain
combinatorial problem. Specifically, this translates to statements that read as
follows:

For a combinatorial problem Π, any LP relaxation that has a good integrality gap, must
have a very large size.

Power: Alternatively, here we are interested in proving LP upper bounds. State-
ments in this context read as follows:

Although the known LP relaxations with a small integrality gap for problem Π are huge,
there exists substantially smaller LP relaxations for this problem with roughly the same

guarantee.

Implications: For many optimization problems, LP-based approximation algo-
rithms are known to be the most powerful. This suggests in some cases that (a
variant of) the LP integrality gap instances might also capture the intrinsic hard-
ness of the problem in general computation models, and not only in the LP setting.
Thus our final results in this setting can be simply seen as inapproximability results
and they read as follows:

Assuming certain complexity assumptions, no polynomial time algorithm can achieve a
good approximation guarantee for the combinatorial problem Π.

We are now ready to present an overview on the main contributions of this thesis.
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LP Lower Bounds. In Chapter 3, we study the LP approximability of two CONSTRAINT

SATISFACTION PROBLEMS which we refer to as 1F-CSP and K-NOR, and are formally
defined in Definitions 2.6 and 2.7 respectively. We show that any small LP cannot have a
bounded integrality gap for these two problems.

Using the LP-hardness in Chapter 3, we are able to prove the following inapproximability
results in Chapter 4:

1. We prove that any LP, whose size is sub-exponential, cannot have an integrality
gap strictly better than 2 for the VERTEX COVER problem. This improves upon the
previous known integrality gap of 1.5 [24] for same-size LPs4.

2. For the generalization of the VERTEX COVER problem of q-uniform hypergraphs,
that we denote by q-UNIFORM-VERTEX-COVER, we show that any LP whose size is
at most quasi-polynomial cannot have an integrality gap strictly better than q for
this problem. Despite the importance of this problem, no LP-lower bound for large
LPs was known for this problem except for the 1.5 LP-hardness of [24] implied by
their VERTEX COVER lower bound.

3. We prove that any LP whose size is sub-exponential cannot have a bounded
integrality gap for the INDEPENDENT SET problem. This improves upon the
previous known integrality gap of 2 [24] for same-size LPs. We also generalize our
results to any SDP approximating the INDEPENDENT SET problem; we prove that
any polynomial size SDP cannot have a bounded integrality gap for this problem.

Our results in Chapters 3 and 4 are based on a joint work with Samuel Fiorini, Sebastian
Pokutta and Ola Svensson, published in FOCS 2015 [13].

LP Upper Bounds. Initially developed for the MIN-KNAPSACK problem, the knapsack
cover inequalities are used in the current best relaxations for numerous combinatorial
optimization problems of covering type. In spite of their widespread use, these inequali-
ties yield LP relaxations of exponential size, over which it is not known how to optimize
exactly in polynomial time. In Chapter 5, we address this issue and obtain LP relaxations
of quasi-polynomial size that are at least as strong as those given by the knapsack cover
inequalities.

For the MIN-KNAPSACK cover problem, our main result can be stated formally as follows:
for any ε > 0, there is a (1/ε)O(1)nO(log n)-size LP relaxation with an integrality gap of
at most 2 + ε, where n is the number of items. Prior to this work, there was no known
relaxation of subexponential size with a constant upper bound on the integrality gap.

4Both our results and the results of [24] prove the LP-hardness for quasi-polynomial size LPs, as both
works use the results in [31] as intermediate steps. However, the sub-exponential lower bound in both can
be obtained by using the latter improvement of [31] in [71] as a blackbox.

9
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Moreover, we show that our technique can be applied to the generalization of the
knapsack cover inequalities, known as the flow-cover inequalities. In particular, we
show that we can also approximate this type of inequalities by a quasi-polynomial size
LP.

Our results in Chapter 5 are based on a joint work with Samuel Fiorini, Ola Svensson
and Sangxia Huang, published in SODA 2017 [12].

Scheduling with Precedence Constraints. In Chapter 6, we show a close connection
between structural hardness for k-partite graphs and tight inapproximability results
for scheduling problems with precedence constraints. Assuming a natural but nontriv-
ial generalization of the bipartite structural hardness result of [8], we obtain a hard-
ness of 2− ε for the problem of minimizing the makespan for scheduling precedence-
constrained jobs with preemption on identical parallel machines. This matches the best
approximation guarantee for this problem [53, 47]. Prior to our work, it was only known
that this problem does not admit a PTAS. This generalization from bipartite to k-partite
graphs is in fact motivated by the structure of the integrality gap instances of the LP
relaxation of the scheduling problem.

Assuming this same hypothesis, we also obtain a super constant inapproximability
result for the problem of scheduling precedence-constrained jobs on related parallel
machines, hence making progress towards settling an open question in both lists of ten
open questions by Williamson and Shmoys [105], and by Schuurman and Woeginger [97].
Prior to this result, it was only known that this problem is NP-hard to approximate
within a factor of 2, assuming the UGC [101].

Our results in Chapter 6 are based on a joint work with Ashkan Norouzi-Fard, published
in ESA 2015 [14].

1.4 Outline of the Thesis

We begin in Chapter 2 by presenting the required preliminaries of this thesis. Specifically,
we include for completeness a definition of CONSTRAINT SATISFACTION PROBLEMS in
Section 2.1, as this class of problems will be used heavily in Chapters 3 and 4. We
also define in Section 2.2 some of the main concepts that will be used throughout the
thesis such as formulation complexity, extension complexity and the different models of
computations in this setting.

In Chapter 3 we prove the LP lower bounds for 1F-CSP and K-NOR, our CONSTRAINT

SATISFACTION PROBLEMS of interest. Equipped with this, we are able to prove in Chap-
ter 4 LP lower bounds for the following three problems: VERTEX COVER, INDEPENDENT

SET and q-UNIFORM-VERTEX-COVER. In Chapter 5, we study the size of a good extended
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formulation for the knapsack problem, and prove LP upper bounds for the aforemen-
tioned problem as well as some of the related problems. Then in Chapter 6 we study
the hardness of approximation of scheduling problems with precedence constraints
by noting a close connection between a certain k-partite graph ordering problem, and
these scheduling problems. We conclude in Chapter 7 by presenting potential research
directions that can either build upon the results of this thesis, or improve the results
therein.

All the chapters of this thesis are to some extent self-contained in the sense that a reader
who is interested in

LP Lower bounds, can read Chapters 2 and 3 to understand the LP lower bounds for
CONSTRAINT SATISFACTION PROBLEMS, and Chapters 2 and 4 to understand the
LP lower bounds for the (generalization of the) VERTEX COVER problem and the
INDEPENDENT SET problem, assuming the results of Chapter 3.

LP Upper bounds, can read Chapters 2 and 5 in order.

Inapproximability results, can read only Chapter 6.

For completeness, we also include in Appendix A definitions of the main problems that
we tackle or mention in this thesis.
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2 Preliminaries

We present in this chapter the required notions and definitions that will frequently
appear throughout the thesis. Specifically, we give a formal definition of Constraint
Satisfaction Problems in Section 2.1, as this class of problems will be used heavily in
Chapters 3 and 4. We also define, in Section 2.2, some of the main concepts that will
be used throughout the thesis such as formulation complexity, extension complexity and
the different models of computations in this setting. Before we proceed, note that
throughout the thesis, we use the following notations to define sets of numbers.

Definition 2.1. For an integer n ∈ N+, let �n� denote the following set:

�n� = {0, 1, . . . , n− 1} .

Definition 2.2. For an integer n ∈ N+, let [n] denote the following set:

[n] = {1, 2, . . . , n} .

2.1 Constraint Satisfaction Problems

Before we define the class of CONSTRAINT SATISFACTION PROBLEMS, we note that in
this context, the terms constraints and predicates have been used interchangeably in the
literature, however for the sake of clarity, we differentiate between the two.

Constraints vs. Predicates. We define a predicate P := Pk,R, f : �R�k → {0, 1} by
specifying its arity k, its (variables) domain �R� and the truth table of its function f :
�R�k → {0, 1} mapping each of the |R|k possible inputs x ∈ �R�k to either P(x) =

f (x) = 0 or P(x) = f (x) = 1. For example, the well-known boolean 3-SAT predicate
defined as (x1 ∨ x2 ∨ x3) has arity k = 3, domain R = 2, and its corresponding function
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f : {0, 1}3 → {0, 1} sets:

f (x) =

{
0 if x = (x1 = 0, x2 = 0, x3 = 0)
1 o.w.,

for all x ∈ {0, 1}3. Note that for z ∈ �R�k, and 1 ≤ i ≤ k, we used zi to denote the i-th
entry of z.

Fact 2.3. The number of distinct predicates of arity k and domain size R is 2Rk
.

Given a binary1 predicate P : {0, 1}k → {0, 1}, the free bit complexity of P is defined to be
log2(|{z ∈ {0, 1}k : P(z) = 1}|). For example, the MAX CUT predicate xi ⊕ xj has a free
bit complexity of one, since the only two accepting configurations are (x1 = 0, x2 = 1)
and (x1 = 1, x2 = 0). Notwithstanding that the notion of (free) bits suggests that the
predicate must be binary, we abuse the notation and say that a predicate P : �R�k →
{0, 1} over arbitrary domain R ≥ 2 has zero free bit complexity, if the number of
satisfying assignment is equal to 1.

Fact 2.4. The number of distinct binary predicates of arity k and free bit complexity one is (2k

2 ).

A constraint C := CPk,R, f ,n,S,A : �R�n → {0, 1} in our terminology can be defined by
specifying the following parameters:

1. The underlying predicate P := Pk,R, f .

2. The number of variables n.

3. The ordered subset S = {i1, . . . , ik} ⊂ [n] of the variables that C is applied to.

4. The literals assignment A ∈ �R�k.

In this terminology, we define CPk,R, f ,n,S,A(x) for x ∈ {0, 1}n as

CPk,R, f ,n,S,L(x) = P(xi1 �R A1, xi2 �R A2, . . . , xik �R Ak) ,

where �R is subtraction2 modulo R. In the binary case, A dictates whether the variables
indexed by S appear negated in the constraints or not. For example, the boolean 3-SAT
constraint C = (x3 ∧ x̄5 ∧ x̄7) corresponds in our case to P being the 3-SAT predicate,
the set S = {3, 5, 7} ⊂ [n] with n ≥ 7 being the number of variables, and A = (0, 1, 1)
indicating that the second and third literals, according to S, appear negated in C. When
the predicate Pk,R, f , and the number of variables n are clear from the context, we index
the constraint C by S and A, i.e., CS,A.

1A predicate is called binary if R = 2, i.e., if its domain is {0, 1}k.
2Although the addition modulo R (denoted by ⊕R) is the more used convention, we prefer the �R as it

makes our definition for K-NOR more natural.
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Fact 2.5. The number of distinct constraints CPk,R, f ,n,S,L(x) over n variables for a fixed predicate
Pk,R, f is 2k · k!

For the sake of presentation, we drop the subscripts of the predicates and the constraints
when they are clear from the context. We also say that a constraint C is of type P where P
is a predicate, if P is the underlying predicate of C.

CONSTRAINT SATISFACTION PROBLEMS. The class of CONSTRAINT SATISFACTION

PROBLEMS (CSPs) captures a large variety of combinatorial problems, such as MAX

CUT and MAX 3-SAT. In general, we are given a collection of k-arity predicates P =

{P1, . . . , P�} over the domain �R�, and a collection of constraints C = {C1, . . . , Cm} over
n variables where each constraint Ci ∈ C is of type Pj for some Pj ∈ P. The goal in such
problems is to find an assignment for x ∈ �R�n in such a way as to maximize the total
fraction of satisfied predicates.

The value of an assignment x ∈ �R�n for a CSP instance I is defined as

ValI(x) :=
1
m

m

∑
i=1

Ci(x) = E
C∈C

[C(x)] ,

and the optimal value of such instance I, denoted by OPT(I) is

OPT(I) = max
x∈�R�n

ValI(x).

To be more precise, we define a CONSTRAINT SATISFACTION PROBLEM Π := ΠP,n by
specifying the collection of allowed predicates P, and the number of variables. An
instance I of Π is then specified by a collection C of constraints where each constraints
C ∈ C is of type P for some P ∈ P, and is over n variables. We abuse this notation for
well-known problems where the predicate is implicit in the name of problem; for in-
stance, we say MAX 3-SATn to denote the CONSTRAINT SATISFACTION PROBLEM defined
over n variables where the only predicate is the 3-SAT predicate.

For the rest of this chapter, we are mainly interested in the following two CONSTRAINT

SATISFACTION PROBLEMS that we denote by 1F-CSP and K-NOR, respectively.

Recall that a binary predicate P is said to have one free bit if its number of accepting
configurations is exactly 2. Thus we define our 1F-CSPn,k problem (where 1F stands for
one Free bit) to be the CONSTRAINT SATISFACTION PROBLEM over n variables where the
set of predicates P is the collection of all one free bit predicates of arity k.

Definition 2.6 (1F-CSP). For a fixed arity k, the 1F-CSPn,k problem is a CONSTRAINT

SATISFACTION PROBLEM over a set of boolean variables {x1, . . . , xn}, where the collection
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of predicates P contains all the one free bit predicates of arity k. In other words, for
every instance I of 1F-CSPn, and every constraint C of I, C has only two accepting
configurations out of the 2k possible ones.

Before we define the K-NORn, we review a well-know zero free bit predicate, the K-NOR
predicate that is the generalization of the NOR gate to k binary inputs. Namely, K-NOR :
{0, 1}k → {0, 1} is defined to be:

K-NOR(x) =

{
1 if x=0

0 o.w..

where 0 ∈ {0, 1}k is the all zero input. The K-NOR can be generalized in the natural way
to any additive group ZR (i.e., for any domain �R�) with R > 2 by setting K-NOR(x) = 0
for all x ∈ �R�k \{0}, and K-NOR(0) = 1. Note that with this generalization, K-NOR
still has zero free bit complexity. Thus, a constraint CS,A of type K-NOR over n variables
indexed by a subset of indices S = {i1, · · · , ik} and literals assignment A = (a1, · · · , ak)

is then defined to be

CS,A(x) = K-NOR(xi1 �R A1, xi2 �R A2, . . . , xik �R Ak) ,

or equivalently,

CS,A(x) = 1 if and only if
k∧

j=1

(xij = aj) .

We are now ready to define the K-NOR problem.

Definition 2.7 (K-NOR). The K-NORn,R problem is a CONSTRAINT SATISFACTION PROB-
LEM over a set of variables {x1, . . . , xn} and the domain �R�, where the only predicate
allowed is the K-NOR predicate, i.e., P = {K-NOR}.

2.2 Formulations and Computational Models

Throughout most of the chapters of this thesis, we are mainly interested in the power
and the limitations of LP relaxations. In this section, we present the notions that will
appear frequently in this context.

2.2.1 Polytopes and Extended Formulations

For completeness, we provide in this section some definitions for basic geometric struc-
tures and notions that will come in handy for the remainder of this thesis. Namely, we
define polytopes and polyhedra (singular polyhedron), and the extended formulations and the
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extension complexity of a polytope.

Definition 2.8. A polyhedron Q ⊆ Rn is the intersection of finitely many halfspaces, i.e.,

Q = {y ∈ Rn : Ax ≤ b} ,

where A ∈ Rm×n, and b ∈ Rm×1.

Definition 2.9. A polytope P ⊆ Rn is a bounded polyhedron. Equivalently, a polytope
can be defined as the convex hull of finitely many points X ∈ Rn.

For example, the spanning tree polytope of a graph G = (V, E) is defined as:

CONV
(

χT ∈ {0, 1}|E| : χT is the indicator vector of a spanning tree T of G
)

.

For the scope of this thesis, the polytopes that we discuss either arise from taking the
convex hull of the feasible solutions of a certain combinatorial problem, or correspond
to the feasible region of a bounded LP relaxation.

Let P ⊆ Rn be a polytope and Q ⊆ Rn be a polyhedron containing P. The complexity of
the polyhedral pair (P, Q) can be measured by its extension complexity, which roughly
measures how compactly we can represent a relaxation of P contained in Q. The formal
definition is as follows.

Definition 2.10. Given a polyhedral pair (P, Q) where P ⊆ Q ⊆ Rn, we say that a
system E�x + F�y � g�, E=x + F=y = g= in Rn+k is an extended formulation of (P, Q)

if the polyhedron R := {x ∈ Rn | ∃y ∈ Rk : E�x + F�y � g�, E=x + F=y = g=}
contains P and is contained in Q. The size of the extended formulation is the number of
inequalities in the system. The extension complexity of (P, Q), denoted by xc(P, Q), is the
minimum size of an extended formulation of (P, Q).

Although the case P = Q is probably the most frequent, we will need polyhedral
pairs in Chapter 5. Note that in this case (i.e., when P = Q), we can further simplify
Definition 2.10 by alternatively defining the extended formulation of a polytope P by
the description of 1) a polyhedron R ∈ Rn+k and 2) an affine map π : Rn+k → Rn, such
that π(R) = P.

2.2.2 Formulation Complexity

Before we define the formulation complexity of an optimization problem, we shall first
give a general definition of the latter.

Definition 2.11. An optimization problem Π = (S, I) consists of a (finite) set S of feasible
solutions and a set I of instances. Each instance I ∈ I specifies an objective function
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from S to R+. We will denote this objective function by ValI for maximization prob-
lems, and CostI for minimization problems. We let OPT(I) := maxS∈S ValI(S) for a
maximization problem and OPT(I) := minS∈S CostI(S) for a minimization problem.

With this in mind we can give a general definition of the notion of an LP relaxation of an
optimization problem Π. We deal with minimization problems first.

Definition 2.12. Let ρ ≥ 1. A factor-ρ LP relaxation (or ρ-approximate LP relaxation) for a
minimization problem Π = (S, I) is a linear system Ax ≥ b with x ∈ Rd together with
the following realizations:

(i) Feasible solutions as vectors xS ∈ Rd for every S ∈ S so that

AxS ≥ b , for all S ∈ S .

(ii) Objective functions via affine functions fI : Rd → R for every I ∈ I such that

fI(xS) = CostI(S) , for all S ∈ S .

(iii) Achieving approximation guarantee ρ via requiring

OPT(I) ≤ ρ LP(I) , for all I ∈ I ,

where LP(I) := min { fI(x) | Ax ≥ b}.

Similarly, one can define factor-ρ LP relaxations of a maximization problem for ρ ≥ 1. In
our context, the concept of a (c, s)-approximate LP relaxation will turn out to be most
useful. Here, c is the completeness and s ≤ c is the soundness. For a maximization problem,
this corresponds to replacing condition (iii) above with

(iii)’ Achieving approximation guarantee (c, s) via requiring

OPT(I) ≤ s =⇒ LP(I) ≤ c , for all I ∈ I .

The size of an LP relaxation is the number of inequalities in Ax ≥ b. We let fc+(Π, ρ)

denote the minimum size of a factor-ρ LP relaxation for Π. In the terminology of [25],
this is the ρ-approximate LP formulation complexity of Π. We define fc+(Π, c, s) similarly.

Relation between Formulation and Extension Complexity. Let Π = (S, I) be a max-
imization problem as in Definition 2.11, and consider a (c, s)-approximate LP relaxation
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2.2. Formulations and Computational Models

of Π consisting of a linear system Ax ≤ b, x ∈ Rd, and encodings XS = {xS : S ∈ S}
and { fI : I ∈ I} of feasible solutions and objective functions respectively.

We now define the polyhedral pair (P, Q) as follows:

P = conv
(
XS

)
, Q =

{
x ∈ Rd : fI(x) ≤ c, ∀I ∈ I

}
.

Recall that the function fI are affine. Given that we started from a valid LP relaxation
of Π, we get that P ⊆ Q. Moreover, if we define K to be

K = {x ∈ Rd : Ax ≤ b} ,

we get that P ⊆ K ⊆ Q. Thus, the formulation complexity of Π is the minimum size of
an extended formulation over all possible linear encodings of Π.

2.2.3 Uniform vs. Non-Uniform Models

In order to be able to discuss the power and limitations of LP relaxations, one should first
fix the computational model in use. In this context, we typically differentiate between
two models of computation, namely the uniform and the non-uniform models.

Remark 2.13. We stress however that this should not be confused with the usual notion of
uniform and non-uniform models in the context of circuits and Turning Machines (TM). There,
a uniform TM for a problem Π, is a TM that is supposed to solve any instance of Π, irrespective
of the size of the instance; whereas a non-uniform circuit for the same problem that is further
parametrized by n is supposed to solve any instance of Π of size n. In particular, we have a
different circuit for every input size n. That is, when designing a non-uniform model, we have
the extra information of knowing the size of the instances that we are interested in solving. In
contrast, both uniform and non-uniform models of computation for LP relaxations are in the
same spirit of the usual notion of non-uniform models.

Specifically, both of these models assume extra information about the problem that we
are interested in solving, yet they differ in the amount of information that they are given.
The difference is perhaps best illustrated in the context of graph problems:

Non-uniform model: Given a graph G = (V, E), write down a single set of con-
straints that is supposed to solve the graph problem on any induced subgraph of
G. Here the constraints are allowed to adapt to the structure of the graph G, yet
the induced subgraphs of interest only appear in the objective function of the LP.

Uniform model: Given n, write down a single set of constraints that is supposed
to solve the graph problem on any graph of n vertices. Here the only information
that is provided at the time of writing down the LP constraints is the (maximum)
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number of vertices. The actual graph of interest is revealed only in the objective
function.

Remark 2.14. Specifying an induced subgraph H = (V ′, E∩ (V ′ ×V ′)) of a graph G = (V, E)
with V ′ ⊆ V is equivalent to providing a 0/1 weight function w ∈ {0, 1}|V| on the vertices of
G. Similarly, specifying a graph H = (V, E) such that |V| ≤ n, is equivalent to providing a
weight function w ∈ {0, 1}n×n of the edges of Kn, the complete graph over n vertices. Thus, an
instance of the problem in the non-uniform model could be thought of as being specified by a 0/1
weight function on the vertices of the input graph G; whereas an instance of the problem in the
uniform model can be thought of as being specified by a 0/1 weight function on the edges of the
complete graph Kn.

From a high level the difference between the two computational models is that the
purpose of the non-uniform model is to write down a single LP formulation for all the
weighted versions of a single specific instance, whereas the goal in the uniform model is
to write a single LP for a whole family of instances. This implies that lower bounds on
the LP formulation in the non-uniform model are stronger, because the constraints of
the LP in this case are allowed to adapt to the instance. In both computational models,
we do not bound the coefficients in the constraints or the time required to write down
these constraints, but we are only interested in the number of inequalities defining the
feasible region of the LP.

Although an optimization problem can be studied in any of the two models of com-
putation, in some cases one of the models is more natural given the structure of the
problem. For instance, the natural way to write down an LP relaxation for the VERTEX

COVER problem as we saw in Section 1.2 is to assume that we know the graph of interest
at the time we write down the constraints of the LP. This corresponds to the VERTEX

COVER problem in the non-uniform model that we study in Chapter 4, denoted by
VERTEX COVER(G) for a graph G = (V, E) and defined as follows:

VERTEX COVER(G): Given a graph G = (V, E), VERTEX COVER(G) is a minimiza-
tion problem where the goal is to find the minimum cardinality vertex cover in
any induced subgraph H of G. In order to specify an instance I of the problem,
we specify a subset S ⊆ V of vertices that, in turn, corresponds to the induced sub-
graph H = (S, (S× S) ∩ E). Thus in this case, the constraints of the LP relaxation
would be written down with the knowledge of the input graph G = (V, E), but the
subset S of vertices defining an instance of the problem would be revealed only in
the objective function.

Similarly, for an integer n, we can study the VERTEX COVER problem in the uniform
model, denoted by VERTEX COVER(n). There, we are supposed to write down a single
set of constraints that should solve the VERTEX COVER problem for any graph G = (V, E)
such that |V| ≤ n.
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3 Sherali-Adams Gaps for Constraint

Satisfaction Problems

In this chapter, we study the LP (in)approximability of two CONSTRAINT SATISFACTION

PROBLEMS that we denote by 1F-CSP and K-NOR. In particular, we prove that any
Linear Program arising from linear number of rounds of the Sherali-Adams hierarchy
will have an unbounded integrality gap for these two problems, as the arity goes to
infinity. Given that Sherali-Adams Linear Programs are at least as powerful as any
Linear Program of roughly the same size, we conclude that any Linear Program of
comparable size for 1F-CSP and K-NOR has an unbounded integrality gap.

Although CONSTRAINT SATISFACTION PROBLEMS are interesting in their own merit,
our main motivation for studying the LP inapproximability of 1F-CSP and K-NOR,
is that we use them as building blocks to prove LP inapproximability results for other
interesting combinational problems that do not fall under the class of CONSTRAINT

SATISFACTION PROBLEMS. The relevance of these two CONSTRAINT SATISFACTION

PROBLEMS will become apparent in Chapter 4, as they are crucial for proving LP-
hardness for the VERTEX COVER problem, and its generalization to hypergraphs, that we
denote by q-UNIFORM-VERTEX-COVER, as well as the INDEPENDENT SET problem.

3.1 Introduction

Many of the currently best-known approximation algorithms for CONSTRAINT SATIS-
FACTION PROBLEMS are based on LP and SDP relaxations, and for some of them, the
natural LP/SDP relaxation achieves the best possible approximation guarantee assum-
ing certain complexity assumptions, such as P �= NP or the Unique Games Conjecture
(UGC). Despite the strength of these relaxations, their simplicity makes them prone to
being fooled by simple problem instances. One can strengthen these relaxations and rule
out such cases by adding appropriate constraints that overcome these families of fooling
instances; however, it becomes infeasible to enumerate all the extreme cases. This led
researchers to develop systematic ways to strengthen these relaxations, in order to see
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whether adding only a small number of constraints and/or variables to the existing
formulation would decrease the integrality gap.

This approach gave rise to many LP and SDP hierarchies, often referred to as lift-and-
project methods: to name a few, Lovász-Schrijver [80] (LS) and Sherali-Adams [98] (SA)
hierarchies can be applied to LPs to strengthen them, and similarly the Lassere/SOS [72,
74, 89] hierarchy can be applied to SDPs.

These hierarchies are performed on a round basis, where each round can either decrease
the integrality gap or keep it unchanged1. It is known that, if the original variables
of the relaxation are intended to be boolean, then performing n rounds in the boolean
case decreases the integrality gap all the way down to 1. However, solving a relaxation
resulting from r-rounds requires a running time that is exponential in r, hence as r
approaches n, this becomes as expensive as running a brute force approach for finding
an optimal solution. For our purposes, we are only interested in the Sherali-Adams
hierarchy, as it turns out, that it actually captures the strongest LPs for CONSTRAINT

SATISFACTION PROBLEMS [31, 71].

Outline of the Chapter. In this chapter, we prove that any small size LP for 1F-CSP
and K-NOR will have an unbounded integrality gap. As both of our problems of interest
are CONSTRAINT SATISFACTION PROBLEMS, it will be enough to construct integrality
gaps instances that can fool r-rounds Sherali-Adams relaxation for r large enough. By
virtue of [31, 71], this would rule out any good LP relaxation, and hence yields our result.
Moreover, these SA integrality gap instances will be constructed via reductions from the
integrality gap instances of the UNIQUE GAMES problem.

The remainder of this chapter will be organized as follows: we begin in Section 3.2 by
giving a tailor made definition of Sherali-Adams relaxations to constraint CONSTRAINT

SATISFACTION PROBLEMS. We then define the UNIQUE GAMES problem in Section 3.3
and state some of the known results that will come in handy for proving our main result.
Equipped with these, we prove our main results for the 1F-CSP and K-NOR problems
in Sections 3.4 and 3.5, respectively.

3.2 Sherali-Adams Hierarchy for CONSTRAINT SATISFACTION

PROBLEMS.

We define the canonical relaxation for CONSTRAINT SATISFACTION PROBLEMS as it is
obtained by r-rounds of the Sherali-Adams (SA) hierarchy. We follow the notation as in
e.g., [50]. For completeness we also describe in Section 3.2 why this relaxation is equiv-
alent to the one obtained by applying the original definition of SA as a reformulation-

1In the language of SOS, we alternatively use degree instead of round.

22



3.2. Sherali-Adams Hierarchy for CONSTRAINT SATISFACTION PROBLEMS.

linearization technique on a binary program.

Consider any CSP defined over n variables x1, . . . , xn ∈ �R�, with a set of m constraints
C = {C1, . . . , Cm} where the arity of each constraint is at most k. Let Si = SCi denote the
set of variables that Ci depends on. The r-rounds SA relaxation of this CSP has a variable
X(S,α) for each S ⊆ [n] , α ∈ �R�S with |S| ≤ r. The intuition is that X(S,α) models the
indicator variable whether the variables in S are assigned the values in α. The r-rounds
SA relaxation with r ≥ k is now

max
1
m

m

∑
i=1

∑
α∈�R�Si

Ci(α) · X(Si ,α)

s.t. ∑
u∈�R�

X(S∪{j},α◦u) = X(S,α) ∀S ⊆ [n] : |S| < r, α ∈ �R�S , j ∈ [n] \ S ,

X(S,α) ≥ 0 ∀S ⊆ [n] : |S| ≤ r, α ∈ �R�S ,

X(∅,∅) = 1 .

(3.1)

Here we used the notation (S ∪ {j}, α ◦ u) to extend the assignment α to assign u to the
variable indexed by j. Note that the first set of constraints say that the variables should
indicate a consistent assignment.

Instead of dealing with the constraints of the Sherali-Adams LP relaxation directly, it is
simpler to view each solution of the Sherali-Adams LP as a consistent collection of local
distributions over partial assignments.

Suppose that for every set S ⊆ [n] with |S| ≤ r, we are given a local distribution D(S)
over �R�S. We say that these distributions are consistent if for all S′ ⊆ S ⊆ [n] with
|S′| ≤ r, the marginal distribution induced on �R�S′ by D(S) coincides with that of
D(S′).

The equivalence between SA solutions and consistent collections of local distributions
basically follows from the definition of (3.1) and is also used in [32] and [31]. More
specifically, we have

Lemma 3.1 (Lemma 1 in [50]). If {D(S)}S⊆[n]:|S|≤r is a consistent collection of local distribu-
tions then

X(S,α) = P
D(S)

[α]

is a feasible solution to (3.1).

Moreover, we have the other direction.

Lemma 3.2. Consider a feasible solution (X(S,α))S⊆[n]:|S|≤r,α∈�R�S to (3.1). For each S ⊆ [n]
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with |S| ≤ r, define

P
D(S)

[α] = X(S,α) for each α ∈ �R�S .

Then (D(S))S⊆[n]:|S|≤r forms a consistent collection of local distributions.

Proof. Note that, for each S ⊆ n with |S| ≤ r, D(S) is indeed a distribution because by
the equality constraints of (3.1)

∑
α∈�R�S

P
D(S)

[α] = ∑
α∈�R�S

X(S,α) = ∑
α′∈�R�S′

X(S′,α′) = X(∅,∅) = 1 ,

where S′ ⊆ S is arbitrary; and moreover PD(S)[α] = X(S,α) ≥ 0. Similarly we have, again

by the equality constraints of (3.1), that for each S′ ⊆ S and α′ ∈ �R�S′

P
D(S′)

[α′] = X(S′,α′) = ∑
α′′∈�R�S\S′

X(S,α′◦α′′) = ∑
α′′∈�R�S\S′

P
D(S)

[α′ ◦ α′′] ,

so the local distributions are consistent. �

When a SA solution (X(S,α)) is viewed as consistent collection {D(S)} of local distribu-
tions, the value of the SA solution can be computed as

1
m

m

∑
i=1

∑
α∈�R�Si

Ci(α) · X(Si ,α) = E
C∈C

[
P

α∼D(SC)
[α satisfies C]

]
,

where SC is the support of constraint C, and the expectation is taken over the uniform
distribution on the set of constraints C.

Sherali-Adams as Local Distributions. For completeness, we give the general defini-
tion of the r-rounds SA tightening of a given LP, and then we show that for CSPs the
obtained relaxation is equivalent to (3.1).

Consider the following Binary Linear Program for c ∈ Rn, A ∈ Rm×n and b ∈ Rm×1:

max
n

∑
i=1

cixi

s.t. Ax � b
x ∈ {0, 1}n .

By replacing the integrality constraint with 0 ≤ x ≤ 1, we get an LP relaxation.

Sherali and Adams [99] proposed a systematic way for tightening such relaxations, by
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reformulating them in a higher dimensional space. Formally speaking, the r-rounds SA
relaxation is obtained by multiplying each base inequality ∑n

j=1 Aijxj ≤ bi and 0 ≤ xj ≤ 1
by ∏s∈S xs ∏t∈T(1− xt) for all disjoint S, T ⊆ [n] such that |S ∪ T| < r. This gives the
following set of polynomial inequalities for each such pair S and T:(

∑
j∈[n]

Aijxj

)
∏
s∈S

xs ∏
t∈T

(1− xt) ≤bi ∏
s∈S

xs ∏
t∈T

(1− xt) ∀i ∈ [m] ,

0 ≤ xj ∏
s∈S

xs ∏
t∈T

(1− xt) ≤ 1 ∀j ∈ [n] .

These constraints are then linearized by first expanding (using x2
i = xi, and thus xi(1−

xi) = 0), and then replacing each monomial ∏i∈H xi by a new variable yH, where
H ⊆ [n] is a set of size at most r. Naturally, we set y∅ := 1. This gives us the following
linear program, referred to as the r-rounds SA relaxation:

max
n

∑
i=1

ciy{i}

s.t. ∑
H⊆T

(−1)|H|
(

∑
j∈[n]

AijyH∪S∪{j}

)
≤ bi ∑

H⊆T
(−1)|H|yH∪S ∀i ∈ [m] , S, T ,

0 ≤ ∑
H⊆T

(−1)|H|yH∪S∪{j} ≤ 1 ∀j ∈ [n] , ∀S, T,

y∅ = 1

where in the first two constraint we take S, T ⊆ [n] with S ∩ T = ∅ and |S ∪ T| < r.

One could go back to the original space by letting xi = y{i} and projecting onto the x,
however we will refrain from doing that, in order to be able to write objective functions
that are not linear but degree-k polynomials, as is natural in the context of CSPs of arity
k. Since we need to do k rounds of SA before even being able to write the objective
function as a linear function, it makes more sense to work in higher dimensional space.

For CONSTRAINT SATISFACTION PROBLEMS, the canonical r-rounds SA relaxation is
defined as follows. Consider any CSP defined over n variables x1, . . . , xn ∈ �R�, with m
constraints C = {C1, . . . , Cm} where the arity of each constraint is at most k. For each
j ∈ [n] and u ∈ �R�, we introduce a binary variable x(j, u), meant to be the indicator of
xj = u. Using these variables, the set of feasible assignments can naturally be formulated
as

∑
u∈�R�

x(j, u) = 1 ∀j ∈ [n] ,

x(j, u) ∈ {0, 1} ∀j ∈ [n] , u ∈ �R� .
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If we relax the integrality constraints by, for each j ∈ [n], u ∈ �R�, replacing x(j, u) ∈
{0, 1} by x(i, u) ≥ 0 (we omit the upper bounds of the form x(j, u) ≤ 1 as they are
already implied by the other constraints) then we obtain the following constraints for
the r-rounds SA relaxation :

∑
H⊆T

(−1)|H| ∑
u∈�R�

yH∪S∪{(j,u)} = ∑
H⊆T

(−1)|H|yH∪S ∀j ∈ [n] , S, T ,

∑
H⊆T

(−1)|H|yH∪S∪{(j,u)} ≥ 0 ∀(j, u) ∈ [n]× �R� , S, T ,

where we take S, T ⊆ [n]× �R� with S ∩ T = ∅ and |S ∪ T| < r.

To simplify the above description, we observe that we only need the constraints for
which T = ∅.

Claim 3.3. All the above constraints are implied by the subset of constraints for which T = ∅.

Proof. The equality constraints are easy to verify since ∑u∈�R� yS∪{(j,u)} = yS for all
S ⊆ [n]× �R� with |S| < r implies

∑
S⊆H⊆S∪T

(−1)|H∩T| ∑
u∈�R�

yH∪{(j,u)} = ∑
S⊆H⊆S∪T

(−1)|S∩T|yH.

Now consider the inequalities. If we let T = {(j1, u1), (j2, u2), . . . , (j�, u�)} then by the
above equalities

∑
H⊆T

(−1)|H|yH∪S∪{(j,u)}

= ∑
H⊆T\{(j1,u1)}

(−1)|H|yH∪S∪{(j,u)} − ∑
H⊆T\{(j1,u1)}

(−1)|H|yH∪S∪{(j,u),(j1,u1)}

= ∑
u′1∈�R�:u′1 �=u1

∑
H⊆T\{(j1,u1)}

(−1)|H|yH∪S∪{(j,u),(j1,u′1)}

...

= ∑
u′t∈�R�:u′t �=ut

. . . ∑
u′1∈�R�:u′1 �=u1

yS∪{(j,u),(j1,u′1),...,(jt,u′t)} .

Hence, we have also that all the inequalities hold if they hold for those with T = ∅ and
S such that |S| < r. �

By the above claim, the constraints of the canonical r-rounds SA relaxation of the CSP
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can be simplified to:

∑
u∈�R�

yS∪{(j,u)} = yS ∀j ∈ [n] , S ⊆ [n]× �R� : |S| < r ,

yS∪{(j,u)} ≥ 0 ∀(j, u) ∈ [n]× �R� , S ⊆ [n]× �R� : |S| < r .

To see that this is equivalent to (3.1) observe first that yS = 0 if {(j, u′), (j, u′′)} ⊆ S.
Indeed, by the partition constraint, we have

∑
u∈R

y{(j,u′),(j,u′′)}∪{(j,u)} = y{(j,u′),(j,u′′)} ,

which implies the constraint 2y{(j,u′),(j,u′′)} ≤ y{(j,u′),(j,u′′)}. This in turn (together with
the non-negativity) implies that y{(j,u′),(j,u′′)} = 0. Therefore, by again using the par-
tition constraint, we have yS = 0 whenever {(j, u′), (j, u′′)} ⊆ S and hence we can
discard variables of this type. We now obtain the formulation (3.1) by using variables
of type X({j1,...,jt},(u1,...,ut)) instead of y{(j1,u1),(j2,u2),...,(jt,ut)}. The objective function can be
linearized, provided that the number of rounds is at least the arity of the CSP, that is
r � k, so that variables for sets of cardinality k are available.

The SA integrality gap instances for the CONSTRAINT SATISFACTION PROBLEMS of
interest will be constructed via a reduction from UNIQUE GAMES. Namely, starting
from SA integrality gap instances for UNIQUE GAMES, we present a polynomial time
construction of SA integrality gap instances for both 1F-CSP and K-NOR. Before we
proceed with our main result, we briefly define the UNIQUE GAMES problem, and state
known results about this problem that we use in the remainder of this chapter.

3.3 Unique Games.

The UNIQUE GAMES problem is defined as follows:

Definition 3.4. A UNIQUE GAMES instance U = (G, �R� , Π) is defined by a graph
G = (V, E) over a vertex set V and edge set E, where every edge uv ∈ E is associated
with a bijection map πu,v ∈ Π such that πu,v : �R� �→ �R� (we set πv,u := π−1

u,v). Here,
�R� is known as the label set. The goal is to find a labeling Λ : V �→ �R� that maximizes
the number of satisfied edges, where an edge uv is satisfied by Λ if πu,v(Λ(u)) = Λ(v).

The following very influential conjecture, known as the UNIQUE GAMES conjecture, is
due to Khot [67].

Conjecture 3.5. For any ζ, δ > 0, there exists a sufficiently large constant R = R(ζ, δ)

such that the following promise problem is NP-hard. Given a UNIQUE GAMES instance U =

(G, �R� , Π), distinguish between the following two cases:
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1. Completeness: There exists a labeling Λ that satisfies at least (1− ζ)-fraction of the edges.

2. Soundness: No labeling satisfies more than δ-fraction of the edges.

We remark that the above conjecture has several equivalent formulations via fairly
standard transformations. In particular, one can assume that the graph G is bipartite
and regular [68].

The starting point of our reduction are the following Sherali-Adams integrality gap
instances for the UNIQUE GAMES problem. Note that UNIQUE GAMES are CONSTRAINT

SATISFACTION PROBLEMS and hence here and in the following, we are concerned with
the standard application of the Sherali-Adams hierarchy to CSPs.

Theorem 3.6 ([32]). Fix a label size R = 2�, a real δ ∈ (0, 1) and let Δ := 2�C(R/δ)2
 (for
a sufficiently large constant C). Then for every positive ε there exists κ > 0 depending on ε

and Δ such that for every sufficiently large n there exists an instance of UNIQUE GAMES on a
Δ-regular n-vertex graph G = (V, E) so that:

1. The value of the optimal solution is at most 1
R · (1 + δ).

2. There exists a solution to the LP relaxation obtained after r = nκ rounds of the Sherali-
Adams relaxation of value 1− ε.

3.4 Sherali-Adams Integrality Gap for 1F-CSP.

In this section we establish Sherali-Adams integrality gaps for 1F-CSP and by virtue
of [31, 71] this extends to general LPs. The proof uses the idea of [32] to perform a
reduction between problems that preserves the Sherali-Adams integrality gap.

Specifically, we show that the reduction by Bansal and Khot [9] from the UNIQUE GAMES

problem to 1F-CSP also provides a large Sherali-Adams integrality gap for 1F-CSP,
assuming that we start with a Sherali-Adams integrality gap instance of UNIQUE GAMES.
As large Sherali-Adams integrality gap instances of UNIQUE GAMES were given in [32],
this implies the aforementioned integrality gap of 1F-CSP.

We first describe the reduction from UNIQUE GAMES to 1F-CSP that follows the con-
struction in [9]. We then show that it also preserves the Sherali-Adams integrality
gap.

The Test Fε,t. Before we proceed with our reduction from UNIQUE GAMES to 1F-CSP,
we stress the fact that our reduction is essentially the same as the one free bit test
Fε,t in [9], but casted in the language of CONSTRAINT SATISFACTION PROBLEMS. For
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completeness, we give below a brief overview of the intuition behind the test. For a
more thorough discussion, see the paper by Bansal and Khot [9] in which they design
this test.

The notion of tests generally arises in the context of Probabilistically Checkable Proofs (PCP),
where a verifier is typically given an instance I of a hard problem I, and a proof π that
this instance satisfies some properties P. A test for I is then a randomized procedure in
which the verifier is only allowed to read a small number of bits from π, and is supposed
to:

1. (Completeness: ) accept a correct proof claiming that an instance I ∈ I satisfies P,
if I indeed (almost) satisfies P.

2. (Soundness: ) reject any proof claiming that an instance I ∈ I satisfies P, if I is in
fact far from satisfying P.

For our purposes, the hard problem that we start from is the UNIQUE GAMES problem,
and the property that we need to check is if a given UNIQUE GAMES instance U =

(G, [R], Π) over a bipartite graph G = (V, W, E) has a labeling2 Λ : W �→ [R] that
satisfies almost3 all the edges e ∈ E of U. The proof in this case would then be an
encoding of the labels assigned to the vertices in W according to the (almost) satisfying
assignment Λ. For the sake of the presentation, we assume in this high level description
that we want to check whether U has a labeling that satisifes all the edges.

One of the encoding schemes that has been successfully used in the context of PCP
is the so-called long code encoding. A long code encoding L(�) ∈ {0, 1}2R

of a label
� ∈ [R], is a 2R bits string corresponding to the truth table of the dictatorship function
f� : {0, 1}R �→ {0, 1}, where f�(x) = x� for every x ∈ {0, 1}R. Thus the long code
encoding of a label is a binary vector of size 2R in which half of the bits are 1, and in total,
the length4 of the proof is |W| · 2R. Equivalently, each vertex w ∈ W has a corresponding
function f (w) : {0, 1}R �→ {0, 1} whose truth table is written down in the proof, and
ideally this function f (w) is a dictatorship function of some label lw ∈ [R].

From a high level, the test Fε,t of [9] is inspired by the following procedure. The verifier
picks a vertex v ∈ V uniformly at random, and a sequence of t neighbors w1, . . . , wt

of v randomly and independently from the neighborhood of v, where t is a constant,

2Note that since the constraints in the UNIQUE GAMES problem are bijections, a labeling Λ : W �→ [R]
can be greedily extended to a labeling Λ′ : W ∪V �→ [R] that maximizes the number of satisfied edges over
all possible labelings that are consistent with Λ on W.

3Note that if there exists a labeling that satisfies all the edges, then the problem is easy and such a
labeling can be found in polynomial time.

4For technical reasons, the length of long code encoding of a label � ∈ [R] in the written proof is in fact
2R−1, and hence the overall length of the proof is |W| · 2R−1. That is, the long code is forced to satisfy the
folding property that guarantees that f (x) = (1− f (x̄)) for all x ∈ {0, 1}R, a property that the dictatorship
function naturally satisfies.
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and queries the (encoding of the) labels of {w1, . . . , wt} from the proof. It then accepts
if the labels were convincing, i.e., the labels assigned to {w1, . . . , wt} satisfy the edges
vw1, . . . , vwt simultaneously under the permutations πv,w1 , . . . , πv,wt . Thus ideally, we
would want the verifier to accept if and only if

π−1
v,w1

(Λ(w1)) = · · · = π−1
v,wt

(Λ(wt)) = Λ(v).

The test as it is described above can be naively implemented in such a way that the
verifier reads t · 2R bits from the proof (i.e, t chunks of 2R bits each, where each chunk
corresponds to the truth table of a function f : {0, 1}R �→ {0, 1}), accepts satisfiable
UNIQUE GAMES instances, and rejects any instance that is far from being satisfiable with
high probability. In particular, the verifier should first verify that for every i = 1, . . . , t,
the 2R bits corresponding to the vertex wi actually correspond to a long code encoding of
some label �wi ∈ [R], and then verify that these labels simultaneously satisfy the t edges
vw1, . . . , vwt.

Viewing the read bits of the proof as truth tables of functions f (w1), · · · , f (wt), the above
test translates to checking whether:

1. Step 1: For every i = 1, . . . , t, f (wi) is a dictatorship function.

2. Step 2: For every x ∈ {0, 1}R,

f (w1) ◦ πv,wt(x) = · · · = f (wt) ◦ πv,wt(x) ,

where for an input x ∈ {0, 1}R, a function f : {0, 1}R �→ {0, 1}, and a bijection
π : [R] �→ [R], we define π(x) and the function f ◦ π as π(x) = (xπ(1), . . . , xπ(R)),
and f ◦ π(x) = f (π(x)), respectively.

Note that if for some i = 1, . . . , t, f (wi) is indeed a dictatorship function of some label
�wi ∈ [R], then f (wi) ◦ πv,wi is also a dictatorship function of the image π−1

v,wi
(�wi) ∈ [R]

of the label �wi . Moreover, if the proof indeed encodes a labeling Λ that satisfies all
the edges in U, we get in this case that π−1

v,w1
(�w1) = · · · = π−1

v,wt
(�wt) = Λ(v). Thus,

checking Steps 1 and 2 of the test is equivalent to checking whether the functions
f (w1) ◦ πv,wt , . . . , f (wt) ◦ πv,wt are dictatorship functions of the same label Λ(v) ∈ [R].

The test Fε,t of Bansal and Khot [9] does this t-wise dictatorship test while reading a smaller
number of bits and only one so-called free bit. In particular, their test implies that it
is basically enough to only read t · 2εR+1 many bits from the proof, while maintaining
a near perfect completeness and an arbitrarily low soundness. This is done using the
so-called sub-cube test Fε which is based on the following observation:

1. For x ∈ {0, 1}R, and a subset S ⊂ [R] such that |S| = εR, define the sub-cubes Cx,S
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and Cx̄,S by fixing all the coordinates outside S according to x (x̄ respectively), and
allowing the coordinate inside S to take any value (See Equation 3.2 for an exact
definition of the sub-cube).

2. Now if a function f : {0, 1}R �→ {0, 1} is indeed a dictatorship function of some
index � ∈ [R] such that � /∈ S, then f is identical on the sub-cube Cx,S and it is
identical on the sub-cube Cx̄,S. In particular, we should get f (z) = z� = x� for all
z ∈ Cx,S, and f (z) = z� = x̄� for all z ∈ Cx̄,S.

Note that a sub-cube Cx,S for x ∈ {0, 1}R and S ⊂ [R] such that |S| = εR, contains
2εR-many points, thus in total the above test Fε queries 2εR+1 many bits from the truth
table to check (with high confidence) whether a single function is a dictator of some
coordinate � ∈ [R].

The test Fε,t that we describe below can be thought of as running Fε t-many times in
parallel on the functions f (w1) ◦ πv,wt , . . . , f (wt) ◦ πv,wt , and accepting if all these function
are dictatorship functions of the same coordinate.

Moreover, another property of the test Fε,t that is perhaps the most important to us is
the following: once the verifier decides which t · 2εR+1 bits to read from the proof, there
are exactly two assignments for these bits that can make him accept (out of the 2t·2εR+1

possible ones). Thus, if we think of the test that the verifier performs on these t · 2εR+1

bits as a binary predicate P : {0, 1}t·2εR+1 → {0, 1}, then this predicate P has a one free
bit complexity in the language of Section 2.1.

To achieve this, the test Fε,t does the following (for a completeness parameter ε > 0 and
large enough integer t):

1. Pick a vertex v ∈ V uniformly at random, and pick t vertices w1, . . . , wt randomly
and independently from the neighborhood of v. Let f (w1), . . . , f (wt) : {0, 1}R →
{0, 1} be the functions corresponding to the vertices w1, . . . , wt whose truth tables
are written down in the proof.

2. Pick x ∈ {0, 1}R at random.

3. Pick random indices i1, . . . , im from [R] where m = εR, and let S = {i1, . . . , im} be
the set of those indices.

4. Define the sub-cubes:

Cx,S = {z ∈ {0, 1}R : zj = xj ∀j /∈ S} (3.2)

Cx̄,S = {z ∈ {0, 1}R : zj = x̄j ∀j /∈ S} .
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5. Accept if and only if for some b ∈ {0, 1}, we have that for every i = 1, . . . , t,

f (wi)(πu,wi(z)) = b ∀z ∈ Cx,S

f (wi)(πu,wi(z)) = b⊕ 1 ∀z ∈ Cx̄,S .

Note that if the starting UNIQUE GAMES instance indeed had a satisfying assignment
Λ : W ∪ V �→ [R], and the functions f (w1), . . . , f (wt) were actually the corresponding
dictatorship functions to their labels according to Λ, then we get that for every i = 1, . . . , t
and for every z ∈ {0, 1}R, we have

f (wi)(πu,wi(z)) = fΛ(wi)(πu,wi(z)) = fπ−1
u,wi (Λ(wi))

(z) = zπ−1
u,wi (Λ(wi))

= zΛ(v) .

This says that the test Fε,T will always accept satisfiable UNIQUE GAMES instances, unless
Λ(v) is in the randomly chosen set S of indices in Step 3, which happens with probability
ε. Moreover, Bansal and Khot showed that it is in fact robust enough to reject with high
probability the instances that are far from being satisfiable (See Lemma 3.7).

We are now ready to present our reduction from UNIQUE GAMES to 1F-CSP, which
basically relies on casting the test Fε,t as a CONSTRAINT SATISFACTION PROBLEM.

Reduction. Let U = (G, �R� , Π) be a UNIQUE GAMES instance over a regular bipartite
graph G = (V, W, E). Given instance U, we construct an instance I of 1F-CSP. The
reduction has two parameters: the completeness parameter ε > 0 and an integer t,
where ε is chosen such that εR is an integer (taking ε = 2−q for some integer q � 0
guarantees this) and t is sufficiently large depending on ε and the desired soundness η

(see Lemma 3.7).

The resulting 1F-CSP instance I will be defined over 2R|W| variables and c|V| con-
straints, where c := c(R, ε, t, Δ) is a function of the degree Δ of the UNIQUE GAMES

instance, and the constants R, t and ε.5 For our purposes, the UNIQUE GAMES integrality
gap instance that we start from has constant degree Δ, and hence c is a constant.

Inspired by the previously described test Fε,t, the variables of the 1F-CSP instance I

correspond to the 2R bits (of the long code) encoding the labels of each vertex of the
UNIQUE GAMES instance we start from, and the constraints correspond to all possible
tests that the verifier might perform according to the random choice of v, the random
neighbors w1, . . . , wt and the random subset of bits read by the verifier. Instead of
actually enumerating all possible constraints, we give a distribution of constraints which
is the same as the distribution over the test predicates of Fε,t.

We refer to the variables of I as follows: it has a binary variable 〈w, x〉 for each w ∈ W

5More precisely c(R, ε, t, Δ) is exponential in the constants R, t and ε, and polynomial in Δ
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and x ∈ {0, 1}R.6 For further reference, we let Var(I) denote the set of variables of I.
The constraints of I are picked according to the distribution in Figure 3.1.

1. Pick a vertex v ∈ V uniformly at random.

2. Pick t vertices w1, . . . , wt randomly and independently from the neighbor-
hood N(v) = {w ∈ W : vw ∈ E}.

3. Pick x ∈ {0, 1}R at random.

4. Let m = εR. Pick indices i1, . . . , im randomly and independently from [R] and
let S = {i1, . . . , im} be the set of those indices.

5. Define the sub-cubes:

Cx,S = {z ∈ {0, 1}R : zj = xj ∀j /∈ S} ,

Cx̄,S = {z ∈ {0, 1}R : zj = x̄j ∀j /∈ S} .

6. Output the constraint on the variables {〈wi, z〉 | i ∈ [t] , π−1
v,wi

(z) ∈ Cx,S ∪Cx̄,S}
that is true if for some bit b ∈ {0, 1} we have

〈wi, z〉 = b for all i ∈ [t] and π−1
v,wi

(z) ∈ Cx,S, and
〈wi, z〉 = b⊕ 1 for all i ∈ [t] and π−1

v,wi
(z) ∈ Cx̄,S ,

where π(z) for z ∈ {0, 1}R is defined as π(z) := (zπ(1), zπ(2), . . . , zπ(R)), and
π−1 is the inverse map, i.e., π−1(z) ∈ Cx,S is equivalent to saying that there
exists y ∈ Cx,S such that π(y) = z.

Figure 3.1 – Distribution for the 1F-CSP constraints

It is crucial to observe that our distribution over the constraints exploits the locality
of a UNIQUE GAMES solution. To see this, assume we performed the first two steps of
Figure 3.1 and have thus far fixed a vertex v ∈ V and t neighbors w1, . . . , wt, and let
Cv,w1,...,wt denote the set of all possible constraints resulting from steps 3-4 (i.e., for all
possible x ∈ {0, 1}R and S ⊆ [R] of size εR). We will argue that if there exists a local
assignment of labels for {v, w1, . . . , wt} that satisfies the edges vw1, . . . , vwt, then we can
derive a local assignment for the variables {〈w, x〉 : w ∈ {w1, . . . , wt} and x ∈ {0, 1}R}
that satisfies at least 1− ε fraction of the constraints in Cv,w1,...,wt . This essentially follows
from the completeness analysis of [9], and is formalized in Claim 3.9. This allows us
to convert a good Sherali-Adams solution of the starting UNIQUE GAMES U, to a good
Sherali-Adams solution of the resulting 1F-CSP Instance I. Moreover, in order to show
that I is a Sherali-Adams integrality gap instance for the 1F-CSP problem, we need to

6〈w, x〉 should be interpreted as the long-code for Λ(w) evaluated at x ∈ {0, 1}R.
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show that OPT(I) is small. This follows from the soundness analysis of [9], where it
was shown that:

Lemma 3.7 (soundness). For any ε, η > 0 there exists an integer t so that OPT(I) ≤ η if
OPT(U) ≤ δ where δ > 0 is a constant that only depends on ε, η and t.

The above says that if we start with a UNIQUE GAMES instance U with a small optimum
then we also get a 1F-CSP instance I of small optimum (assuming that the parameters
of the reduction are set correctly). In [9], Bansal and Khot also proved the following
completeness: if OPT(U) ≥ 1− ζ, then OPT(I) ≥ 1− ζt− ε. However, we need the
stronger statement: if U has a Sherali-Adams solution of large value, then so does I.
The following lemma states this more formally, showing that we can transform a SA
solution to the UNIQUE GAMES instance U into a SA solution to the 1F-CSP instance I

of roughly the same value.

Lemma 3.8. Let {μ(S) | S ⊆ V ∪W, |S| ≤ r} be a consistent collection of local distributions
defining a solution to the r-rounds Sherali-Adams relaxation of the regular bipartite UNIQUE

GAMES instance U. Then we can define a consistent collection of local distributions {σ(S) | S ⊆
Var(I), |S| ≤ r} defining a solution to the r-rounds Sherali-Adams relaxation of the 1F-CSP
instance I so that

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
≥ (1− ε)

(
1− t · E

vw∈E

[
P

(Λ(v),Λ(w)∼μ({v,w})
[Λ(v) �= πw,v(Λ(w))]

])
,

where t and ε are the parameters of the reduction, and σ(SC) is the distribution over the set of
variables in the support SC of constraint C.

We remark that the above lemma says that we can transform a SA solution to the UNIQUE

GAMES instance U of value close to 1, into a SA solution to the 1F-CSP instance I of
value also close to 1.

Proof of Lemma 3.8. Let {μ(S) | S ⊆ V ∪W, |S| ≤ r} be a solution to the r-rounds SA
relaxation of the UNIQUE GAMES instance U, and recall that I is the 1F-CSP instance
obtained from applying the reduction. We will now use the collection of consistent local
distributions of the UNIQUE GAMES instance, to construct another collection of consistent
local distributions for the variables in Var(I).

For every set S ⊆ Var(I) such that |S| ≤ r, let TS ⊆ W be the subset of vertices in the
UNIQUE GAMES instance defined as follows:

TS = {w ∈ W : 〈w, x〉 ∈ S}. (3.3)

We construct σ(S) from μ(TS) in the following manner. Given a labeling ΛTS for the
vertices in TS drawn from μ(TS), define an assignment αS for the variables in S as follows:
for a variable 〈w, x〉 ∈ S, let � = ΛTS(w) be the label of w according to ΛTS . Then the new
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assignment αS sets αS(〈w, x〉) := x�.7 The aforementioned procedure defines a family
{σ(S)}S⊆Var(I):|S|≤r of local distributions for the variables of the 1F-CSP instance I.

To check that these local distributions are consistent, take any S′ ⊆ S ⊆ Var(I) with
|S| ≤ r, and denote by TS′ ⊆ TS their corresponding set of vertices as in (3.3). We
know that μ(TS) and μ(TS′) agree on TS′ since the distributions {μ(S)} defines a feasible
Sherali-Adams solution for U, and hence by our construction, the local distributions
σ(S) and σ(S′) agree on S′. Combining all of these together, we get that {σ(S) | S ⊆
Var(I), |S| ≤ r} defines a feasible solution for the r-round Sherali-Adams relaxation of
the 1F-CSP instance I.

It remains to bound the value of this feasible solution, i.e.,

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
. (3.4)

In what follows, we denote by ψ(.) the operator mapping a labeling of the vertices in TS

to an assignment for the variables in S, i.e., ψ(ΛTS) = αS.

First note that a constraint C ∈ C of the 1F-CSP instance I is defined by the choice of
the vertex v ∈ V, the sequence of t neighbors Wv = (w1, . . . , wt), the random x ∈ {0, 1}R,
and the random set S ⊆ [R] of size εR. We refer to such a constraint C as C(v,Wv, x, S).
Thus we can rewrite (3.4) as

E
v,w1,...,wt

[
P

Λ∼μ({v,w1,...,wt}),x,S
[ψ(Λ) satisfies C(v,Wv, x, S)]

]
. (3.5)

Recall that the assignment ψ(Λ) for the variables
{〈w, z〉 : w ∈Wv and z ∈ {0, 1}R} is

derived from the labeling of the vertices in Wv according to Λ. It was shown in [9] that if
Λ satisfies the edges vw1, . . . , vwt simultaneously, then ψ(Λ) satisfies C(v,Wv, x, S) with
high probability. This is formalized in the following claim.

Claim 3.9. If Λ satisfies vw1, . . . , vwt simultaneously, then ψ(Λ) satisfies C(v,Wv, x, S) with
probability at least 1− ε. Moreover, if we additionally have that Λ(v) /∈ S, then ψ(Λ) always
satisfies C(v,Wv, x, S).

It now follows from Claim 3.9 that for the assignment ψ(Λ) to satisfy the constraint
C(v,Wv, x, S), it is sufficient that the following two conditions hold simultaneously:

1. the labeling Λ satisfies the edges vw1, . . . , vwt;

2. the label of v according to Λ lies outside the set S.

7Because 〈w, x〉 is supposed to be the dictator function of the �th coordinate evaluated at x, this is only
the correct way to set the bit 〈w, x〉.
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Equipped with this, we can use conditioning to lower-bound the probability inside the
expectation in (3.5) by a product of two probabilities, where the first is

P
Λ∼μ({v,w1,...,wt}),x,S

[ψ(Λ) satisfies C(v,Wv, x, S)|Λ satisfies vw1, . . . , vwt] , (3.6)

and the second is

P
Λ∼μ({v,w1,...,wt})

[Λ satisfies vw1, . . . , vwt] .

Thus using Claim 3.9, we get

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
≥ (1− ε) · E

v,w1,...,wt

[
P

Λ∼μ({v,w1,...,wt})
[Λ satisfies vw1, . . . , vwt]

]
≥ (1− ε)

(
1−

t

∑
i=1

E
v,w1,...,wt

[
P

Λ∼μ({v,w1,...,wt})
[Λ does not satisfy vwi]

])
(3.7)

= (1− ε)

(
1−

t

∑
i=1

E
v,w1,...,wt

[
P

Λ∼μ({v,wi})
[Λ does not satisfy vwi]

])
(3.8)

= (1− ε) ·
(

1− t · E
v,w

[
P

Λ∼μ({v,w})
[Λ does not satisfy vw]

])
, (3.9)

where (3.7) follows from the union bound, and (3.8) is due to the fact that the local
distributions of the UNIQUE GAMES labeling are consistent, and hence agree on {v, wi}.
Note that the only difference between what we have proved thus far and the statement of
the lemma, is that the expectation in (3.9) is taken over a random vertex v and a random
vertex w ∈ N(v), and not random edges. However, our UNIQUE GAMES instance we
start from is regular, so picking a vertex v at random and then a random neighbor
w ∈ N(v), is equivalent to picking an edge at random from E. This concludes the proof.
�

Combining Theorem 3.6 with Lemmata 3.7 and 3.8, we get the following Corollary.

Corollary 3.10. For every ε, η > 0, there exist an arity k and a real κ > 0 depending on ε and
η such that for every sufficiently large n there exists an instance of 1F-CSP of arity k over n
variables, so that

1. The value of the optimal solution is at most η.

2. There exists a solution to the LP relaxation obtained after r = nκ rounds of the Sherali-
Adams relaxation of value at least 1− ε.

Proof. Let U = (G, �R� , Π) be a Δ-regular UNIQUE GAMES instance of Theorem 3.6
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that is δ/4-satisfied with an n2κ
G -rounds Sherali-Adams solution of value 1− ζ, where

nG = Θ(n/R) is the number of vertices in G (if needed, we pad the instance by adding
a few more dummy variables to get exactly n variables). Note that G = (V, E) is
not necessarily bipartite, and our starting instance of the reduction is bipartite. To
circumvent this obstacle, we construct a new bipartite UNIQUE GAMES instance U′ from
U that is δ-satisfied with a Sherali-Adams solution of the same value, i.e., 1− ζ. We
will later use this new instance to construct our 1F-CSP instance over n variables that
satisfies the properties in the statement of the corollary.

In what follows we think of δ, ζ and R as functions of ε and η, and hence fixing the latter
two parameters enables us to fix the constant t of Lemma 3.7, and the constant degree Δ
of Theorem 3.6. The aforementioned parameters are then sufficient to provide us with
the constant arity k of the 1F-CSP instance, along with the number of its corresponding
variables and constraints, that is linear in nG.

We now construct the new UNIQUE GAMES instance U′ over a graph G′ = (V1, V2, E′)
and the label set �R� from U in the following manner:

• Each vertex v ∈ V in the original graph is represented by two vertices v1, v2, such
that v1 ∈ V1 and v2 ∈ V2.

• Each edge e = uv ∈ E is represented by two edges e1 = u1v2 and e2 = u2v1 in E′.
The bijection maps πu1,v2 and πu2,v1 are the same as πu,v.

Note that G′ is bipartite by construction, and since G is Δ-regular, we get that G′ is also
Δ-regular.

We claim that no labeling Λ′ : V1 ∪ V2 �→ �R� can satisfy more than δ fraction of
the edges in U′. Indeed, assume towards contradiction that there exists a labeling
Λ′ : V1 ∪V2 �→ �R� that satisfies at least δ fraction of the edges. We will derive a labeling
Λ : V �→ �R� that satisfies at least δ/4 fraction of the edges in U as follows:

For every vertex v ∈ V, let v1 ∈ V1 and v2 ∈ V2 be its representative vertices in G′.
Define Λ(v) to be either Λ′(v1) or Λ′(v2) with equal probability.

Assume that at least one edge of e1 = u1v2 and e2 = u2v1 is satisfied by Λ′, then the edge
e = uv ∈ E is satisfied with probability at least 1/8, and hence the expected fraction of
satisfied edges in U by Λ is at least δ/4.

Moreover, we can extend the r-rounds Sherali-Adams solution of U {D(S)}S⊆V:|S|≤r,
to a r-rounds Sherali-Adams solution {D′(S)}S⊆V1∪V2:|S|≤r for U′ with the same value.
This can be done as follows: For every set S = S1 ∪ S2 ⊆ V1 ∪ V2 of size at most r, let
SU ⊆ V be the set of their corresponding vertices in G and define the local distribution
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D′(S) by mimicking the local distribution D(SU), repeating labels if the same vertex
v ∈ SU has its two copies v1 and v2 in S.

Now let I be the 1F-CSP instance over n variables obtained by our reduction from the
UNIQUE GAMES instance U′, where n = 2RnG. Since OPT(U′) ≤ δ, we get from Lemma
3.7 that OPT(I) ≤ η. Similarly, we know from Lemma 3.8 that using an n2κ

G -rounds
Sherali-Adams solution for U′, we can define an nκ-rounds Sherali-Adams solution of
I of roughly the same value, where we used the fact that R is a constant and hence(
2−2Rκn2κ

)
> nκ for sufficiently large values of n. This concludes the proof.

Provided that Claim 3.9 holds, we get that the 1F-CSP problem fools the Sherali-Adams
relaxation even after nκ many rounds for some constant 1 > κ > 0. Thus we conclude
this section by proving Claim 3.9.

Proof of Claim 3.9. Assume that Λ satisfies vw1, . . . , vwt simultaneously, i.e.,

πv,w1(Λ(w1)) = · · · = πv,wt(Λ(wt)) = Λ(v) , (3.10)

and let Cx,S and Cx̄,S be the sub-cubes as in Figure 3.1. According to the new assignment,
every variable 〈wi, z〉 in the support of C(v,Wv, x, S) takes the value zΛ(wi). Assume
w.l.o.g. that 〈wi, z〉 is such that π−1

v,wi
(z) ∈ Cx,S, and let y ∈ Cx,S satisfies πv,wi(y) = z.

Then we get

zΛ(wi) = πv,wi(y)Λ(wi) = yπv,wi (Λ(wi)) = yΛ(v) , (3.11)

where the last equality follows from (3.10). We know from the construction of the sub-
cube Cx,S that for all j /∈ S and for all y ∈ Cx,S, we have yj = xj. It then follows that if
Λ(v) /∈ S, equation 3.11 yields that

zΛ(wi) = yΛ(v) = xΛ(v) , ∀ 〈wi, z〉 s.t. π−1
v,wi

(z) ∈ Cx,S .

Similarly, for the variables 〈wi, z〉 with π−1
v,w(z) ∈ Cx̄,S, we get that

zΛ(wi) = yΛ(v) = x̄Λ(v) , ∀ 〈wi, z〉 s.t. π−1
v,wi

(z) ∈ Cx̄,S .

Thus far we proved that if If Λ satisfies vw1, . . . , vwt simultaneously and Λ(v) /∈ S, then
ψ(Λ) satisfies C(v,Wv, x, S). But we know by construction that |S| = εR, and hence
Λ(v) /∈ S with probability at least 1− ε. �

3.5 Sherali-Adams Integrality Gap for K-NOR.

This section will be dedicated to proving the following theorem.

Theorem 3.11. For any ε > 0 and integer q ≥ 2, there exist a scalar κ > 0 and an integer k so
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3.5. Sherali-Adams Integrality Gap for K-NOR.

that for every sufficiently large n there exists a K-NOR instance I of arity k over n variables
satisfying

1. OPT(I) ≤ ε;

2. There is a solution to the nκ-round Sherali-Adams relaxation of value at least 1− 1/q− ε.

The above theorem states that the K-NOR problem can fool the Sherali-Adams relaxation
even after nκ many rounds. Before we proceed, we discuss functions of the form
f : ZR

q → {0, 1}. These functions will play a crucial role in the analysis.

3.5.1 Functions Over the Domain Zq.

In order to construct Sherali-Adams integrality gaps for the K-NOR problem, we also
reduce from the UNIQUE GAMES problem. The analysis of this reduction relies heavily
on known properties regarding functions of the form f : ZR

q → {0, 1}, where Zq is to
be thought of as the domain of the new CSP, and R as the label set size of the UNIQUE

GAMES instance. More precisely, we exploit the drastic difference in the behavior of
functions depending on whether they have influential coordinates or not. To quantify
these differences, we first need the following definitions.

Definition 3.12. For a function f : ZR
q → {0, 1}, and an index i ∈ [R], the influence of

the i-th coordinate is given by

Infi( f ) = E [Var [ f (x)|x1, . . . , xi−1, xi+1, . . . , xR]] ,

where x1, . . . , xR are uniformly and independently distributed, and Var[.] denotes the
variance.

An alternative definition for the influence requires defining the Fourier expansion of
a function f of the form f : ZR

q → {0, 1}. To do this, let φ0, φ1, . . . , φq−1 : Zq → R with
φ0 ≡ 1 be such that for all i, j ∈ �q�, we have

E
y∈Zq

[
φi(y)φj(y)

]
=

{
0 if i �= j ,

1 if i = j ,

where the expectation is taken over the uniform distribution, and define the functions
φα : ZR

q → R for every α ∈ ZR
q to be

φα(x) :=
R

∏
i=1

φαi (xi) ,
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for any x ∈ ZR
q ; here we identify �q� with Zq. We take these functions for defining our

Fourier basis. Note that this coincides with the boolean case, where for b ∈ {0, 1} we
have φ0 ≡ 1, and φ1(b) = (−1)b (or the identity function in the {−1, 1} domain). For a
more elaborate discussion on the Fourier expansion in generalized domains, we refer
the interested reader to Chapter 8 in [87].

Having fixed the functions φ0, φ1, . . . , φq−1, every function f : ZR
q → {0, 1} can be

uniquely expressed as

f (x) = ∑
α∈ZR

q

f̂αφα(x),

with f̂α ∈ R. Equipped with this, we can relate the influence of a variable i ∈ [R] with
respect to a function f : ZR

q → {0, 1}, to the Fourier coefficients of f as follows:

Infi( f ) = ∑
α:αi �=0

f̂ 2
α .

In our analysis we will however be interested in degree-d influences, denoted Infd
i (d) and

defined as

Infd
i ( f ) = ∑

α:αi �=0,‖α‖0≤d
f̂ 2
α ,

where ‖α‖0 in this context is the support of α, i.e., the number of indices j ∈ [R] such
that αj �= 0.

Observation 3.13 (see, e.g., Proposition 3.8 in [83]). For a function f : ZR
q → {0, 1}, the

sum of all degree-d influences is at most d.

We will also need a generalization of the notion of sub-cubes defined in Figure 3.1 in
order to state the ”It Ain’t Over Till It’s Over” Theorem [83], a main ingredient of the
analysis of the reduction. In fact we only state and use a special case of it, as it appears
in [102].

Definition 3.14. Fix ε > 0. For x ∈ ZR
q and Sε ⊆ [R] such that |Sε| = εR, the sub-cube

Cx,Sε
is defined as follows:

Cx,Sε
:=

{
z ∈ ZR

q : zj = xj ∀j /∈ Sε

}
⊆ ZR

q .

For a sub-cube Cx,Sε
⊆ ZR

q and a function f : ZR
q :→ {0, 1}, let f |Cx,Sε

denote the
restriction of f on the sub-cube Cx,Sε

. In this notation, f |Cx,Sε
≡ 0 means that f (z) = 0

for all z ∈ Cx,Sε
, i.e., f is identical to 0 on the sub-cube Cx,Sε

.

Theorem 3.15 (Special case of the It Ain’t Over Till It’s Over Theorem). For every ε, η > 0,
and integer q, there exist ϑ > 0 and integers t, d such that any collection of functions f1, . . . , ft :
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ZR
q → {0, 1} that satisfies

∀j : E
[

f j
] ≥ η and ∀i ∈ [R] , ∀1 ≤ �1 �= �2 ≤ t : min

{
Infd

i ( f�1), Infd
i ( f�2)

}
≤ ϑ,

has the property

P
x,Sε

⎡⎣ t∧
j=1

(
fj
∣∣
Cx,Sε

≡ 0
)⎤⎦ ≤ η/2 ,

where the probability over x ∈ ZR
q and Sε ⊆ [R] with |Sε| = εR is taken independently

uniformly at random.

Essentially what this theorem says is that if a collection of t fairly balanced functions are
all identical to zero on the same random sub-cube with non-negligible probability, then
at least two of these functions must share a common influential coordinate. In fact all
the functions that we use throughout this section satisfy a strong balance property, that
we refer to as folding.8

Folded Functions. We say that a function f : ZR
q → {0, 1} is folded if every line of the

form {x ∈ ZR
q | x = a + λ1, λ ∈ Zq} contains a unique point γ ∈ ZR

q with f (γ) = 0,
where 1 ∈ ZR

q is the all-one vector and a ∈ ZR
q is any point.

Remark 3.16. For any folded function f : ZR
q → {0, 1}, we have that Ex [ f (x)] = 1− 1/q.

We shall also extend the notion of dictatorship functions restricted to the folded setting.
In this setting, the �-th coordinate dictator function f� : ZR

q → {0, 1} for some � ∈ [R] is
defined as

f�(x) =

{
1 if x� �= 0
0 if x� = 0 .

Notice that f� is folded because it is zero exactly on the coordinate hyperplane {x ∈
ZR

q | x� = 0}.

Truth Table Model. In order to guarantee the folding property of a function f : ZR
q →

{0, 1} in the truth table model, we adopt the following convention:

1. The truth table Υ f has qR−1 entries in Zq, one for each x ∈ ZR
q such that x1 = 0.

8We abuse the notion of folding here, and we stress that this should not be confused with the usual
notion of folding in the literature, although it coincides with standard folding for the boolean case.
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2. For each x ∈ ZR
q with x1 = 0, the corresponding entry Υ f (x) contains the unique

λ ∈ Zq such that f (x + λ1) = 0.

We can however use Υ f to query f (x) for any x ∈ ZR
q as follows: we have f (x) = 0

whenever Υ f (x− x11) = Υ f (0, x2 − x1, . . . , xR − x1) = x1 and f (x) = 1 otherwise.

We can now readily extend the notion of the long code encoding to match our definition
of dictatorship functions.

Definition 3.17. The long code encoding of an index � ∈ [R] is simply Υ f� , the truth table

of the folded dictatorship function of the �-th coordinate. The long code Υ f� ∈ Z
qR−1

q is
indexed by all x ∈ ZR

q such that x1 = 0.

3.5.2 Reduction from UNIQUE GAMES to K-NOR.

We first describe the reduction from UNIQUE GAMES to K-NOR that is similar in many
aspects to the reduction in Section 3.4. We then show that it also preserves the Sherali-
Adams integrality gap.

Reduction. Let U = (G, �R� , Π) be a UNIQUE GAMES instance over a regular bipartite
graph G = (V, W, E). Given U, we construct an instance I of K-NOR. The reduction
has three parameters: an integer q ≥ 2, a real ε > 0 determining the completeness,
and an integer t, where ε is chosen such that εR is an integer and t is sufficiently large
depending on ε, q, and the desired soundness η (see Lemma 3.18).

The resulting K-NOR instance I will be defined over |W|qR−1 variables and c|V|
constraints, where c := c(R, ε, t, Δ, q) is a function of the degree Δ of the UNIQUE GAMES

instance, and the constants R, t, q and ε. For our purposes, the UNIQUE GAMES integrality
gap instance that we start from, has constant degree Δ, and hence c is a constant.

We refer to the variables of I as follows: it has a variable 〈w, z〉 ∈ Zq for each w ∈ W
and z ∈ ZR

q such that z1 = 0. For further reference, we let Var(I) denote the set of
variables of I (not to be confused with Var[.] denoting the variance). The constraints
of I are picked according the distribution in Figure 3.2. One can see that a constraint
C := C(v,Wv, x, Sε) is then defined by a random vertex v (Line 1), t random neighbors
Wv = {w1, . . . , wt} (Line 2), a random x ∈ ZR

q (Line 3) and a random subset Sε ⊆ [R]
(Line 4). We remark that here, in contrast to Section 3.4, we have picked a random subset
Sε always of cardinality εR. This in order to apply Theorem 3.15 as stated although one
can see that the two versions are quantitatively equivalent.

Note that if we think of the variables 〈w, z〉 for a fixed w ∈ W as the truth table of some
function fw : ZR

q → {0, 1}, then fw is forced to satisfy the folding property.
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1. Pick a vertex v ∈ V uniformly at random.

2. Pick vertices w1, . . . , wt randomly and independently from the neighborhood
N(v) = {w ∈ W : vw ∈ E}.

3. Pick x ∈ ZR
q at random.

4. Let m = εR. Pick a subset Sε ⊆ [R] of εR indices uniformly at random.

5. Output the constraint on the variables {〈wi, z− z11〉 | i ∈ [t] , π−1
v,wi

(z) ∈ Cx,Sε
}

that is true if

〈wi, z− z11〉 �= z1 , ∀ 1 ≤ i ≤ t, ∀z such that π−1
v,w1

(z) ∈ Cx,Sε
,

where π(z) for z ∈ ZR
q is defined as π(z) := (zπ(1), zπ(2), . . . , zπ(R)).

Figure 3.2 – Distribution for the K-NOR constraints

We claim that if the starting UNIQUE GAMES instance U was a Sherali-Adams integrality
gap instance, then I is also an integrality gap instance for the K-NOR problem. Similar
to Section 3.4, we prove this in two steps; we first show that if OPT(U) is small, then so
is OPT(I). Formally speaking, the following holds:

Lemma 3.18. For every alphabet size q ≥ 2 and ε, η > 0 such that η ≤ 1/q there exists an
integer t so that OPT(I) ≤ η if OPT(U) ≤ δ where δ > 0 is a constant that only depends on
ε, η, and q.

Proof. Suppose towards contradiction that OPT(I) > η. As noted earlier, for a fixed
w ∈ W we can think of the variables 〈w, z〉 ∈ Var(I) as the truth table of a folded
function fw : ZR

q → {0, 1}, where Υ fw(z) := 〈w, z〉. This is possible since the variables
〈w, z〉 ∈ Var(I) are restricted to z ∈ ZR

q with z1 = 0. Given this alternative point of
view, define for every vertex w ∈ W, a set of candidate labels L[w] as follows:

L[w] = {i ∈ [R] : Infd
i ( fw) ≥ ϑ} ,

where d and ϑ are selected depending on ε, η, and q according to Theorem 3.15. Note
that |L[w]| ≤ d/ϑ by Observation 3.13.

For every vertex v ∈ V, and every Wv = {w1, . . . , wt} ⊆ N(V), consider the following
set of constraints:

Cv,Wv :=
{

Cv,Wv,x,S : x ∈ ZR
q , S ⊆ [R] such that |S| = εR

}
.

A standard counting argument then shows that if OPT(I) > η, then at least an η/2
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fraction of the tuples (v, w1, . . . , wt) have more than η/2 fraction of the constraints
inside Cv,Wv satisfied. We refer to such tuples as good. Adopting the language of folded
functions instead of variables, the aforementioned statement can be casted as

P
x∈ZR

q ,Sε⊆[R]

[
t∧

i=1

(
fwi |πv,wi (Cx,Sε )

≡ 1
)]

> η/2 , if the tuple (v, w1, . . . , wt) is good,

where for a permutation π we use the notation

f |π(Cx,Sε )
≡ 1 ⇐⇒ f (z) = 1 ∀z such that π−1(z) ∈ Cx,Sε

.

From Remark 3.16, we get that E [ fwi ] = 1− 1/q ≤ 1− η, and hence invoking Theo-
rem 3.15 on the functions f̄w1 , . . . , f̄wt , where f̄wi(x) := 1− fwi(πv,wi(x)), yields that for
every good tuple, there exists �1 �= �2 ∈ [t] such that f̄w�1

and f̄w�2
share a common

influential coordinate. Note that this is equivalent to saying that there exists j1 ∈ L[w�1 ],
j2 ∈ L[w�2 ] such that πv,w�1

(j1) = πv,w�2
(j2).

We now claim that if OPT(I) > η, then we can construct a labeling Λ : V ∪W → �R�
that satisfies at least ηϑ2

2d2t2 of edges, which contradicts the fact that OPT(U) ≤ δ for a
small enough value of δ > 0. Towards this end, consider the following randomized
labeling procedure:

1. For every w ∈ W, let Λ(w) be a random label from the set L[w], or an arbitrary
label if L[w] = ∅.

2. For every v ∈ V, pick a random neighbor w ∈ N(v) and set Λ(v) = πv,w(Λ(w)).

We can readily calculate the fraction of edges in U that are satisfied by Λ. This follows
from putting the following observations together:

1. If we pick a random tuple (v, w1, . . . , wt), it is good with probability at least η/2.

2. If (v, w1, . . . , wt) is good, and we pick w′, w′′ at random from {w1, . . . , wt}, then
with probability at least 1/t2 the functions fw′ and fw′′ share a common influential
coordinates.

3. If (v, w1, . . . , wt) is good, and the functions fw′ and fw′′ share a common influential
coordinates, then picking a random label to w′ and w′′ from L[w′] and L[w′′] respec-
tively, will satisfy πv,w′(Λ(w′)) = πv,w′′(Λ(w′′)) with probability at least 1/(d2/ϑ2).

Hence the expected number of edges satisfied by Λ in this case is

P
vw∈E

[Λ(v) = πv,w(Λ(w))] ≥ ηϑ2

2d2t2 .
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�

We now show that given an r-rounds Sherali-Adams solution of high value for U, we can
also come up with an r-rounds Sherali-Adams solution for I of high value as well. The
proof goes along the same lines of that of Lemma 3.8, and hence we will only highlight
the differences.

Lemma 3.19. Let {μ(S) | S ⊆ V ∪W, |S| ≤ r} be a consistent collection of local distributions
defining a solution to the r-rounds Sherali-Adams relaxation of the regular bipartite UNIQUE

GAMES instance U. Then we can define a consistent collection of local distributions {σ(S) | S ⊆
Var(I), |S| ≤ r} defining a solution to the r-rounds Sherali-Adams relaxation of the K-NOR
instance I so that

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
≥(1− ε)(1− 1

q
)

(
1− t · E

vw∈E

[
P

(Λ(v),Λ(w)∼μ({v,w})
[Λ(v) �= πw,v(Λ(w))]

])
,

where t, ε are the parameters of the reduction, and σ(SC) is the distribution over the set of
variables in the support SC of constraint C.

Proof. Let {μ(S) | S ⊆ V ∪W, |S| ≤ r} be a solution to the r-rounds SA relaxation of the
UNIQUE GAMES instance U, and recall that I is the K-NOR instance we get by applying
the reduction. We will now use the collection of consistent local distributions of the
UNIQUE GAMES instance, to construct another collection of consistent local distributions
for the variables in Var(I).

For every set S ⊆ Var(I) such that |S| ≤ r, let TS ⊆ W be the subset of vertices in the
UNIQUE GAMES instance defined as follows:

TS := {w ∈ W : 〈w, x〉 ∈ S}. (3.12)

We will now construct σ(S) from μ(TS) in the following manner. Given a labeling ΛTS

for the vertices in TS drawn from μ(TS), define an assignment αS for the variables in
S as follows: for a variable 〈w, x〉 ∈ S, let � = ΛTS(w) be the label of w according to
ΛTS . Then the new assignment αS sets αS(〈w, x〉) := Υ f�(x), where Υ f� is the long code
encoding of � as in Definition 3.17. The aforementioned procedure defines a family
{σ(S)}S⊆Var(I):|S|≤r of local distributions for the variables of the K-NOR instance I. The
same argument as in the proof of Lemma 3.8 yields that {σ(S) | S ⊆ Var(I), |S| ≤ r}
defines a feasible solution for the r-round Sherali-Adams relaxation of the K-NOR
instance I.
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It remains to bound the value of this feasible solution, i.e.,

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
= E

v,w1,...,wt

[
P

Λ∼μ({v,w1,...,wt}),x,S
[ψ(Λ) satisfies C(v,Wv, x, S)]

]
. (3.13)

where ψ(.) the operator mapping a labeling of the vertices in TS to an assignment for
the variables in S, i.e., ψ(ΛTS) = αS. The following claim, which is in some sense the
equivalent of Claim 3.9 in the K-NOR language, along with the same remaining steps of
the proof of Lemma 3.8 will yield the proof.

Claim 3.20. If Λ satisfies vw1, . . . , vwt simultaneously, then ψ(Λ) satisfies C(v,Wv, x, S)
with probability at least (1− ε)(1− 1

q ). Moreover, if we additionally have that Λ(v) /∈ S and
xΛ(v) �= 0, then ψ(Λ) always satisfies C(v,Wv, x, S).

Equipped with this, we can use conditioning to lower-bound the probability inside the
expectation in (3.13) by a product of two probabilities, where the first is

P
Λ∼μ({v,w1,...,wt}),x,S

[ψ(Λ) satisfies C(v,Wv, x, S)|Λ satisfies vw1, . . . , vwt] , (3.14)

and the second is

P
Λ∼μ({v,w1,...,wt})

[Λ satisfies vw1, . . . , vwt] .

Thus using Claim 3.20, we get

E
C∈C

[
P

α∼σ(SC)
[α satisfies C]

]
≥(1− ε)(1− 1

q
) · E

v,w1,...,wt

[
P

Λ∼μ({v,w1,...,wt})
[Λ satisfies vw1, . . . , vwt]

]
≥(1− ε)(1− 1

q
) ·

(
1− t · E

v,w

[
P

Λ∼μ({v,w})
[Λ does not satisfy vw]

])
.

�

The proof of Corollary 3.10 adjusted to the K-NOR problem now yields Theorem 3.11. It
remains to prove Claim 3.20:

Proof. Claim 3.20: Assume that Λ satisfies vw1, . . . , vwt simultaneously, i.e.,

πv,w1(Λ(w1)) = · · · = πv,wt(Λ(wt)) = Λ(v) , (3.15)

and let Cx,Sε
be the sub-cube as in Figure 3.2. Recall that a constraint C(v,Wv, x, Sε) looks
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as follows:

〈wi, z− z11〉 �= z1 , ∀ 1 ≤ i ≤ t, ∀z such that π−1
v,w1

(z) ∈ Cx,Sε
. (3.16)

We now adopt the functions point of view, i.e., for a w ∈ W, the variables 〈w, z〉 for
z ∈ �q�R are the entries of the truth table of a function fw, and according to the new
assignment Λ, fw is the folded dictatorship function of the label of Λ(w).

So if we let f := fwi for some 1 ≤ i ≤ t, and z := 〈wi, z〉, we get that

〈wi, z− z11〉 �= z1 ⇐⇒ f (z) �= 0 ,

and by our definition of the dictatorship function, the latter is zero iff zΛ(wi) = 0. But

zΛ(wi) = πv,wi(y)Λ(wi) = yπv,wi (Λ(wi)) = yΛ(v) , (3.17)

where the last equality follows from (3.15). We know from the construction of the sub-
cube Cx,Sε

that for all j /∈ Sε and for all y ∈ Cx,Sε
, we have yj = xj. It then follows that if

Λ(v) /∈ Sε, equation 3.17 yields that

zΛ(wi) = yΛ(v) = xΛ(v) ∀ 〈wi, z〉 s.t. π−1
v,wi

(z) ∈ Cx,Sε
.

Moreover, given that x is chosen uniformly at random from �q�R, we get that for any
i ∈ [R], Px∈�q�R [xi = 0] = 1

q .

Thus far we proved that if If Λ satisfies vw1, . . . , vwt simultaneously and Λ(v) /∈ S, then
ψ(Λ) satisfies C(v,Wv, x, S) with probability 1− 1

q . But we know by construction that
|S| = εR, and hence Λ(v) /∈ S with probability at least 1− ε. �

3.6 LP-Hardness of 1F-CSP and K-NOR

We have thus far constructed 1F-CSP (and K-NOR) instances that are able to fool
relaxations resulting from performing a large number of rounds of the SA hierarchy
(formally stated in Corollary 3.10 and Theorem 3.11). In the language of LP (c, s)-
approximability, our results can be restated as follows:

Theorem 3.21. For every ε > 0 (and q ≥ 2), and for infinitely many n, no Ωε(n)-rounds
Sherali-Adams relaxation can achieve a (1− ε, ε)-approximation (and (1− 1

q − ε, ε)) for the
1F-CSP problem (and respectively for the K-NOR problem) for instances on n variables.

As far as CONSTRAINT SATISFACTION PROBLEMS problems are concerned, LPs arising
from the SA hierarchy are in some sense at least as powerful as any other LP of the same
size. In particular, Theorem 3.22 was first proved in [31] for general alphabet CSPs; the
lower bound was later improved in [71], as stated in Theorem 3.23, however it currently
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only applies directly to Binary CSPs:

Theorem 3.22 (Theorem 3.2 in [31]). Consider a function f : N → N. Suppose that the
f (n)-round Sherali-Adams relaxation cannot achieve a (c, s)-approximation for a CONSTRAINT

SATISFACTION PROBLEM Πn over n variables. Then for sufficiently large n, no LP relaxation
of size at most n f (n)2

can achieve a (c, s)-approximation for ΠN, where N ≤ n10 f (n).

Theorem 3.23 (Theorem 1.2 in [71]). There exist constants 0 < h < H such that the following
holds. Consider a function f : N �→ N. Suppose that the f (n)-round Sherali Adams relaxation
for a binary CONSTRAINT SATISFACTION PROBLEM cannot achieve a (c, s)-approximation on
instances on n variables. Then no LP of size at most nh f (n) can achieve a (c, s)-approximation
for the CONSTRAINT SATISFACTION PROBLEM on nH variables.

Combining Theorems 3.21, 3.22 and 3.23 yields the main result of this chapter stated in
the following corollaries:

Corollary 3.24. For some universal constant H ≥ 1, and for every ε > 0, there exists constants
c1(ε), k = k(ε) such that no LP relaxation of size less than 2c1(ε)n1/H

achieves a (1− ε, ε) for the
1F-CSPn,k problem.

Corollary 3.25. For every ε > 0, and alphabet size q ≥ 2, there exists a constant arity k = k(ε)

such that no LP relaxation of size less than no
(

log n
log log n

)
achieves a (1− 1/q− ε, ε)-approximation

for the K-NORn,q problem.
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4 LP Hardness of Vertex Cover

We proved in Chapter 3 that any good LP relaxation for 1F-CSP and K-NOR must have
a large size. As mentioned earlier, the choice of these two problems is motivated by their
implications on other combinatorial problems, such as the Vertex Cover problem and its
complement, the Independent Set problem.

The Vertex Cover problem is one of the most important and intensively studied combi-
natorial optimization problems. Khot and Regev [68] prove that the problem is NP-hard
to approximate within a factor 2− ε, assuming the Unique Games Conjecture. This is
tight because the problem has an easy 2-approximation algorithm. Without resorting to
the Unique Games Conjecture, the best inapproximability result for the problem is due
to Dinur and Safra [40]: Vertex Cover is NP-hard to approximate within a factor 1.3606.

We prove the following unconditional result about the linear programming relaxations
of the problem: every LP relaxation that approximates Vertex Cover within a factor
2− ε has sup-exponentially many inequalities. As a direct consequence of our methods,
we also establish that LP relaxations (as well as SDP relaxations) that approximate the
Independent Set problem within any constant factor must have super-polynomial size.

4.1 Introduction.

In this chapter, we prove tight inapproximability results for VERTEX COVER with respect
to linear programming relaxations of polynomial size. Recall that the VERTEX COVER

problem is the following classic problem: given a graph G = (V, E) together with vertex
costs cv ≥ 0, v ∈ V, find a minimum cost set of vertices U ⊆ V such that every edge has
at least one endpoint in U. Such a set of vertices meeting every edge is called a vertex
cover.

We saw in Chapter 1 that the natural LP relaxation for the unweighted version of the
VERTEX COVER problem has an integrality gap of 2. Similarly, the following weighted
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LP relaxation

min ∑
v∈V

cvxv

s.t. xu + xv ≥ 1 ∀uv ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(4.1)

approximates VERTEX COVER within a factor 2. (See e.g., Hochbaum [58] and the
references therein.) This means that for every cost vector there exists a vertex cover
whose cost is at most 2 times the optimum value of the LP. In fact, the (global) integrality
gap of this LP relaxation, the worst-case ratio over all graphs and all cost vectors between
the minimum cost of an integer solution and the minimum cost of a fractional solution,
equals 2.

One way to make the LP relaxation (4.1) stronger is by adding valid inequalities. Here,
a valid inequality is a linear inequality ∑v∈V avxv ≥ β that is satisfied by every integral
solution. Adding all possible valid inequalities to (4.1) would clearly decrease the
integrality gap all the way from 2 to 1, and thus provide a perfect LP formulation.
However, this would also yield an LP that we would not be able to write down or solve
efficiently, unless P = NP. Hence, it is necessary to restrict to more tangible families of
valid inequalities.

For instance, if C ⊆ V is the vertex set of an odd cycle in G, then ∑v∈C xv � |C|+1
2 is

a valid inequality for vertex covers, known as an odd cycle inequality. However, the
integrality gap remains 2 after adding all such inequalities to (4.1). More classes of
inequalities are known beyond the odd cycle inequalities. However, we do not know
any such class of valid inequalities that would decrease the integrality gap strictly below
2.

There has also been much success in ruling out concrete polynomial-size linear program-
ming formulations arising from, e.g., the addition of a polynomial number of inequalities
with sparse support or those arising from hierarchies, where new valid inequalities are
generated in a systematic way. For instance, what about adding all valid inequalities
supported on at most o(n) vertices (where n denotes the number of vertices of G), or all
those obtained by performing a few rounds of the Lovász-Schrijver (LS) lift-and-project
procedure [80]? In their influential paper Arora, Bollobás and Lovász [2] (the journal
version [3] is joint work with Tourlakis) prove that none of these broad classes of valid
inequalities are sufficient to decrease the integrality gap to 2− ε for any ε > 0.

The paper of Arora et al. was followed by many papers that derive stronger and stronger
tradeoffs between number of rounds and integrality gap for VERTEX COVER and many
other problems in various hierarchies, see the related work section below. The focus of
this chapter is to prove lower bounds in a more general model. Specifically, our goal
is to understand the strength of any polynomial-size linear programming relaxation of
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VERTEX COVER independently of any hierarchy and irrespectively of any complexity-
theoretic assumption such as P �= NP.

We will rule out all possible polynomial-size LP relaxations obtained from adding an
arbitrary set of valid inequalities of polynomial size. By “all possible LP relaxations”, we
mean that the variables of the LP can be chosen arbitrarily. They do not have to be the
vertex-variables of (4.1).

Contribution.

In the terminology of Section 2.2, we consider the general non-uniform model of LP
relaxations as in [31], see also [25]. Given an n-vertex graph G = (V, E), a system of
linear inequalities Ax � b in Rd, where d ∈ N is arbitrary, defines an LP relaxation of
VERTEX COVER (on G) if the following conditions hold:

Feasibility: For every vertex cover U ⊆ V, we have a feasible vector xU ∈ Rd satisfying
AxU � b.

Linear objective: For every vertex-costs c ∈ RV
+, we have an affine function (degree-1

polynomial) fc : Rd → R.

Consistency: For all vertex covers U ⊆ V and vertex-costs c ∈ RV
+, the condition

fc(xU) = ∑v∈U cv holds.

For every vertex-costs c ∈ RV
+, the LP min{ fc(x) | Ax � b} provides a guess on the

minimum cost of a vertex cover. This guess is always a lower bound on the optimum.

We allow arbitrary computations for writing down the LP and do not bound the size of
the coefficients. We only care about the following two parameters and their relationship:
the size of the LP relaxation, defined as the number of inequalities in Ax � b, and the
(graph-specific) integrality gap, which is the worst-case ratio over all vertex-costs between
the true optimum and the guess provided by the LP, for this particular graph G and LP
relaxation.

While formally equivalent to the polyhedral-pair approach in extended formulations [22]
(see also [90]), the formalization from above naturally models affine linear functions that
we need for reductions and it does not require an LP relaxation to start from. We refer
the interested reader to the surveys [37, 62] for an introduction to extended formulations;
see also Section 4.3 for more details.

In this chapter, we prove the following result about LP relaxations of the VERTEX COVER

problem and, as a byproduct, the INDEPENDENT SET problem.1

1Recall that an independent set (stable set) in graph G = (V, E) is a set of vertices I ⊆ V such that no edge
has both endpoints in I. INDEPENDENT SET is the corresponding maximization problem: given a graph

51



Chapter 4. LP Hardness of Vertex Cover

Theorem 4.1. For every sufficiently large n, there exists an n-vertex graph G = G(n) such
that: (i) Every size-2no(1)

LP relaxation of VERTEX COVER on G has integrality gap 2− o(1);
(ii) Every size-2no(1)

LP relaxation of INDEPENDENT SET on G has integrality gap ω(1).

This solves an open problem that was posed both by Singh [100] and Chan, Lee,
Raghavendra and Steurer [31]. In fact, Singh conjectured that every compact (that
is, polynomial size), symmetric extended formulation for VERTEX COVER has an integral-
ity gap of at least 2− ε. We prove that his conjecture holds, even if asymmetric extended
formulations are allowed.2

Our result for the INDEPENDENT SET problem is even stronger than Theorem 4.1, as we
are also able to rule out any polynomial size SDP with a constant integrality gap for this
problem. Furthermore, combining our proof strategy with more complex techniques
we can prove a result similar to Theorem 4.1 for q-UNIFORM-VERTEX-COVER (that is,
vertex cover in q-uniform hypergraphs), for any fixed q ≥ 2. For that problem, every size
no(log n/ log log n) LP relaxation has integrality gap q− o(1). This generalizes our result on
(graph) VERTEX COVER.

In the general model of LP relaxations outlined above, the LPs are designed with the
knowledge of the graph G = (V, E); As we saw in Section 2.2.3, this is a non-uniform
model as the LP can depend on the graph. It captures the natural LP relaxations for
VERTEX COVER and INDEPENDENT SET whose constraints depend on the graph structure.
This is in contrast to previous lower bound results ([22, 4, 23]) on the LP formulation
complexity of INDEPENDENT SET, which are of a uniform nature: In these works, the
formulation of the LP relaxation was agnostic to the input graph and only allowed to
depend on the number of vertices of the graph. In general non-uniform models are
stronger (hence also the lower bounds for it) and interestingly, this allows for stronger LP
relaxations for INDEPENDENT SET than NP-hardness would predict. This phenomenon
is related to the approximability of problems with preprocessing. In Section 4.6, we
observe that a result of Feige and Jozeph [44] implies that there exists a size-O(n) LP
formulation for approximating INDEPENDENT SET within a multiplicative factor of
O(
√

n).

Related Work.

Most of the work on extended formulations is ultimately rooted in Yannakakis’s famous
paper [107] in which he proved that every symmetric extended formulation of the
matching polytope and (hence) TSP polytope of the n-vertex complete graph has size
2Ω(n). Yannakakis’s work was motivated by approaches to proving P = NP by providing

together with a weight for each vertex, find a maximum weight independent set.
2Note that in some cases imposing symmetry is a severe restriction, see Kaibel, Pashkovich and

Theis [63].
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small (symmetric) LPs for the TSP, which he ruled out.

The paper of Arora et al. [2, 3] revived Yannakakis’s ideas in the context of hardness
of approximation and provided lower bounds for VERTEX COVER in LS. It marked the
starting point for a whole series of papers on approximations via hierarchies. Shortly
after Arora et al. proved that performing O(log n) rounds of LS does not decrease the
integrality gap below 2, Schoenebeck, Trevisan and Tourlakis [96] proved that this also
holds for o(n) rounds of LS. A similar result holds for the stronger Sherali-Adams (SA)
hierarchy [99]: Charikar, Makarychev and Makarychev [32] showed that Ω(nδ) rounds
of SA are necessary to decrease the integrality gap beyond 2− ε for some δ = δ(ε) > 0.

Beyond linear programming hierarchies, there are also semidefinite programming (SDP)
hierarchies, e.g., Lovász-Schrijver (LS+) [80] and Sum-of-Squares/Lasserre [89, 72, 73].
Georgiou, Magen, Pitassi and Tourlakis [49] proved that O(

√
log n/ log log n) rounds of

LS+ does not approximate VERTEX COVER within a factor better than 2. In this chapter,
we focus mostly on the LP case.

Other papers in the “hierarchies” line of work include [39, 48, 95, 70, 92, 103, 65, 18, 17].

Although hierarchies are powerful tools, they have their limitations. For instance,
o(n) rounds of SA does not give an approximation of KNAPSACK with a factor better
than 2 [65]. However, for every ε > 0, there exists a size-n1/ε+O(1) LP relaxation that
approximates KNAPSACK within a factor of 1 + ε [19].

Besides the study of hierarchy-based approaches, there is a distinct line of work that,
inspired directly by Yannakakis’s paper, seeks to study the power of general (linear)
extended formulations, independently of any hierarchy, see e.g., [93, 46, 22, 17, 4, 23, 94].
Limitations of semidefinite extended formulations were also studied recently, see [27, 76].

The lines of work on hierarchies and (general) extended formulations in the case of
CONSTRAINT SATISFACTION PROBLEMS (CSPs) were merged in the work of Chan et
al. [31], and later strengthened by Kothari et al. [71]. This is crucial for proving our
results for 1F-CSP and K-NOR in Chapter 3. Recall that the main result of [31, 71] states
that for Max-CSPs, SA is the best possible among all LP relaxations in the sense that if
there exists a size-nr LP relaxation approximating a given Max-CSP within factor α then
performing 2r rounds of SA would also provide a factor-α approximation. They obtained
several strong LP inapproximability results for Max-CSPs such as MAX CUT and MAX

3-SAT. This result was recently strengthened in a breakthrough by Lee, Raghavendra,
and Steurer [76], who obtained analogous results showing (informally) that the Sum-of-
Squares/Lasserre hierarchy is the best possible among all SDP relaxations for Max-CSPs.

Braun, Pokutta and Zink [25] developed a framework for proving lower bounds on
the size of LP relaxations via reductions. Using [31] and FGLSS graphs [43], they
obtained a nΩ(log n/ log log n) size lower bound for approximating VERTEX COVER within
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a factor of 1.5− ε and INDEPENDENT SET within a factor of 2− ε. We improve these
inapproximability factors to a tight 2− ε and any constant, respectively.

Outline.

The framework in Braun et al. [25] formalizes sufficient properties of reductions for
preserving inapproximability with respect to extended formulations / LP relaxations;
this reduction mechanism does not capture all known reductions as it relates the objective
functions in a linear way and maps instances and solutions independently. Using this
framework, they gave a reduction from MAX CUT to VERTEX COVER thus yielding the
aforementioned result.

A natural approach for strengthening the hardness factor is to reduce from UNIQUE

GAMES instead of MAX CUT (since VERTEX COVER is known to be UNIQUE GAMES-hard
to approximate within a factor 2− ε). However, one obstacle is that, in known reductions
from UNIQUE GAMES, the optimal value of the obtained VERTEX COVER instance is not
linearly related to the value of the UNIQUE GAMES instance. This makes these reductions
unsuitable for the framework in [25] (see Definition 4.4).

We overcome this obstacle by designing a two-step reduction, where the first step was
already presented in Chapter 3. To recap, in the first step, we interpreted the “one free
bit” PCP test of Bansal and Khot [9] as a reduction from a UNIQUE GAMES instance to a
one free bit CSP (1F-CSP). We then used the family of SA integrality gap instances for
the UNIQUE GAMES problem constructed by Charikar et al. [32], to construct a similar
family for this CSP. This, together with the main result of Chan et al. [31] and Kothari et
al. [71] applied to this particular CSP, implied that no subexponential size LP relaxation
can provide a constant factor approximation for 1F-CSP. This chapter deals with the
second step of this reduction. Specifically, we will perform in Section 4.4 a reduction
from 1F-CSP to VERTEX COVER, in the framework of Braun et al. [25], which yields our
main result.

Later, following a slightly different and more challenging route we prove tight hardness
of approximation for LP relaxations of q-UNIFORM-VERTEX-COVER for every q � 2. This
is done in Section 4.5.

4.2 From CONSTRAINT SATISFACTION PROBLEMS to Graphs

We present in Sections 4.4 and 4.5 the reductions that yield the promised LP-hardness
results. However, we give in this section a clean intuition behind these reductions,
without the overhead introduced by the reduction framework.
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4.2.1 Reduction to Graphs

Being one of most well-known NP-complete problems, the inapproximability of the
VERTEX COVER problem has attracted a long line of research in various computational
model such as P �=NP [57, 40], the Unique Games Conjecture [69, 9], extended formula-
tions [25], etc,. Most of these inapproximability reductions start from a family of hard
CONSTRAINT SATISFACTION PROBLEM instances, and use what is now known as the
FGLSS3 graph [43] reduction.

Namely, given a binary CONSTRAINT SATISFACTION PROBLEM instance I over n vari-
ables x1, · · · , xn, and a collection of m constraints C = {CS1,A1 , · · · , CSm,Am}4, the corre-
sponding FGLSS graph GI = (V, E) is constructed as follows:

Vertex set: For every constraint CS,A ∈ C, let C−1
S,A(1) be the set of satisfying partial

assignments, i.e.,

C−1
S,A(1) = {α ∈ {0, 1}|S| : CS,A(xα) = 1} ,

where xα ∈ {0, 1}n is any n-dimensional bit vector whose projection on S is α.
In particular, if f is the free bit complexity of the underlying predicate of the
constraint CS,A, then |C−1

S,A(1)| = 2 f . In total, our vertex set is then

V =
⋃

CS,A∈C
VS,A , where VS,A =

{
vS,A,α : α ∈ C−1

S,A(1)
}

.

Edge set: We have an edge between every pair of vertices corresponding to conflicting
assignments. Formally, we have an edge e ∈ E between two vertices vS,A,α, vS′,A′,α′

if there exists some index i ∈ S ∩ S′ such that α(i) �= α′(i), where α(i) is the
assignment of the variable xi according to the partial assignment α.

We illustrate this FGLSS reduction in Figure 4.1 by using a MAX CUT instance as the
starting CONSTRAINT SATISFACTION PROBLEM.

The main motivation behind this reduction is that there is a clean mapping between the
maximum number of simultaneously satisfied constraints of I, and the maximum size
independent set of GI . In particular, one can easily prove the following well-known
lemma.

Lemma 4.2. Fix some integer f ∈ N+. Let I be a CONSTRAINT SATISFACTION PROB-
LEM instance over n variables and a collection of constraints C, such that for every C ∈ C,

3Feige, Goldwasser, Lovász, Safra and Szegedy came up with this reduction in [43], and hence the name
FGLSS.

4Recall that a constraint CS,A is indexed by the set S ⊆ [n] of variables indices, and the literals set
A ∈ {0, 1}|S|. See Section 2.1.
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MAX CUT instance (x1 ⊕ x2)︸ ︷︷ ︸
C1

∧ (x̄2 ⊕ x̄3)︸ ︷︷ ︸
C2

∧ (x3 ⊕ x̄4)︸ ︷︷ ︸
C3

∧ (x4 ⊕ x̄1)︸ ︷︷ ︸
C4

.

v(0,1,·,·)

v(1,0,·,·)

VC1

v(·,·,0,0)

v(·,·,1,1)

VC3

v(·,0,1,·) v(·,1,0,·)

VC2

v(1,·,·,1) v(0,·,·,0)

VC4

Corresponding FGLSS graph.

⇐=

Figure 4.1 – Example of an FGLSS graph corresponding to a MAX CUT instance. A
MAX CUT constraint (a ⊕ b) has two satisfying assignment, namely (a = 1, b = 0) and
(a = 0, b = 1). Hence each set VC has 2 vertices corresponding to those partial satisfying
assignments. We have an edge between every two vertices corresponding to conflicting partial
assignments. For example, we have an edge between v(·,1,0,·) in VC2 and v(·,·,1,1) in VC3 since
they give a different assignment for the variable x3. Note that this means that we have an edge
between every two vertices of a set VC, since their corresponding partial assignments assign
different values for the same variables. The dark-grey colored vertices form an independent set
since they all agree with the global assignment (x1 = 0, x2 = 1, x3 = 0, x4 = 0) that satisfies
the starting MAX CUT instance.
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|C−1(1)| = f . Moreover, let GI = (V, E) be its corresponding FGLSS graph. Then the
following holds:

1. (Completeness: ) Assume there exists x ∈ {0, 1}n such that I(x) ≥ c ∈ [0, 1]. Then
there exists an independent set I ⊆ V, such that |I||V| ≥ c

f .

2. (Soundness: ) Assume that for every x ∈ {0, 1}n, I(x) < s ∈ [0, 1]. Then for every
independent set I ⊆ V, |I||V| <

s
f .

Proof. We start by proving the completeness of the reduction. Towards this end, let
x ∈ {0, 1}n be an assignment of the variables such that for some c ∈ [0, 1], we have

I(x) =
1
|C| ∑

CS,A∈C
CS,A(x) ≥ c ,

and define the subset I ⊆ V of vertices as follows:

S = {vS,A,α : α agrees with x on S} .

We say that α agrees with x on S, if α is the projection of x on the variables in S.

By construction of the vertex set of GI , we know that for every CS,A ∈ C, VS,A contains
vertices corresponding to all the partial satisfying assignments of CS,A. In particular,
for every constraint CS,A such CS,A(x) = 1, the partial assignment xS ∈ {0, 1}|S| corre-
sponding to the projection of x on S, has a corresponding vertex vS,A,xS in VS,A. By the
definition of I, it follows that for such satisfied constraints CS,A, I ∩ VS,A = {vS,A,xS}.
Since |C−1(1)| = f for every C ∈ C, we get that that

|I|
|V| =

|{C ∈ C : C(x) = 1}|
|V| =

|{C ∈ C : C(x) = 1}|
f |C| ≤ c|C|

f |C| =
c
f

.

To see that I is indeed a independent set, it is enough to see that since all the partial
assignments in I agree with a global assignment x, then no conflict can occur between
them, and hence no edge is completely contained inside I.

To prove the soundness, fix an instance I such that for every x ∈ {0, 1}n, I(x) <

s ∈ [0, 1], and assume towards contradiction that there still exists some independent
set I ⊆ V such that |I||V| ≥ s

f . We will show that we can derive from I, an assignment
xI ∈ {0, 1}n such that I(xI) ≥ s, yielding a contradiction.

Since I is independent set, we know that no edge is completely contained in I, and hence
no conflict occurs between any of the partial assignments corresponding to vertices in I.
Thus there exists a global assignment x ∈ {0, 1}n such that x agrees with α on S for every
vS,A,α ∈ I. This implies that for every CS,A ∈ C such that |VS,A ∩ I| ≥ 1, CS,A(x) = 1.

57



Chapter 4. LP Hardness of Vertex Cover

But for every constraint CS,A ∈ C, the vertices in VS,A correspond to different partial
assignments over the same set of vertices S, thus G[VS,A], the induced subgraph on VS,A

is a clique, and any independent can contain at most one vertex per set VS,A. In other
words, CS,A ∈ C, |VS,A ∩ I| ∈ {0, 1}, and hence the number of satisfied constraints by x
is the same as the cardinality of I. Combining all the previous observations, we get :

I(x) =
|{CS,A : CS,A(x) = 1}|

|C| =
|I|
|C| = f · |I||V| ≥ s .

Recall that the complement of an independent set I ⊆ V, i.e., V\I, is vertex cover of
G. Thus assume that, in a computational model where the FGLSS reduction can be
applied5, we can prove that for some CONSTRAINT SATISFACTION PROBLEM Πn and for
some 0 < s ≤ c < 1, we cannot distinguish between

1. instances such that there exists an assignment that satisfies at least c fraction of the
constraints, or

2. instances where no assignment satisfies more than s fraction of the constraints.

In other words, we have a (c, s)-hardness of Πn in a computational model where the
FGLSS reduction is allowed. Thus intuitively, Lemma 4.2 immediately implies a hardness

of
1− s

f
1− c

f
= f−s

f−c for the VERTEX COVER problem in the same computational model, where

f ∈ N+ is as in Lemma 4.2.

Since the free bit complexities of 1F-CSPn and K-NORn,2 are one and zero respectively, it
is reasonable to hope for a framework for LP-reduction in which, an FGLSS-like reduction
should imply that

(c, s)-hardness of 1F-CSPn ⇐⇒ 2− s
2− c

-hardness of VERTEX COVER

(c, s)-hardness of K-NORn,2 ⇐⇒ 1− s
1− c

-hardness of VERTEX COVER .

This is indeed what the LP-reduction framework of [25] provides, and the LP-hardness
of 2 for the VERTEX COVER problem that we present in Section 4.4 will follow from
our (1− ε, ε)-hardness of 1F-CSPn using a reduction in the same spirit as the FGLSS
graph in the framework of [25]. We could also reach the same hardness if we start
from our ( 1

2 − ε, ε)-hardness of K-NORn,2, however we only use the hardness of the

5For instance, to prove NP-hardness or UGC-hardness, the underlying reduction is only required to
be computable in polynomial time. However, as we will see in Definition 4.4 in Section 4.3, LP-hardness
results require more restricted reductions.
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aforementioned problem for arbitrary domain q to prove the hardness of the q-UNIFORM-
VERTEX-COVER problem.

4.2.2 Reduction to Hypergraphs

In order to establish a hardness for the q-UNIFORM-VERTEX-COVER problem, we develop
a more involved reduction that can be seen as an extension to the FGLSS reduction
when the starting CONSTRAINT SATISFACTION PROBLEM is the (not necessarily binary)
K-NOR.

Recall that a hypergraph H = (V, E) over the vertex set V and the hyperedge set E is said
to be q-uniform, if every hyperedge e ∈ E covers exactly q vertices, i.e., ∀e ∈ E, |e| = q.
We say that an edge e ∈ E is hit by a subset S ⊆ V if |e ∩ S| ≥ 1. The notion of vertex
cover readily generalizes to hypergraphs as follows: We call a subset S ⊆ V of vertices a
vertex cover of H, if every edge e ∈ E is hit by S. The goal in the q-UNIFORM-VERTEX-
COVER problem is then to find the minimum size subset S ⊆ V of vertices such that S is
a vertex cover of the hypergraph H.

We now highlight our reduction from K-NORn,q to q-UNIFORM-VERTEX-COVER, for
any integer q ≥ 2. Let I be a K-NORn,q instance over n variables x1, · · · , xn ∈ Zq,
and a collection of m constraints C = {CS1,A1 , · · · , CSm,Am}, such that every constraint
CS,A ∈ C is of predicate type K-NOR : Zk

q �→ {0, 1}. Recall that the K-NOR predicate
has a zero free bit complexity.

Given I, we construct the hypergraph HI = (V, E) as follows:

Vertex set: For every constraint CS,A ∈ C, we have one representative vertex vS,A, i.e.,

V =
⋃

CS,A∈C
vS,A .

Since CS,A has exactly one partial satisfying assignment which is A, vS,A implicitly
corresponds to the unique partial assignment α = A of the variables in S satisfying
CS,A.

Edge set: Any q vertices vS1,A1 , . . . , vSq,Aq are connected with a hyperedge if there exists
a variable xi, i ∈ ⋂q

j=1 Sj, such that no two out of the q corresponding constraints
check xi versus the same a ∈ �q�. Formally, we have a hyperedge (vS1,A1 , . . . , vSq,Aq )
if there exists a variable xi with i ∈ ⋂q

j=1 Sj such that vSl ,Al (i) �= vSm,Am(i) for all
l, m ∈ �q� with l �= m, where for a vertex vS,A and an index i ∈ S, vS,A(i) ∈ �q�
denotes the value a ∈ �q� against which xi is compared in the constraint CS,A.

Note that for q = 2, this boils down to the FGLSS reduction starting from K-NORn,2,
by observing that in this case each constraint CS,A has exactly one partially satisfying
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assignment, and hence its corresponding vertex vS,A can be thought of as the only vertex
{vS,A,A} = VS,A in the previous FGLSS reduction. The edges in this case only capture
conflicting assignments in the natural way.

We can prove the following lemma, which is an analogue of Lemma 4.2 for the hyper-
graph case:

Lemma 4.3. Let I be a K-NORn,q instance over n variables and a collection of constraints C,
and let HI = (V, E) be its corresponding hypergraph. Then the following holds:

1. (Completeness: ) Assume there exists x ∈ Zn
q such that I(x) ≥ c ∈ [0, 1]. Then there

exists an independent set I ⊆ V, such that |I||V| ≥ c.

2. (Soundness: ) Assume that for every x ∈ Zn
q , I(x) < s ∈ [0, 1]. Then for every

independent set I ⊆ V, |I||V| < s.

We delegate the proof of Lemma 4.3 to Section 4.5, where we prove it in the context of LP
hardness. However, one can infer from the statement that a (1− 1

q − ε, ε)-hardness of the

K-NORn,q problem would then yield a hardness of
1−

(
1− 1

q−ε
)

1−ε ≈ q for the q-UNIFORM-
VERTEX-COVER problem.

4.3 LP Reduction Framework

In the next section we establish LP-hardness of VERTEX COVER and INDEPENDENT SET

via a reduction from 1F-CSP (see Definition 2.6).

We will now briefly introduce a formal framework for reducing between problems that
is a stripped down version of the framework due to Braun et al, with a few notational
changes; the interested reader is referred to [25] for more details.

In this framework problems can be naturally reduced to each other. We will use the
following restricted form of reductions.

Definition 4.4. Let Π1 = (S1, I1) be a maximization problem and Π2 = (S2, I2) be a
minimization problem. A reduction from Π1 to Π2 consists of two maps, one I1 �→ I2

from I1 to I2 and the other S1 �→ S2 from S1 to S2, subject to

ValI1(S1) = μI1 − ζI1 ·CostI2(S2) I1 ∈ I1, S1 ∈ S1 ,

where μI1 is called the affine shift and ζI1 ≥ 0 is a normalization factor.

We say that the reduction is exact if additionally

OPT(I1) = μI1 − ζI1 ·OPT(I2) I1 ∈ I1 .
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4.3. LP Reduction Framework

The following result is a special case of a more general result by [25]. We give a proof for
completeness.

Theorem 4.5. Let Π1 be a maximization problem and let Π2 be a minimization problem.
Suppose that there exists an exact reduction from Π1 to Π2 with μ := μI1 constant for all
I1 ∈ I1. Then, fc+(Π1, c1, s1) ≤ fc+(Π2, ρ2) where ρ2 := μ−s1

μ−c1
(assuming μ > c1 ≥ s1).

Proof. Let Ax ≥ b by a ρ2-approximate LP relaxation for Π2 = (S2, I2), with realizations
xS2 for S2 ∈ S2 and fI2 : Rd → R for I2 ∈ I2. We use the same system Ax ≥ b to
define a (c1, s1)-approximate LP relaxation of the same size for Π1 = (S1, I2) by letting
xS1 := xS2 where S2 is the solution of Π2 corresponding to S1 ∈ S1 via the reduction,
and similarly fI1 := μ− ζI1 fI2 with ζI1 ≥ 0 where I2 is the instance of Π2 to which I1

is mapped by the reduction and μ is the affine shift independent of the instance I1.

Then conditions (i) and (ii) of Definition 4.4 are automatically satisfied. It suffices to
check (iii)’ with our choice of ρ2, for the given completeness c1 and soundness s1. Assume
that OPT(I1) ≤ s1 for some instance I1 of Π1. Then

LP(I1) = μ− ζI1 LP(I2) (by definition of fI1 , and since ζI1 ≥ 0)

≤ μ− 1
ρ2
· ζI1 ·OPT(I2) (since OPT(I2) ≤ ρ2 LP(I2))

= μ +
μ− c1

μ− s1
· (OPT(I1)︸ ︷︷ ︸

≤s1

−μ) (since the reduction is exact)

≤ μ +
μ− c1

μ− s1
· (s1 − μ)

= c1 ,

as required. Thus Ax � b gives a (c1, s1)-approximate LP relaxation of Π1. The theorem
follows.

We will also derive inapproximability of INDEPENDENT SET from a reduction between
maximization problems. In this case the inapproximability factor obtained is of the form
ρ2 = μ+c1

μ+s1
.

Remark 4.6 (Reductions: the matrix view). In order to relate the above back to the
slack matrix level for the reader familiar with extended formulations, let M1 be the
slack matrix of problem P1 and M2 the slack matrix of problem P2. A reduction then
provides nonnegative matrices R, C with 1C = 1 and a nonnegative column vector t, so
that M1 = R ·M2 · C + t1, where 1 is the all-one row vector. The matrices R, C and the
vector t arise from the reduction maps and clearly rk+(M1) ≤ rk+(M2) + 1; we refer the
interested reader to [25, Remark 4.3] for a reformulation of reductions on a matrix level.
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Chapter 4. LP Hardness of Vertex Cover

4.4 LP-Hardness for Vertex Cover and Independent Set.

We will now reduce 1F-CSP to VERTEX COVER with the reduction mechanism outlined
in the previous section, which will yield the desired LP hardness for the latter problem.

We start by recasting VERTEX COVER, INDEPENDENT SET and 1F-CSP in our language.
The two first problems are defined on a fixed graph G = (V, E).

Problem 4.7 (VERTEX COVER(G)). The set of feasible solutions S consists of all possible
vertex covers U ⊆ V, and there is one instance I = I(H) ∈ I for each induced
subgraph H of G. For each vertex cover U we have CostI(H)(U) := |U ∩V(H)| being
the size of the induced vertex cover in H.

Note that the instances we consider have 0/1 costs, which makes our final result stronger:
even restricting to 0/1 costs does not make it easier for LPs to approximate VERTEX

COVER. Similarly, for the independent set problem we have:

Problem 4.8 (INDEPENDENT SET(G)). The set of feasible solutions S consists of all
possible independent sets of G, and there is one instance I = I(H) ∈ I for each
induced subgraph H of G. For each independent set I ∈ S, we have that ValI(H)(I) :=
|I ∩V(H)| is the size of the induced independent set of H.

Finally, we can recast 1F-CSP as follows. Let n, k ∈ N be fixed, with k ≤ n.

Problem 4.9 (1F-CSP(n, k)). The set of feasible solutions S consists of all possible
variable assignments, i.e., the vertices of the n-dimensional 0/1 hypercube and there is
one instance I = I(C) for each possible set of constraints C = {C1, . . . , Cm}, where
each constraint C ∈ C is of type P, and P = {P1, . . . , Pq} is the set of all one free bit
predicates of arity k. As before, for an instance I ∈ I and an assignment x ∈ {0, 1}n,
ValI(x) is the fraction of constraints Ci that x satisfies (see Definition 2.6).

With the notion of LP relaxations and 1F-CSP from above we can now formulate LP-
hardness of approximation for 1F-CSPs, which follows directly from Corollary 3.10 by
the result of [31].

Theorem 4.10. For every ε > 0 there exists a constant arity k = k(ε) such that we have
fc+(1F-CSP(n, k), 1− ε, ε) ≥ 2nΩ(1)

.

Following the approach in [25], we define a graph G over which we consider VERTEX

COVER, which will correspond to our (family of) hard instances. This graph is a universal
FGLSS graph as it encodes all possible choices of constraints simultaneously [43]. The
constructed graph is similar to the one in [25], however now we consider all one free bit
predicates and not just the MAX CUT predicate x⊕ y.
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4.4. LP-Hardness for Vertex Cover and Independent Set.

Definition 4.11 (VERTEX COVER host graph). For fixed number of variables n and arity
k ≤ n we define a graph G∗ = G∗(n, k) as follows. Let x1, . . . , xn denote the variables of
the CSP.

Vertices: For every one free bit predicate P of arity k, ordered subset of indices S ⊆
[n] of size k, and literals assignment A ∈ {0, 1}k, we have two vertices vP,S,A,1 and
vP,S,A,2 corresponding to the two satisfying partial assignments for the one free bit
constraint CPk,2,1,n,S,A in the language of section 2.1. For simplicity we identify the partial
assignments with the respective vertices in G∗. Thus a partial assignment α ∈ {0, 1}S

satisfying C has a corresponding vertex vC,α ∈ {vP,S,A,1, vP,S,A,2}.

Edges: Two vertices vC1,α1 and vC2,α2 are connected if and only if the corresponding
partial assignments α1 and α2 are incompatible, i.e., there exists i ∈ S(C1) ∩ S(C2) with
α1(i) �= α2(i), where S(C) denotes the set of variables that S is applied to.

Note that the graph has k!(2k

2 )2
k+1 vertices, which is polynomial in n for fixed k. In order

to establish LP-inapproximability of VERTEX COVER and INDEPENDENT SET it now
suffices to define a reduction satisfying Theorem 4.5.

Main Theorem 4.12. For every ε > 0 and for every N, there exists a graph G with |V(G)| = N
such that:

1. fc+(VERTEX COVER(G), 2− ε) ≥ 2NΩ(1)
, and

2. fc+(INDEPENDENT SET(G), 1/ε) ≥ 2NΩ(1)
.

Proof. Let k = k(ε) be a sufficiently large arity, chosen as in Theorem 4.10. Let n be the
largest integer such that N � |V(G∗(n, k))|, that is, N � k!(2k

2 )2
k+1. In particular, we

have

n �
⌊

k

√
N

2(2k

2 )k
k

⌋
,

and so n = NΩ(1) for every fixed ε. Notice that we can make this lower bound on n as
large as desired by taking N sufficiently large. In particular, we may assume that n � 1.
Let G be any N-vertex graph that has G∗(n, k) as an induced subgraph.

We reduce 1F-CSP on n variables to VERTEX COVER over G ⊇ G∗(n, k). Let P be the
set of all one free bit predicates of arity k, thus, |P| = 2kk!. For a 1F-CSP instance
I1 := I1(C) and a set of constraints C = {C1, . . . , Cm}, let H(C) be the induced
subgraph of G∗(n, k) on the set of vertices V(C) corresponding to the partial assignments
satisfying some constraint in C. So V(C) = {vP,S,A,i | P ∈ P, ordered S ⊆ [n] , |S| ≤
k, A ∈ {0, 1}k, i = 1, 2}.

63



Chapter 4. LP Hardness of Vertex Cover

In Theorem 4.10 we have shown that no LP of size at most 2nΩ(1)
can provide an (1− ε, ε)-

approximation for 1F-CSP for any ε > 0, provided the arity k is large enough. To prove
that every LP relaxation with 2− ε approximation guarantee for VERTEX COVER has size
at least 2nΩ(1)

= 2NΩ(1)
, we provide maps defining a reduction from 1F-CSP to VERTEX

COVER.

In the following, let Π1 = (S1, I1) be the 1F-CSP problem and let Π2 = (S2, I2)

be the VERTEX COVER problem. In view of Definition 4.4, we map I1 = I1(C) to
I2 = I2(H(C)) and let μ := 2 and ζI1 := 1

m where m is the number of constraints in C.

For a total assignment x ∈ S1 we define U = U(x) := {vC,α | α satisfies C and x does not
extend α}. The latter is indeed a vertex cover: we only have edges between conflicting
partial assignments, and all the partial assignments that agree with x are compatible with
each other. Thus I = I(x) := {vC,α | α satisfies C and x extends α} is an independent set
and its complement U is a vertex cover.

We first verify the condition that ValI1(x) = 2− 1
m CostI2(U(x)) for all instances I1 ∈ I1

and assignments x ∈ S1. Every constraint C in C over the (possibly negated) variables in
{xi | i ∈ S} has exactly two representative vertices vC,α1 , vC,α2 where α1, α2 ∈ {0, 1}S are
the two partial assignments satisfying C. If an assignment x ∈ S1 satisfies the constraint
C, then exactly one of α1, α2 is compatible with x. Otherwise, when C(x) = 0, neither
of α1, α2 do. This means that in the former case exactly one of vC,α1 , vC,α2 is contained
in U and in the latter both vC,α1 and vC,α2 are contained in U. It follows that for any
I1 = I1(C) ∈ I1 and x ∈ S1 it holds

ValI1(x) = 2− 1
m

CostI2(U(x)) .

In other words, for any specific C the affine shift is 2, and the normalization factor is 1
m .

Next we verify exactness of the reduction, i.e.,

OPT(I1) = 2− 1
m

OPT(I2) .

For this take an arbitrary vertex cover U ∈ S2 of G and consider its complement. This
is an independent set, say I. As I is an independent set, all partial assignments α such
that vC,α ∈ I are compatible and there exists a total assignment x that is compatible with
each α with vP,α ∈ I. Then the corresponding vertex cover U(x) is contained in U. Thus
there always exists an optimum solution to I2 that is of the form U(x). Therefore, the
reduction is exact.

It remains to compute the inapproximability factor via Theorem 4.5. We have

ρ2 =
2− ε

2− (1− ε)
≥ 2− 3ε .
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A similar reduction works for INDEPENDENT SET. This time, the affine shift is μ = 0
and we get an inapproximability factor of

ρ2 =
1− ε

ε
≥ 1

2ε
,

for ε small enough.

4.5 LP-Hardness for q-UNIFORM-VERTEX-COVER.

We will now reduce K-NOR to q-UNIFORM-VERTEX-COVER with the reduction mech-
anism outlined in Section 4.3, which will yield the desired LP hardness for the latter
problem.

We start by recasting q-UNIFORM-VERTEX-COVER and K-NOR in the language of Sec-
tion 4.3. The first problem is defined on a fixed q-uniform hypergraph H = (V, E).

Problem 4.13 (q-UNIFORM-VERTEX-COVER(H)). The set of feasible solutions S consists
of all possible vertex covers U ⊆ V, and there is one instance I = I(H′) ∈ I for each
induced subhypergraph H′ of G. For each vertex cover U we have CostI(H′)(U) :=
|U ∩V(H′)| being the size of the induced vertex cover in H′.

We similarly recast K-NOR. Let n, q, k ∈ N be fixed with k ≤ n.

Problem 4.14 (K-NOR(n, q, k)). The set of feasible solutions S consists of all possible
variable assignments, i.e., all possible elements in �q�n and there is one instance I =

I(P) for each possible set P = {P1, . . . , Pm} of K-NOR predicates of arity k. As before,
for an instance I ∈ I and an assignment x ∈ �q�n, ValI(x) is the fraction of predicates
Pi that x satisfies (see Definition 2.7).

With the notions of LP relaxations and K-NOR from above, we can now formulate
LP-hardness of approximation for K-NORs, which follows directly from Theorem ?? by
the result of [31] (See the discussion in [31] and Section 7 in [76]).

Theorem 4.15. For every ε > 0 and alphabet size q ≥ 2, there exists a constant arity k =

k(ε) such that for every sufficiently large n we have fc+(K-NOR(n, q, k), 1− 1/q− ε, ε) ≥
nΩ(log n/ log log n).

Similar to Section 4.4, we first define our host hypergraph, and then provide a reduction
that will yield our hardness result for q-UNIFORM-VERTEX-COVER using Theorem 4.5.

Definition 4.16 (q-UNIFORM-VERTEX-COVER host hypergraph). For fixed number of
variables n, alphabet q, and arity k ≤ n we define a hypergraph H∗ = H∗(n, q, k) as
follows. Let x1, . . . , xn denote the variables of the CSP.
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Vertices: For every subset S = {i1, . . . , ik} ⊆ [n], and every value of A = (a1, . . . , ak) ∈
�q�k, we have a vertex vS,A corresponding to the K-NOR predicate

P(xi1,, . . . , xik) = 1 if and only if
k∧

j=1

(xij �= aj) .

For a vertex vS,A and an index i ∈ S, we define vS,A(i) ∈ �q� to be the value a ∈ �q�
against which xi is compared in the predicate.

Hyperedges: Any q vertices vS1,A1 , . . . , vSq,Aq are connected with a hyperedge if there exists
a variable xi, i ∈ ⋂q

j=1 Sj, such that no two out of the q predicates check xi versus the
same a ∈ �q�. Formally, we have a hyperedge (vS1,A1 , . . . , vSq,Aq ) if there exists a variable
xi with i ∈ ⋂q

j=1 Sj such that vSl ,Al (i) �= vSm,Am(i) for all l, m ∈ �q� with l �= m.

Similar to before the edges model which predicates (and assignments) are in conflict:
for every hyperedge there exists an index i, so that each vertex in the hyperedge tests
against a different a ∈ �q� and as there are q of those, there exists no assignment x
that can satisfy the predicates belonging to the hyperedge simultaneously. Note that
the graph has qk(n

k) vertices, which is polynomial in n for fixed k and q. In order to
establish LP-inapproximability of q-UNIFORM-VERTEX-COVER it now suffices to define a
reduction satisfying Theorem 4.5.

Main Theorem 4.17. For every ε > 0, q ≥ 2 and for every sufficiently large n, there exists
a hypergraph H with |V(H)| = n such that fc+(q-UNIFORM-VERTEX-COVER(H), q− ε) ≥
nΩ(log n/ log log n).

Proof. We reduce K-NOR on n variables of alphabet �q� with sufficiently large arity
k = k(ε) to q-UNIFORM-VERTEX-COVER over H := H∗(n, q, k). For a K-NOR instance
I1 = I1(P) and a set of K-NOR predicates P = {PS1,A1 , PS2,A2 , . . . , PSm,Am}, let H(P)

be the induced subgraph of G on the set of vertices V(P) = {vSi ,Ai | 1 ≤ i ≤ m}.

Similarly to Section 4.4, we provide maps defining a reduction from K-NOR to q-
UNIFORM-VERTEX-COVER. The proof will then follow by combining Theorems 4.15
and 4.5.

In the following, let Π1 = (S1, I1) be the K-NOR problem and let Π2 = (S2, I2) be the
q-UNIFORM-VERTEX-COVER problem. In view of Definition 4.4, we map I1 = I1(P) to
I2 = I2(H(P)) and let μ := 1 and ζI1 := 1

m where m is the number of constraints in P.

For a total assignment x ∈ S1 we define U = U(x) := {vS,A : PS,A(x) = 0}. The latter is
indeed a vertex cover. To see this, consider its complement I = I(x) := {vS,A | PS,A(x) =
1}. Since x satisfies all the constraints corresponding to vertices in I simultaneously, no
hyperedge can be completely contained in I. Otherwise this would imply that there
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exists a variable xi, and q predicates P
′
1, P

′
2, . . . , P

′
q ∈ P requiring xi �= j for all j ∈ �q�,

and yet are all simultaneously satisfied by x.

We first verify the condition that ValI1(x) = 1− 1
m CostI2(U(x)) for all instances I1 ∈ I1

and assignments x ∈ S1. Every predicate PS,A in P over the variables in {xi | i ∈ S}
has exactly one representative vertex vS,A, that will be inside U only if PS,A(x) = 0, and
hence our claim holds. In other words, for any specific P the affine shift is 1, and the
normalization factor is 1

m .

Next we verify exactness of the reduction, i.e.,

OPT(I1) = 1− 1
m

OPT(I2) .

For this take an arbitrary vertex cover U ∈ S2 of H and consider its complement. This is
an independent set, say I. As I is an independent set6, we know that for any variable x�
with � ∈ ⋃

vS,A∈I S, there exists a least one ãx� ∈ �q� such that x� is not checked versus ãx�
in any of the predicates corresponding to vertices in I. Hence any assignment x setting
each x� to ãx� sets PS,A(x) = 1 for all vS,A ∈ I. Therefore the corresponding vertex cover
U(x) is contained in U and so there always exists an optimum solution to I2 that is of
the form U(x). Therefore, the reduction is exact.

It remains to compute the inapproximability factor via Theorem 4.5. We have

ρ2 =
1− ε

1− (1− 1/q− ε)
≥ q−Θ(ε) .

4.6 Upper bounds.

Here we give a size-O(n) LP relaxation for approximating INDEPENDENT SET within
a factor-O(

√
n), which follows directly by work of Feige and Jozeph [44]. Note that

this is strictly better than the n1−ε hardness obtained assuming P �= NP by [56]. This
is possible because the construction of our LP is NP-hard while being still of small size,
which is allowed in our framework.

Start with a greedy coloring of G = (V, E): let I1 be any maximum size independent set
of G, let I2 be any maximum independent set of G− I1, and so on. In general, Ij+1 is any
maximum independent set of G− I1 − · · · − Ij. Stop as soon as I1 ∪ · · · ∪ Ij covers the
whole vertex set. Let k ≤ n denote the number of independent sets constructed, that is,
the number of colors in the greedy coloring.

6In a hypergraph H = (V, E) a set I ⊆ V is said to be independent if no hyperedge of H is fully contained
in I.
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Feige and Jozeph [44] made the following observation:

Lemma 4.18. Every independent set I of G has a nonempty intersection with at most #2√n� of
the color classes Ij.

Now consider the following linear constraints in RV ×Rk $ Rn+k:

0 ≤ xv ≤ yj ≤ 1 ∀j ∈ [k] , v ∈ Ij (4.2)
k

∑
j=1

yj ≤ #2
√

n� . (4.3)

These constraints describe the feasible set of our LP for INDEPENDENT SET on G.
Each independent set I of G is realized by a 0/1-vector (xI , yI) defined by xI

v = 1 iff
I contains vertex v and yI

j = 1 iff I has a nonempty intersection with color class Ij.
For an induced subgraph H of G, we let fI(H)(x, y) := ∑v∈V(H) xv. By Lemma 4.18,
(xI , yI) satisfies (4.2)–(4.3). Moreover, we clearly have fI(H)(xI , yI) = |I ∩ V(H)|. Let
LP(I(H)) := max{ fI(H)(x, y) | (4.2), (4.3)} = max{∑v∈V(H) xv | (4.2), (4.3)}.

Lemma 4.19. For every induced subgraph H of G, we have

LP(I(H)) � #2√n�OPT(I(H)) .

Proof. When solving the LP, we may assume xv = yj for all j ∈ [k] and all v ∈ Ij. Thus
the LP can be rewritten

max

{
k

∑
j=1
|Ij ∩V(H)| · yj | 0 ≤ yj ≤ 1 ∀j ∈ [k] ,

k

∑
j=1

yj ≤ #2
√

n�
}

.

Because the feasible set is a 0/1-polytope, we see that the optimum value of this LP is
attained by letting yj = 1 for at most #2√n� of the color classes Ij and yj = 0 for the
others. Thus some color class Ij has weight at least 1/#2√n� of the LP value.

By Lemma 4.19, constraints (4.2)–(4.3) provide a size-O(n) factor-O(
√

n) LP relaxation
of INDEPENDENT SET.

Theorem 4.20. For every n-vertex graph G, fc+(INDEPENDENT SET(G), 2
√

n) � O(n).

Although the LP relaxation (4.2)–(4.3) is NP-hard to construct, it is allowed by our
framework because we do not bound the time needed to construct the LP. To our knowl-
edge, this is the first example of a polynomial-size extended formulation outperforming
polynomial-time algorithms.

We point out that a factor-n1−ε LP-inapproximability of INDEPENDENT SET holds in
a different model, known as the uniform model [4, 23]. In that model, we seek an LP
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relaxation that approximates all INDEPENDENT SET instances with the same number
of vertices n. This roughly corresponds to solving INDEPENDENT SET by approximat-
ing the correlation polytope in some way, which turns out to be strictly harder than
approximating the stable set polytope, as shown by our result above.

4.7 SDP-Hardness for Independent Set.

We saw in Section 4.4 how to obtain an LP-hardness for VERTEX COVER and INDE-
PENDENT SET, starting from an LP-hardness for the 1F-CSP problem. Restricting our
starting CSP to have only one free bit is crucial for the VERTEX COVER problem, since each
constraint is then represented by a cloud containing exactly two vertices in the resulting
graph. In this case, an assignment satisfying almost all the constraints, corresponds to a
vertex cover containing slightly more than half of the vertices (i.e., one vertex in almost
all the clouds, and both vertices in the unsatisfied clouds), whereas if no assignment can
simultaneously satisfy more than an ε-fraction of the constraints, then any vertex cover
should contain almost all the vertices. This extreme behaviour of the resulting graph is
necessary to obtain a gap of 2 for the VERTEX COVER problem.

However, if we are only interested in the INDEPENDENT SET problem, any CSP with a
sufficiently large gap between the soundness and completeness can yield the desired
LP-Hardness, by virtue of the well-known FGLSS reduction [43]. Formally speaking,
given reals 0 < s < c ≤ 1, and any CSP problem Π(P, n, k), where n is the number of
variables and P is a predicate of arity k, and knowing that no small linear program can
provide a (c, s)-approximation for this CSP, then one can show that no small LP can
as well approximate the INDEPENDENT SET problem within a factor of c/s. This can
be simply done by tweaking the reduction of Section 4.4 in a way that the number of
vertices in each cloud is equal to the number of satisfying assignments for the predicate.
Hence dropping the one free bit requirement, and restricting ourselves to CSPs such that
c/s = 1/ε for arbitrarily small ε := ε(k) > 0, would yield the desired ω(1) LP-hardness
for the INDEPENDENT SET problem.

Moreover, the reduction framework of [25] and our construction in Section 4.4 are
agnostic to whether we are proving LP or SDP lower bounds, and hence having an
analog of Theorem 4.10 in the SDP world will yield that any SDP of size less than
nΩ(log n/ log log n) has an integrality gap of ω(1) for the INDEPENDENT SET problem. In
fact such SDP-hardness results for certain families of CSPs and hence an analog of
Theorem 4.10 are known: if our starting CSP has a predicate that supports pairwise
independence with a sufficiently large arity k, then the result of [11] by virtue of [76]
gives us the desired SDP base hardness. By the argumentation from above we obtain:

Corollary 4.21. For every ε > 0 and for every sufficiently large n, there exists a graph G with
|V(G)| = n, such that no polynomial size SDP is a (1/ε)-approximate SDP relaxation for
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INDEPENDENT SET(G).

4.8 Conclusion

Recall that we proved in Chapter 3 that if any LP relaxation of a certain size for the
1F-CSP problem has an ω(1) integrality gap, then any LP relaxation of the same size for
the VERTEX COVER problem and the INDEPENDENT SET problem has an integrality gap
of 2− o(1) and ω(1) respectively. We also proved that any Sherali-Adams LP relaxation
whose size is at most sub-exponential for the 1F-CSP problem has an integrality gap of
ω(1). Our results then imply a quasi-polynomial lower bound version of Theorem 4.1 by
using the result of [31] as a black-box, and any strengthening of the LP size lower bounds
in [31] directly implies a strengthening of Theorem 4.1. For instance as we mentioned
here, using the recent result of Kothari, Meka and Raghavendra [71] as a black-box
instead of [31] already yields our LP lower bounds in Theorem 4.1 (i.e., an improvement
from quasi-polynomial to sub-exponential). Similarly, any further improvement upon
the bounds in [71] would strengthen our results as well.

Our lower bound for the generalization of the VERTEX COVER problem on q-uniform
hypergraphs follows a similar route; the proof however uses a different intermediate
CSP, K-NOR, that is not necessarily binary. Contrary to [31], the result of [71] does not
yet have any implications on non-binary CSPs. Nevertheless, any stronger LP lower
bound for K-NOR would again directly improve our lower bound for the the VERTEX

COVER problem on q-uniform hypergraphs to 2nΩ(1)
as well.

Subsequent to our work, Braun, Pokutta and Roy [26] strengthened the reduction
framework of [25] that we also employ here in order to allow more complex reductions.
Using the new framework, they were able to establish the same quasi-polynomial LP
lower bounds for the CSPs that we consider (i.e., 1F-CSP and K-NOR) without requiring
intermediate Sherali-Adams gaps. In contrast to this work, their lower bounds cannot
however be directly improved to sub-exponential by virtue of [71], as they use the
UNIQUE GAMES problem (a non-Binary CSP) as a starting point in their reduction, and
the only known to-date LP lower bound for that problem is still quasi-polynomial.
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5 Knapsack

We have thus far proved LP lower bounds for combinatorial problems. In this chapter,
we prove upper bounds for any LP relaxation that uses the so-called knapsack cover
inequalities.

Initially developed for the MIN-KNAPSACK problem, the knapsack cover inequalities
are used in the current best relaxations for numerous combinatorial optimization prob-
lems of covering type. In spite of their widespread use, these inequalities yield linear
programming (LP) relaxations of exponential size, over which it is not known how to
optimize exactly in polynomial time. In this chapter, we address this issue and obtain
LP relaxations of quasi-polynomial size that are at least as strong as that given by the
knapsack cover inequalities.

For the MIN-KNAPSACK cover problem, our main result can be stated formally as follows:
for any ε > 0, there is a (1/ε)O(1)nO(log n)-size LP relaxation with an integrality gap of
at most 2 + ε, where n is the number of items. Prior to this work, there was no known
relaxation of subexponential size with a constant upper bound on the integrality gap.

Our construction is inspired by a connection between extended formulations and mono-
tone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based
on O(log2 n)-depth monotone circuits with fan-in 2 for evaluating weighted threshold
functions with n inputs, as constructed by Beimel and Weinreb. We believe that a fur-
ther understanding of this connection may lead to more positive results that would
complement the numerous lower bounds recently proved for extended formulations.
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Chapter 5. Knapsack

5.1 Introduction

Capacitated covering problems1 play a central role in combinatorial optimization. These
are the problems modeled by Integer Programs (IPs) of the form min{∑n

i=1 cixi | Ax �
b, x ∈ {0, 1}n}, where A is a size-m× n non-negative matrix and b, c size-n non-negative
vectors. The MIN-KNAPSACK problem is the special case arising when there is a single
covering constraint, that is, when m = 1. This is arguably the simplest interesting
capacitated covering problem.

In terms of complexity, the MIN-KNAPSACK problem is well-understood: on the one
hand it is weakly NP-hard [66] and, on the other hand, it admits an FPTAS [75, 88].
However, for its own sake and as it appears as a key substructure of numerous other
IPs, improving our polyhedral understanding of the problem is important. By this,
we mean finding “good” linear programming (LP) relaxations for the MIN-KNAPSACK

problem. Indeed, the polyhedral study of this problem has led to the development
of important tools, such as the knapsack cover inequalities, for the strengthening of
LP relaxations. These inequalities and the generalizations thereof are now used in the
current best known relaxations for several combinatorial optimization problems, such
as single-machine scheduling [10] and capacitated facility location [1]. However, despite
this important progress in the past, many fundamental questions remain open – even in
the most basic setting.

State of the Art. The feasible region of a MIN-KNAPSACK instance is specified by
positive item sizes s1, . . . , sn and a positive demand D. In this context, a vector x ∈ {0, 1}n

is feasible if ∑n
i=1 sixi � D. To specify completely an instance of the MIN-KNAPSACK

problem, we are further given non-negative item costs c1, . . . , cn. Solving the resulting
instance then amounts to solving the IP min{∑n

i=1 cixi | ∑n
i=1 sixi � D, x ∈ {0, 1}n}.

The basic LP relaxation, i.e., min{∑n
i=1 cixi | ∑n

i=1 sixi � D, x ∈ [0, 1]n}, provides an
estimate on the optimum value that can be quite bad. More precisely, defining the
integrality gap as the supremum over all instances of the ratio of the optimum value of
the IP to the optimum value of the LP relaxation, it is easy to see that the integrality gap
is unbounded.

Several inequalities have been proposed for strengthening this basic LP relaxation.
Already in the 70’s, Balas [5], Hammer, Johnson and Peled [55] and Wolsey [106] in-
dependently proposed to add the uncapacitated knapsack cover inequalities: for every
subset A ⊆ [n] of the items such that ∑i∈A si < D, add the inequality ∑i �∈A xi � 1 (saying
that at least one item in [n] \ A needs to be picked in order to satisfy the demand). Un-
fortunately, these (exponentially many) inequalities are not sufficient for bringing down

1The term “capacitated” is used in the literature to emphasize that the entries of matrix A can take any
non-negative value in contrast to the uncapacitated version where entries are Boolean.
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the integrality gap to a constant. A strengthening of these inequalities was therefore
proposed more recently by Carr, Fleischer, Leung and Philipps [29]. They defined the
following valid inequalities: for every set of items A ⊆ [n] such that ∑i∈A si < D, there
is a corresponding (capacitated) knapsack cover inequality

∑
i/∈A

s′ixi � U , (5.1)

where U = U(A) := D − ∑i∈A si is the residual demand and s′i = s′i(A) := min{si, U}.
The validity of (5.1) is due to the fact that every feasible solution x ∈ {0, 1}n has to
contain some object i /∈ A. This object can be large, that is, have si � U, and in this case
the inequality is clearly satisfied. Otherwise, in case every object i /∈ A is small, the total
size of the objects i /∈ A picked by x has to be at least the residual demand U.

Carr et al. [29] proved that whenever x ∈ Rn
�0 satisfies all knapsack cover inequalities,

2x dominates a convex combination of feasible solutions, that is, there exist feasible
solutions x(j) ∈ {0, 1}n (j ∈ [q]) and coefficients λj � 0 summing up to 1 such that
2x � ∑

q
j=1 λjx(j). Given any non-negative item costs, one of the x(j) will have a cost that

is at most 2 times that of x. This implies that the integrality gap of the corresponding LP
relaxation is at most 2.

The LP relaxation defined by the knapsack cover inequalities is “good” in the sense that
it has a constant integrality gap. However, it has exponential size, that is, exponentially
many inequalities, over which it is not known how to optimize exactly in polynomial
time; in particular, it is not known how to employ the Ellipsoid algorithm because the
problem of separating the knapsack cover inequalities reduces to another knapsack
problem (which is NP-hard in general).

In contrast, for the MAX-KNAPSACK problem, Bienstock [19] proved that for all ε > 0
there exists a size-nO(1/ε) LP relaxation whose integrality gap2 is at most 1 + ε. That
LP is defined by an extended formulation that uses nO(1/ε) extra variables besides the
x-variables. We remark that it is a notorious open problem to prove or disprove the
existence of a f (1/ε) · nO(1)-size LP relaxation for MAX-KNAPSACK with integrality gap
at most 1 + ε, see e.g. the survey on extended formulations by Conforti, Cornuéjols and
Zambelli [38]. Coming back to the MIN-KNAPSACK problem, it is not known whether
there exists a polynomial-size LP relaxation with constant integrality gap or not.3

2For maximization problems, one takes the supremum of the ratio of the optimum value of the LP
relaxation to the optimum value of the IP.

3We remark that Bienstock and McClosky [20] considered the easier case when the relaxation is allowed
to depend on the objective function to be optimized (i.e., on the cost of the items). In this case, using tech-
niques similar to those developed for polynomial time approximation schemes, they obtained polynomial
size relaxations with integrality gap at most 1 + ε, for any fixed ε > 0. This is, however, a very different
setting and, as the developed inequalities depend on the objective function, they do not generalize to other
problems.
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Main Result. We come close to resolving the question and show that MIN-KNAPSACK

admits a quasi-polynomial-size LP relaxation with integrality gap at most 2 + ε. The
upper bound on the integrality gap originates from the fact that our LP relaxation is
at least as strong as that provided by a slightly weakened form of the knapsack cover
inequalities. We point out that, under some conditions, we can bound the size of our
relaxation by a polynomial, see Section 5.3.2. A more precise statement of our main
result is as follows.

Theorem 5.1. For all ε ∈ (0, 1), item sizes s1, . . . , sn ∈ R+ and demand D ∈ R+, there exists
a size-(1/ε)O(1)nO(log n) extended formulation defining an LP relaxation of MIN-KNAPSACK

with integrality gap at most 2 + ε.

As the result is obtained by giving quasi-polynomially many inequalities of roughly the
same strength as the exponentially many knapsack cover inequalities, our techniques
also lead to relaxations of quasi-polynomial size for the numerous applications of these
inequalities. We mention some of these applications below when we discuss related
works.

Beyond the result itself, the novelty of our approach lies in the concepts we rely on and
the techniques we develop. Our starting point is a connection between monotone circuits
and extended formulations that we explain below. This connection was instrumental
in the recent lower bounds of Göös, Jain and Watson on the extension complexity of
independent set polytopes [52], and can be traced back to a paper of Hrubeš [61]. Here
we use it for the first time to prove an upper bound.

From Monotone Circuits to Extended Formulations. Each choice of item sizes and
demand gives rise to a weighted threshold function f : {0, 1}n → {0, 1} defined as

f (x) :=

{
1 if ∑n

i=1 sixi � D

0 otherwise.
(5.2)

Since we assume that the item sizes and demand are non-negative, f is monotone in the
sense that a � b implies f (a) � f (b), for all a, b ∈ {0, 1}n.

Clearly, we have that x ∈ {0, 1}n is feasible if and only if x ∈ f−1(1). Furthermore, for
a ∈ f−1(0), we can rewrite the uncapacitated knapsack cover inequalities as ∑i:ai=0 xi �
1. Consider the slack matrix Sa,b := ∑i:ai=0 bi − 1 indexed by pairs (a, b) ∈ f−1(0) ×
f−1(1). By Yannakakis’ factorization theorem [107], the existence of a size-r LP relaxation
of MIN-KNAPSACK that is at least as strong as that given by the uncapacitated knapsack
cover inequalities is equivalent to the existence of a decomposition of the slack matrix S
as a sum of r non-negative rank-1 matrices.

Now suppose that there exists a depth-t monotone circuit (that is, using only AND gates
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and OR gates) of fan-in 2 for computing f (x). A result of Karchmer and Wigderson [64]
then implies a partition of the entries of S into at most 2t rectangles4 R ⊆ f−1(0)× f−1(1)
such that in each one of these rectangles R, there exists some index i∗ = i∗(R) such that
ai∗ = 0 and bi∗ = 1 for all (a, b) ∈ R. Then we may write, for (a, b) ∈ R,

Sa,b = ∑
i:ai=0

bi − 1 = ∑
i:ai=0, i �=i∗

bi = ∑
i �=i∗

(1− ai)bi , (5.3)

so that S restricted to the entries of R can be expressed as a sum of at most n − 1
non-negative rank-1 matrices of the form ((1− ai)bi)(a,b)∈R, where i is a fixed index
distinct from i∗. This implies a decomposition of the whole slack matrix S as a sum of
at most 2t(n− 1) non-negative rank-1 matrices, and thus the existence of a 2t(n− 1)-
size LP relaxation of MIN-KNAPSACK that captures the uncapacitated knapsack cover
inequalities. Since f is a weighted threshold function, we can take t = O(log2 n), as
proved by Beimel and Weinreb [16]. Therefore, we obtain a nO(log n)-size extended
formulation for the uncapacitated knapsack cover inequalities. Unfortunately, these
inequalities do not suffice to guarantee a bounded integrality gap.

For the full-fledged knapsack cover inequalities (5.1), the simple idea described above
breaks down. If the special index i∗ = i∗(R) for some rectangle R corresponds to a large
object, we can write

∑
i:ai=0

s′ibi −U = ∑
i:ai=0, i �=i∗

s′ibi = ∑
i �=i∗

s′i(1− ai)bi ,

where each matrix (s′i(1− ai)bi)(a,b)∈R has rank at most 1 because s′i(1− ai) depends on a
only. However, i∗ may correspond to a small object, in which case we cannot decompose
the slack matrix as above.

Nevertheless, we prove that it is possible to overcome this difficulty. Two key ideas we
use to achieve this are to discretize some of the quantities (which explains why we lose
an ε in the integrality gap) and resort to several weighted threshold functions instead of
just one. If all these functions admit O(log n)-depth monotone circuits of fan-in 2, then
we obtain a size-nO(1) LP relaxation.

Related Works. Knapsack cover inequalities and their generalizations such as flow
cover inequalities were used as a systematic way to strengthen LP formulations of other
(seemingly unrelated) problems [29, 28, 78, 6, 7, 30, 10, 35, 41]. By strengthening we
mean that one would start with a polynomial size LP formulation with a potentially
unbounded integrality gap for some problem of interest, and then show that adding
(adaptations) of knapsack cover inequalities reduces this integrality gap (we illustrate
in Section 5.4 how this strengthening works for the Single Demand Facility Location

4A rectangle is the Cartesian product of a set of row indices and a set of column indices.
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problem, reducing the integrality gap down to 2). However, similar to the case of
MIN-KNAPSACK discussed above, the drawback of this approach is that the size of the
resulting LP formulation becomes exponential. We can extend our result to show that it
yields quasi-polynomial size LP formulation for many such applications. To name a few:

• Carr et al. [29] applied these inequalities to the Generalized Vertex Cover prob-
lem, Multi-color Network Design problem and the Fixed Charge Flow problem,
and showed how these inequalities reduce the integrality gap of the starting LP
formulations.

• Bansal and Pruhs [10] studied the Generalized Scheduling Problem (GSP) that
captures many interesting scheduling problems such as Weighted Flow Time, Flow
Time Squared and Weighted Tardiness. In particular, they showed a connection
between GSP and a certain geometric covering problem, and designed an LP
based approximation algorithm for the latter that yields an approximate solution
for the GSP. The LP formulation that they use for the intermediate geometric
cover problem is strengthened using knapsack cover inequalities, and yields an
O(log log nP)-approximation for the GSW where n is the number of jobs, and P
is the maximum job size. In the special case of identical release time of the jobs,
their LP formulation yields a 16-approximation algorithm. This constant factor
approximation was later improved by Cheung and Shmoys [35] and Mestre and
Verschae [82] to a (4 + ε)-approximation, where the authors added the knapsack
cover inequalities directly to the LP formulation of the scheduling problem, i.e.,
without resorting to the intermediate geometric cover problem as in [10]. For both
the GSP and its special case, our method yields an LP formulation whose size is
quasi-polynomial in n, and polynomial in both log P and log W, where W is the
maximum increase in the cost function of a job at any point in time.

• Efsandiari et al. [41] used a knapsack-cover-strengthened LP formulation to design
an O(log k)-approximation algorithm for Precedence-Constrained Single-Machine
Deadline scheduling problem, where k is the number of distinct deadlines.

• Carnes and Shmoys [28] designed primal-dual algorithms for the Single-Demand
Facility Location, where the primal LP formulation is strengthened by adding
(generalizations) of knapsack cover inequalities.

Extended formulations have received a considerable amount of attention recently, mostly
for proving impossibility results. Pokutta and Van Vyve [91] proved a worst-case 2Ω(

√
n)

size lower bound for extended formulations of the MAX-KNAPSACK polytope, which
directly implies a similar result for the MIN-KNAPSACK polytope. Other recent works
include [45, 21, 31, 94, 76, 13].
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Outline. We prove our main result in Section 5.3, after giving preliminaries in Sec-
tion 5.2. Instead of explicitly constructing our extended formulation, we provide a
non-negative factorization of the appropriate slack matrix. For this, we use the language
of communication complexity — we give an O(log2 n + log(1/ε))-complexity two-party
communication protocol with private randomness and non-negative outputs whose ex-
pected output is the slack of a given feasible solution with respect to a given (weakened)
knapsack cover inequality.

Next, in Section 5.4, we extend our communication protocol to the flow cover inequalities
for the Single-Demand Facility Location problem, and show how to approximate the
exponentially many flow cover inequalities using a smaller LP formulation.

Finally, in Section 5.5, we show that although we do not know how to write down our
extended formulation for MIN-KNAPSACK in quasi-polynomial time, we can at least
compute a (2 + ε)-approximation of the optimum from the extended formulation in
quasi-polynomial time, given any cost vector, without relying on the ellipsoid algorithm.
This is done via a new cutting-plane algorithm that might be of independent interest.

5.2 Preliminaries.

In this section, we introduce some key notions related to our problem. We review the
relation between extended formulations and extension complexity of pairs of polyhedra,
and the non-negative factorization of slack matrices in Section 5.2.1. Next, we define
randomized communication protocols with non-negative outputs that compute entries
of matrices in expectation. Finally, in Section 5.2.3, we review some constructions of
low-depth monotone circuits, and the Karchmer-Wigderson game that relates circuit
complexity and communication complexity.

5.2.1 Polyhedral Pairs, Extended Formulations and Slack Matrices.

Definition 5.2. Let (P, Q) be a polyhedral pair with P ⊆ Q ⊆ Rn. Let P = conv({v1, . . . ,
vp}) be an inner description of P and Q = {x ∈ Rn | Ax � b} be an outer description of
Q, where A ∈ Rm×n and b ∈ Rm. We now define the slack matrix S of the pair (P, Q)

with respect to the given representations of P and Q. The ith row of S corresponds
to the constraint Aix � bi, while the jth column of S corresponds to the point vj. The
value Si,j measures how close the constraint Aix � bi is to being tight for point vj. More
specifically, the slack matrix S ∈ R

m×p
�0 is defined as Si,j := Aivj− bi for all i ∈ [m] , j ∈ [p].

Note that the slack matrix is not unique as it depends on the choices of points v1, . . . , vp

and linear description Ax � b.

Definition 5.3. Given a non-negative matrix M ∈ Rm×n
�0 , we say that a pair of matrices
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T, U is a rank-r non-negative factorization of M if T ∈ Rm×r
�0 , U ∈ Rr×n

�0 , and M = TU. We
define the non-negative rank of M as

rk+(M) := min{r : M has a rank-r non-negative factorization}.

Notice that a non-negative factorization of M of rank at most r is equivalent to a
decomposition of M as a sum of at most r non-negative rank-1 matrices.

Yannakakis [107] proved that for a polytope P of dimension at least 1 and any of its slack
matrices S, the extension complexity of P is equal to the non-negative rank of S. Namely,
xc(P) = rk+(S). In particular, all the slack matrices of P have the same nonnegative
rank.

This factorization theorem can be extended to polyhedral pairs: we have xc(P, Q) ∈
{rk+(S), rk+(S)− 1} whenever S is a slack matrix of (P, Q), see e.g. [21].

5.2.2 Randomized Communication Protocols.

We now define a certain two-party communication problem and relate it to the non-
negative rank discussed earlier, following the framework in Faenza, Fiorini, Grappe and
Tiwary [42].

Definition 5.4. Let S ∈ RA×B
�0 be a non-negative matrix whose rows and columns are

indexed by A and B, respectively. Let Π be a communication protocol with private
randomness between two players Alice and Bob. Alice gets an input a ∈ A and Bob gets
an input b ∈ B. They exchange bits in a pre-specified way according to Π, and at the
end either one of the players outputs some non-negative number ξ ∈ R�0. We say that Π
computes S in expectation if for every a and b, the expectation of the output ξ equals Sa,b.

The communication complexity of a protocol Π is the maximum of the number of bits ex-
changed between Alice and Bob, over all pairs (a, b) ∈ A×B and the private randomness
of the players. The size of the final output does not count towards the communica-
tion complexity of a protocol. The communication complexity of S, denoted Rcc

exp(S) is
the minimum communication complexity of a randomized protocol Π computing S in
expectation.

Faenza et al. [42] relate the non-negative rank of a non-negative matrix S, to the com-
munication complexity Rcc

exp(S). In particular, they prove that if rk+(S) �= 0, then
Rcc

exp(S) = log2 rk+(S) + Θ(1). Combining this with the factorization theorem, we get
Rcc

exp(S) = log2 xc(P, Q) + Θ(1) whenever (P, Q) is a polyhedral pair with slack matrix
S, provided that xc(P, Q) �= 0.
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5.2.3 Weighted Threshold Functions and Karchmer-Widgerson Game.

An important part of our protocol depends on the communication complexity of (mono-
tone) weighted threshold functions. We start with the following result from [15, 16]
which gives low-depth circuits for such functions. Another construction was given
in [34]. The circuits as stated in [15, 16, 34] have logarithmic depth, polynomial size and
unbounded fan-in, thus it is straightforward to convert them into circuits with fan-in 2
with a logarithmic increase in depth. Below we state the result for circuits of fan-in 2 as
will be used later. Recall that a circuit is monotone if it uses only AND and OR gates, but
no NOT gates.

Theorem 5.5 ([15, 16]). Let w1, . . . , wn ∈ Z>0 be positive weights, and T ∈ Z�0 be a
threshold. Let f : {0, 1}n → {0, 1} be the monotone function such that f (x1, . . . , xn) = 1 if
and only if ∑n

i=1 wixi � T. Then there is a depth-O(log2 n) monotone circuit of fan-in 2 that
computes the function f .

The well-known Karchmer-Wigderson game [64] connects the depth of monotone circuits
and communication complexity. Given a monotone function f : {0, 1}n → {0, 1}, the
monotone Karchmer-Wigderson game is the following: Alice receives a ∈ f−1(0), Bob
receives b ∈ f−1(1), they communicate bits to each other, and the goal is to agree on
a position i ∈ [n] such that ai = 0 and bi = 1. Let Dcc

mon−KW( f ) be the deterministic
communication complexity of this game.

Theorem 5.6 ([64]). Let f : {0, 1}n → {0, 1} be a monotone function, Dcc
mon−KW( f ) be

the deterministic communication complexity of the Karchmer-Wigerson game, and depth( f )
be the minimum depth of a fan-in 2 monotone circuit that computes f . Then depth( f ) =

Dcc
mon−KW( f ).

Combining Theorems 5.5 and 5.6, we immediately get that Dcc
mon−KW( f ) = O(log2 n) for

every weighted threshold function f on n inputs.

5.3 Small LP relaxation for MIN-KNAPSACK.

In this section, we show the existence of a (1/ε)O(1)nO(log n)-size LP relaxation of MIN-
KNAPSACK with integrality gap 2 + ε, proving Theorem 5.1. First, we give a high-level
overview of the construction in Section 5.3.1. The actual protocol is described and
analyzed in Section 5.3.2.

5.3.1 Overview.

Consider the slack matrix S that has one row for each knapsack cover inequality and one
column for each feasible solution of MIN-KNAPSACK. More precisely, let f : {0, 1}n →
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{0, 1} denote the weighted threshold function defined by the item sizes si (i ∈ [n])
and demand D as in (5.2). The rows and columns of S are indexed by a ∈ f−1(0) and
b ∈ f−1(1) respectively. The entries of S are given by

Sa,b := ∑
i:ai=0

s′ibi −U ,

where as preceedingly

U = U(a) := D− ∑
i:ai=1

si and s′i = s′i(a) = min{si, U}.

Geometrically, S is the slack matrix of the polyhedral pair (P, Q) in which P is the MIN-
KNAPSACK polytope and Q is the (unbounded) polyhedron defined by the knapsack
cover inequalities.

Ideally, we would like to design a communication protocol for S, as those discussed
in Section 5.2.2, with low communication complexity. This would imply a low-rank
non-negative factorization of S. From the factorization theorem of Section 5.2.1, it
would follow that there exists a small-size extended formulation yielding a polyhedron
R containing the MIN-KNAPSACK polytope P and contained in the knapsack-cover
relaxation Q. Hence, we would get a small-size LP relaxation for MIN-KNAPSACK that
implies the exponentially many knapsack cover inequalities, and thus have integrality
gap at most 2.

However, due to the fact that the quantities involved can be exponential in n, making
them too expensive to communicate directly, we have to settle for showing the existence
of small-size extended formulation that approximately implies the knapsack cover in-
equalities. Before discussing further these complications, we give an idealized version
of the protocol to help with the intuition. Assume for now that all item sizes and the
demand are polynomial in n. Thus Alice and Bob can communicate them with O(log n)
bits.

The goal of the two players is to compute the slack Sa,b = ∑i:ai=0 s′ibi −U, when Alice
is given an infeasible a ∈ {0, 1}n and Bob is given a feasible b ∈ {0, 1}n. That is, after
several rounds of communication, either one of them outputs some non-negative value
ξ, such that the expectation of ξ equals Sa,b.

We define for a set of items J ⊆ [n] the quantities

s(J) := ∑
j∈J

sj, and s′(J) := ∑
j∈J

s′j.

Let A and B be the subsets of [n] corresponding to Alice’s input a and Bob’s input b,
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respectively. The slack we want to compute thus becomes

∑
i:ai=0

s′ibi −U = ∑
i∈B�A

s′i −U = s′(B � A)−U.

At the beginning, Alice computes the residual demand U and sends it to Bob. Now
observe that if there is some i∗ ∈ B � A, such that si∗ � U, then we have s′i∗ = U, and
we can easily write the slack as

s′(B � A � {i∗}) + (s′i∗ −U) = s′(B � A � {i∗}),

similarly to the uncapacitated case discussed in the introduction. Recall that we call an
item i large if si � U and small otherwise. Let Ilarge be the set of large items and Ismall be
the set of small items.

The rest of the protocol is divided into two cases as follows, depending on whether Alice
and Bob can easily find a large item i∗ ∈ B � A. To this end, Alice sends s(Ilarge ∩ A) to
Bob. Note that now Bob can compute

s(Ismall ∩ A) = D−U − s(Ilarge ∩ A) .

Bob computes the contribution of large items in B, that is, s(Ilarge ∩ B).

If s(Ilarge ∩ B) > s(Ilarge ∩ A), then we are guaranteed that there is some i∗ ∈ Ilarge ∩
(B � A). Moreover, defining the threshold function

g(x) :=

{
1 if ∑i∈Ilarge

sixi � s(Ilarge ∩ B),

0 otherwise,
(5.4)

then g(a) = 0 and g(b) = 1. Hence, Alice and Bob can find such an item with O(log2 n)
bits of communication, see Section 5.2.3. With that, it is not hard to compute s′(B � A �

{i∗}) with O(log n) bits of communication:

• Alice samples a uniformly random item i and sends the index to Bob.

• Bob replies with bi.

• Alice outputs s′i · n if bi = 1, i �= i∗ and i /∈ A, and outputs 0 otherwise.

All her outputs are non-negative and their expectation is exactly the slack.

In the other case, s(Ilarge ∩ B) � s(Ilarge ∩ A). Note that

s(B) = s(Ilarge ∩ B) + s(Ismall ∩ B) � D = s(Ilarge ∩ A) + s(Ismall ∩ A) + U ,
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thus
s(Ismall ∩ B)− s(Ismall ∩ A)−U � s(Ilarge ∩ A)− s(Ilarge ∩ B) � 0 .

We now write the slack as

s′(B � A)−U = s′(Ilarge ∩ (B � A)) + s(Ismall ∩ (B � A))−U

= s′(Ilarge ∩ (B � A)) + s(Ismall ∩ B)− s(Ismall ∩ (A ∩ B))−U

= s′(Ilarge ∩ (B � A)) + s(Ismall ∩ B)− s(Ismall ∩ A)

+ s(Ismall ∩ (A � B))−U

= s′(Ilarge ∩ (B � A)) + s(Ismall ∩ (A � B))

+ (s(Ismall ∩ B)− s(Ismall ∩ A)−U) .

Alice and Bob can compute the first and the second term in expectation using a protocol
similar to that in the previous case. The last term can be computed by Bob with all the
information he has at this stage. To conclude, in both cases, Alice and Bob can compute
the exact slack Sa,b with O(log2 n) bits of communication.

5.3.2 The Protocol.

The actual slack matrix Sε we work with is defined as

Sε
a,b := ∑

i:ai=0
s′ibi − 2

2 + ε
U , (5.5)

where ε > 0 is any small constant, a ∈ f−1(0) and b ∈ f−1(1). Sε is the slack matrix
of the polyhedral pair (P, Qε) where P is the MIN-KNAPSACK polytope and Qε is the
polyhedron defined by a slight weakening of the knapsack cover inequalities obtained
by replacing the right hand side of (5.1) by 2

2+ε U < U. For every x ∈ Rn
�0 that satisfies

all weakened knapsack cover inequalities, we have that 2+ε
2 x satisfies all original knap-

sack cover inequalities, and thus (2 + ε)x dominates a convex combination of feasible
solutions. Therefore the integrality gap of the resulting LP relaxation (obtained from a
non-negative factorization of Sε) is at most 2 + ε.

In order to refer to the “derived” weighted threshold functions g as in (5.4), we need a
last bit of terminology. We say that g : {0, 1}n → {0, 1} is a truncation of f if there exists
U, T ∈ Z>0 with T � D such that g(x) = 1 iff ∑n

i=1 wixi � T, where wi = si if si � U
and wi = 0 otherwise. We are now ready to state our main technical lemma.

Lemma 5.7. For all constants ε ∈ (0, 1), item sizes si ∈ Z>0 (i ∈ [n]), all smaller than 2�n log n


and demand D ∈ Z>0 with max{si | i ∈ [n]} � D � ∑n
i=1 si, such that all truncations of

the corresponding weighted threshold function admit depth-t monotone circuits of fan-in 2,
there is a O(log(1/ε) + log n + t)-complexity randomized communication protocol with non-
negative outputs that computes the slack matrix Sε in expectation. Since we may always take
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5.3. Small LP relaxation for MIN-KNAPSACK.

t = O(log2 n), this gives a O(log(1/ε) + log2 n)-complexity protocol, unconditionally.

Before giving the proof, let us remark that Theorem 5.1 follows directly from this lemma.
Indeed, the extra assumptions in the lemma are without loss of generality: the fact that
we may assume without loss of generality that the item sizes si are positive integers
that can be written down with at most �n log n
 bits, is due to a classic result from [86];
and the fact that we may also assume that the demand D is a positive integer with
max{si | i ∈ [n]} � D � ∑n

i=1 si should be clear.

Moreover, Lemma 5.7 implies that we can obtain a relaxation of polynomial size if all
truncations of the weighted threshold function have monotone circuits of logarithmic
depth. In particular, this is the case if all item sizes are polynomial in n. In that case the
threshold function (and its truncations) can simply be written as the majority function
on O(∑i si) input bits and, as such functions have monotone circuits of fan-in 2 of
logarithmic depth, i.e., depth O(log (∑i si)). Thus, using majority functions instead
of threshold functions in our communication protocol, we get that for all ε ∈ (0, 1),
c > 0, item sizes s1, . . . , sn ∈ {0, 1, . . . , nc} and demand D ∈ N, there exists a size-
(1/ε)O(1)nO(c) extended formulation defining an LP relaxation of MIN-KNAPSACK with
integrality gap at most 2 + ε. However, it is important to note here that when c is a
constant (and hence the sizes s1, . . . , sn and the demand D are polynomial in n), we can
write down an exact polynomial size LP formulation of the MIN-KNAPSACK problem.
For completeness, we elaborate more on that in Section 5.3.3

We now proceed by proving our main technical result, i.e., Lemma 5.7. We also pictorially
illustrate the protocol in Figure 5.1.

Proof of Lemma 5.7. Let α = α(ε) := 2/(2 + ε) and δ > 0 be such (1− 2δ)/(1 + δ) = α.
Thus δ = ε/(6 + 2ε) = Θ(ε). As above, we denote by a ∈ f−1(0) the input of Alice and
b ∈ f−1(1) that of Bob, and let A and B denote the corresponding subsets of [n].

First, Alice tells Bob the identity of the set of large items Ilarge = {i ∈ [n] | si � U} and
its complement, the set of small items Ismall. This costs O(log n) bits of communication.
For instance, Alice can simply send the index of a smallest large item to Bob, or inform
Bob that Ilarge is empty. Recall that

U = D− s(A) = D− s(Ilarge ∩ A)− s(Ismall ∩ A) .

Then, Alice sends Bob the unique nonnegative integer k such that (1 + δ)k � U < (1 +
δ)k+1. This sets the scale at which the protocol is operating. Since U � n · 2�n log n
 � 2n2

,
we have (1 + δ)k � 2n2

. This implies that k = O((1/ε)n2), thus k can be sent to Bob with
log(1/ε) + 2 log n + O(1) = O(log(1/ε) + log n) bits. Let Ũ := (1 + δ)k.
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Alice
Input:

Infeasible Set A,
i.e., a ∈ {0, 1}n.

Bob
Input:

Feasible Solution B,
i.e., b ∈ {0, 1}n.

Goal:
Compute ζ s.t. E [ζ] =

Sa,b = s(B\A)− αU.

Ismall , Ilarge
k ⇔ Ũ = (1 + δ)k
� ⇔ Δ̃ = (1 + �δ)Ũ

Now both Alice and Bob know Ismall , ILarge, Ũ
the under approximation of U, (D− Δ̃) the

over approximation of s(Ilarge ∩ A) and σ̃ the
under approximation of s(Ismall ∩ A). Now

Bob checks if s(Ilarge ∩ B) ≥ D− (̃Δ).

YES NO

Alice Bob
i∗ ∈ (B\A) ∩ Ilarge

via KM game.

Sa,b = s′(B\A\{i∗})︸ ︷︷ ︸
≥0

+ s′i∗ − αU︸ ︷︷ ︸
≥0

Sample i ∈R [n]

i =

⎧⎪⎨⎪⎩
i �= i∗ •

i = i∗ •
ζ

i
bi

n(U − αU)

ns ′i bi (1− ai )

E [ζ] = Sa,b

Alice Bob
Sa,b = s′(Ilarge ∩ (B\A))︸ ︷︷ ︸

≥0
+ s(Ismall ∩ (A\B))︸ ︷︷ ︸

≥0
+ s(Ismall ∩ B)− σ̃− (1− δ)Ũ︸ ︷︷ ︸

≥0
+ σ̃− s(Ismall ∩ A) + (1− δ)(̃U)− αŨ︸ ︷︷ ︸

≥0

...
...{ } O(1)

ζ

E [ζ] = Sa,b

· · · · · ·

Figure 5.1 – Execution of the communiation protocol between Alice and Bob. Thick
arrows illustrate messages that require O(log2 n) bits to communicate, whereas thin arrows
corresponds to O(log n) and O(1) bit messages. The ouput ζ of the protocol has the property
that, over the randomness of the protocol, E [ζ] = Sa,b.

To efficiently communicate an approximate value of s(Ilarge ∩ A), Alice sends the unique
nonnegative integer � such that

(1 + �δ)Ũ < D− s(Ilarge ∩ A) � (1 + �δ)Ũ + δŨ.
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5.3. Small LP relaxation for MIN-KNAPSACK.

Since small items have size at most U and we have at most n of them, we have s(Ismall ∩
A) � Un. Hence,

D− s(Ilarge ∩ A) = U + s(Ismall ∩ A) � (n + 1)U � (n + 1)(1 + δ)Ũ .

Since (1 + �δ)Ũ < (n + 1)(1 + δ)Ũ, we have � = O((1/ε)n). This means that Alice can
communicate � to Bob with only O(log(1/ε) + log n) bits. Let Δ̃ = Δ̃(δ) := (1 + �δ)Ũ.
This is Bob’s strict under-approximation of D − s(Ilarge ∩ A), so that D − Δ̃ is a strict
over-approximation of s(Ilarge ∩ A).

Bob checks if s(Ilarge ∩ B) � D − Δ̃. If this is the case, then the weighted threshold
function g such that g(x) = 1 iff ∑i∈Ilarge

sixi � D− Δ̃ separates a from b in the sense that
g(a) = 0 and g(b) = 1. Since g is a truncation of f , Alice and Bob can exchange t bits to
find an index i∗ ∈ Ilarge such that ai∗ = 0 and bi∗ = 1.

We can rewrite the slack Sε
a,b = s′(B � A)− αU as

s′(B � A � {i∗}) + s′i∗ − αU = s′(B � A � {i∗}) + (U − αU)

= ∑
i:ai=0, i �=i∗

s′ibi + (U − αU) . (5.6)

With the knowledge of i∗, Alice and Bob can compute the slack as follows:

1. Alice samples a uniformly random number i ∈ [n]. If i /∈ A, continue to the next
step, otherwise Alice outputs 0 and terminates the communication.

2. If i = i∗, Alice outputs n · (U − αU) and terminates the communication, otherwise
continue.

3. Alice sends i to Bob using �log n
 bits of communication, and Bob sends bi back to
Alice.

4. Alice outputs n · s′ibi.

The above communication costs O(log n) bits, all outputs are non-negative and can be
computed with the information available to each player, and by linearity of expectation,
the expected output is exactly the slack (5.6). Together with the O(log(1/ε) + log n + t)
bits communicated previously, we conclude that in this case there is a protocol that
computes the slack in expectation with O(log(1/ε) + log n + t) bits of communication.

In the other case, we have s(Ilarge ∩ B) < D− Δ̃. Because b ∈ {0, 1}n is feasible, we get

s(B) � D ⇐⇒ s(Ilarge ∩ B)︸ ︷︷ ︸
<D−Δ̃

+s(Ismall ∩ B) � D ,

85



Chapter 5. Knapsack

therefore we can bound s(Ismall ∩ B) as

s(Ismall ∩ B) > Δ̃ � D− s(Ilarge ∩ A)− δŨ

= s(Ismall ∩ A) + U − δŨ

� σ̃ + (1− δ)Ũ , (5.7)

where σ̃ is the unique integer multiple of δŨ such that

σ̃ � s(Ismall ∩ A) < σ̃ + δŨ . (5.8)

Since σ̃ � s(Ismall ∩ A) � Un � (1 + δ)Ũn, Alice can communicate σ̃ to Bob with
O(log(1/ε) + log n) bits.

This implies

s(Ismall ∩ (B � A)) = s(Ismall ∩ B)− s(Ismall ∩ (A ∩ B))

> σ̃ + (1− δ)Ũ − s(Ismall ∩ (A ∩ B)) .

Recall that by definition of Ũ, we have (1 + δ)Ũ > U, therefore

(1− 2δ)Ũ − αU > (1− 2δ)Ũ − α(1 + δ)Ũ = 0 . (5.9)

We now rewrite the slack s′(B � A)− αU as

s′(Ilarge ∩ (B � A))︸ ︷︷ ︸
= ∑i∈Ilarge�A s′ibi

+ s(Ismall ∩ B)− σ̃− (1− δ)Ũ︸ ︷︷ ︸
non-negative by (5.7)

+ s(Ismall ∩ (A � B))︸ ︷︷ ︸
∑i∈Ismall∩A si(1−bi)

+ σ̃− s(Ismall ∩ A) + (1− δ)Ũ − αU︸ ︷︷ ︸
non-negative by (5.8) and (5.9)

.

Similar to the previous case, we design a protocol to compute the slack as follows:

1. Alice samples a uniformly random number i ∈ [n + 2]. If i = n + 2, Alice outputs
the normalized value of the last term, i.e., (n + 2) · (σ̃− s(Ismall ∩ A) + (1− δ)Ũ−
αU), and terminates the communication. Otherwise, she sends i to Bob using
O(log n) bits.

2. If i = n + 1, Bob outputs (n + 2) · (s(Ismall ∩ B) − σ̃ − (1− δ)Ũ), and ends the
communication. Otherwise, he replies to Alice with bi.

3. If i ∈ Ilarge � A, Alice outputs (n + 2) · s′ibi; if i ∈ Ismall ∩ A, she outputs (n + 2) ·
si(1− bi); otherwise she outputs 0.
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5.3. Small LP relaxation for MIN-KNAPSACK.

We can verify that the outputs of both players can be computed with information
available to them, and that the outputs are non-negative due to Equation (5.7), (5.8)
and (5.9), and the definition of the variables.

5.3.3 MIN-KNAPSACK with Polynomial (and Integer) Demand and Sizes

Consider a MIN-KNAPSACK problem instance with demand D ∈ N, where all the item
sizes s1, . . . , sn ∈ [D] are integers5. If D = O(nc) for some constant c > 0, it follows
from Lemma 5.7 and the discussion thereafter that there exists an LP formulation of size
poly(n, D) that approximates the MIN-KNAPSACK problem. However it is not hard to see
that this is not the best that we can do in this case; we present in this section how to
explicitly write an exact LP formulation for this case of the same size6.

Recall that to completely specify an instance of the MIN-KNAPSACK problem, we are
further given nonnegative item costs c1, c2, . . . , cn, and in our model of computation,
we require that these costs only appear in the objective function of our LP, i.e., the LP
constraints can only depend on D and the sizes s1, . . . , sn, but not on the costs c1, . . . , cn.
We present in this section a construction of such an LP that is inspired by the folklore
Dynamic Programming (DP) algorithm for the MIN-KNAPSACK problem.

Lemma 5.8 (Folklore). There exists an exact LP formulation of the MIN-KNAPSACK problem
with demand D ∈ N, and integer item sizes s1, . . . , sn ∈ [D] of size poly(n, D).

Folklore DP algorithm. We briefly remind the reader of the well-known Dynamic
Programming algorithm of the MIN-KNAPSACK problem, as it motivates the construction
in the following section. Given a MIN-KNAPSACK instance I with demand D ∈ N, items
sizes s1, s2, . . . , sn ∈ [D] and items costs c1, c2, . . . , cn ∈ R+, the Dynamic Programming
algorithm proceeds as follows:

• Let M ∈ Rn×D
+ be a matrix indexed by all pairs (i, d) for 0 ≤ i ≤ n and 0 ≤ d ≤ D.

• Recursively define M(i, d) for 1 ≤ i ≤ n and 1 ≤ d ≤ D to be:

M(i, d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if d = 0 ,

−∞ if i = 0 and d > 0 ,

min{ci, M(i− 1, d)} if si > d ,

min{M(i− 1, d), M(i− 1, d− si) + ci} otherwise.

5Note that since all size are integers, we can assume without of generality that si ≤ D for all i ∈ [n] since
rounding any size greater than D down to D does not change the problem.

6This fact was mentioned as a comment by the one of the reviewers for our SODA paper who also
recommended adding it for completeness.

87



Chapter 5. Knapsack

In other words, M(i, d) is the minimum cost subset S∗ over all possible subsets S ⊆ [i]
such that ∑k∈S sk ≥ d, and M(n, D) is the optimal solution of the MIN-KNAPSACK

instance.

DP Algorithm as a Minimum Weight s-t Flow Problem. We will now describe how
the above DP algorithm can be alternatively seen as minimum weight s-t flow problem
on a graph G = (V, E) of size poly(n, D). Given a MIN-KNAPSACK instance I with
demand D ∈ N, sizes s1, s2, . . . , sn ∈ [D] and costs c1, c2, . . . , cn ∈ R+, we construct our
weighted graph GI = (V, E, w) as follows:

• For every 0 ≤ i ≤ n, and every 0 ≤ d ≤ n × D, we have a vertex (i, d) ∈
V. Moreover, we have two vertices s, t that act as source and sink respectively.
Formally,

V = {s, t} ∪ {(i, d) : 0 ≤ i ≤ n, 0 ≤ d ≤ n× D}

= {s, t} ∪
n⋃

i=0

Vi ,

where Vi = {(i, d) : 0 ≤ d ≤ n× D}.

• For every i ≥ 1 and d ≥ si, we have an edge e = ((i, d), (i− 1, d− si)) of weight
we = ci, and an edge e′ = ((i, d), (i− 1, d)) of weight we′ = 0. We also have an
edge (s, (0, 0)) of weight 0, and edges ((n, d), t) of weight 0 for all D ≤ d ≤ n× D.
This defines the edge set E, and the weight function w : E �→ R+.

• The capacity of each edge e ∈ E is 1.

Since the source s is only connected to the vertex (0, 0) with an edge of capacity 1,
any s-t flow in GI has a value at most 1. Moreover, for 1 ≤ i ≤ n − 1, a vertex in
Vi can only be connected to vertices in Vi−1 and Vi+1, and a vertex in Vn can only
be connected to t and to vertices in Vn−1. Thus it follows that any simple path p
from s to t is of length n + 2. Namely, such a path p is the sequence of vertices p =

(s, (0, d0), (1, d1), (2, d2), . . . , (n, dn), t) with d0 = 0, dn ∈ {D, D + 1, . . . , n × D}, and
(di − di−1) ∈ {0, si} for i = 1, 2, . . . , n. It is not hard to see that every such path p
corresponds to a set S ⊆ [n] such that ∑i∈S si ≥ D. We formalize this in the following
Claim.

Claim 5.9. Given a MIN-KNAPSACK instance I with demand D ∈ N and integers sizes
s1, s2, . . . , sn ∈ [D], there is a one to one correspondence between feasible sets S ⊆ [n] such that
∑i∈S si ≥ D, and simple s-t paths in GI . Moreover, the weight of every s-t path in GI is the
cost of its corresponding feasible set in I.
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Proof. Let A be the set of feasible sets in I, and B be the set of s-t paths in GI , i.e.,

A = {S : S ⊆ [n] and ∑
i∈S

si ≥ D} , B = {p : p is a simple s-t path in GI} .

We will construct two maps S : B �→ A, and P : A �→ B such that

a) S(p1) �= S(p2) for all p1 �= p2 ∈ B,

b) P(S1) �= P(S1) for all S1 �= S2 ∈ A,

c) S (P(p)) = p for all p ∈ B,

d) P (S(S)) = S for all S ∈ A,

e) and for every p ∈ B, ∑e∈p we = ∑ i ∈ S(p)ci.

Fix any simple s-t path p = (s, (0, 0), (1, d1), (2, d2), . . . , (n, dn), t) ∈ B, and construct
the unique set S(p) ∈ A as follows:

S(p) = {i : 1 ≤ i ≤ n, di �= di−1} ,

where we let d0 = 0. The uniqueness of S(p) follows by construction since (di − di−1) ∈
{0, si}. Moreover,

∑
i∈S(p)

si = ∑
i∈S(p)

(di − di−1) + ∑
i/∈S(p)

di − di−1︸ ︷︷ ︸
=0

=
n

∑
i=1

(di − di−1) = dn .

Since dn ≥ D, it follows that S(p) ∈ A. Moreover, we have by construction of GI that

∑
i∈S(p)

ci = ∑
1≤i≤n:di−1=di−si

ci

= ∑
1≤i≤n:di−1=di−si

w((i,di),(i−1,di−si))

= ∑
1≤i≤n:di−1=di−si

w((i,di),(i−1,di−si)) + ∑
1≤i≤n:di−1=di

w((i,di),(i−1,di))︸ ︷︷ ︸
=0

= ∑
e∈p

we .

Now consider any feasible set S ⊆ [n] ∈ A and construct the unique sequence
d0, d1, . . . , dn as follows:

di =

⎧⎪⎪⎨⎪⎪⎩
0 if i = 0 ,

di−1 if i /∈ S ,

si + di−1 if i ∈ S .
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Note that dn = ∑i∈S ≥ D. We claim that there exists a simple path P(S) in GI defined as
P(S) = {s, (0, d0), (1, d1), . . . , (n, dn), t} with the sequence d0, d1, . . . , dn defined earlier.
To see this, observe that:

1. The edge (s, (0, 0)) is trivially in E, and the edge ((n, dn), t) is in E since dn ≥ D.

2. For every 1 ≤ i ≤ n, we have both edges ((i, d), (i− 1, d)) and ((i, d), (i− 1, d− si)

in E by construction, where the first is in P(S) if i /∈ S, and the second is in P(S) if
i ∈ S.

Properties (b) and (c) follow since we have a fixed ordering on the items, and all items
have non-zero sizes.

It follows from Claim 5.9 that finding a feasible solution for a MIN-KNAPSACK instance
I amounts to finding an s-t flow of value 1 in GI , and finding a minimum cost set
S in I amounts to finding an minimum weight s-t flow of value 1. Moreover, given
graph G = ({s, t} ∪ V, E, c) where each edge e ∈ E has a capacity c ∈ N+, we know
how to write down an exact LP formulation for the min-cost flow problem such that the
weight of the edges only appear in the objective function (and hence the constraints are
independent of w), whose size is polynomial in the size of the graph G.

Since the size of GI is polynomial in n and D, Fact 5.8 follows.

5.4 Flow-cover inequalities.

A variant of the knapsack cover inequalities, known as the flow cover inequalities, was
also used to strengthen LPs for many problems such as the Fixed Charge Network
Flow problem [29] and the SINGLE-DEMAND FACILITY LOCATION problem [28]. In this
section, we describe the application of flow cover inequalities to the SINGLE-DEMAND

FACILITY LOCATION problem as used in [28], and then give an O(log2 n)-bit two-party
communication protocol that computes a weakened version of these inequalities.

In the SINGLE-DEMAND FACILITY LOCATION problem, we are given a set F of n facilities,
such that each facility i ∈ F has a capacity si, an opening cost fi, and a per-unit cost ci

to serve the demand. The goal is to serve the demand D by opening a subset S ⊆ F of
facilities such that the combined cost of opening these facilities and serving the demand
is minimized. The authors of [28] cast this problem as an Integer Program, and showed
that its natural LP relaxation has an unbounded integrality gap. To reduce this gap,
they strengthened the relaxation by adding the so-called flow cover inequalities that we
define shortly (See Section 3 in [28] for a more elaborate discussion).

A feasible solution (x, y) with y ∈ {0, 1}n and x ∈ [0, 1]n for the SINGLE-DEMAND
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FACILITY LOCATION LP can be thought of as follows: for each i ∈ F, yi ∈ {0, 1} indicates
if the i-th facility is open, and xi ∈ [0, 1] indicates the fraction of the demand D being
served by the i-th facility. A feasible solution (x, y) must then satisfy that

1. The demand is met, i.e., ∑i xi = 1.

2. No facility is supplying more than its capacity, i.e., 0 � xiD � yisi for all i ∈ F.

For a subset J ⊆ F of facilities and a feasible solution (x, y), we denote by B = {i ∈ F :
yi = 1} ⊆ F the set of open facilities according to y, and we define the quantity x(J) to
be the overall demand served by the facilities in J, i.e., x(J) = ∑i∈J xiD.7 We also define
the quantities s(·) and s′(·) as in Section 5.3.1.

Carnes and Shmoys [28] showed that adding the flow cover inequalities (FCI) reduces
the integrality gap of the natural LP relaxation down to 2. These inequalities are defined
as follows: for any infeasible set A ⊆ F (i.e., A ⊆ F such that s(A) < D), and for all
partitions of F \ A = F1 & F2, the following inequality holds for all feasible solutions
(x, y):

s′(F1 ∩ B) + x(F2 ∩ B) � U , (FCI)

where U = D− s(A) is the residual demand and s′i = min{si, U}. For brevity, we refer
to an infeasible set A along with some partition F1 & F2 = F \ A as an infeasible tuple
(A, F1, F2). Note that for F2 = ∅, the flow-cover inequalities are the same as the knapsack
cover inequalities.

Similar to the knapsack cover inequalities, the goal is to compute the slack of a relaxed
version of (FCI) in expectation for any feasible solution (x, y) and any infeasible tuple
(A, F1, F2). Namely, for any ε ∈ (0, 1), let α = 2/(2 + ε), then our goal is to design
an O(log2 n + log(1/ε))-complexity two-party communication protocol with private
randomness and nonnegative outputs whose expected output equals s′(F1 ∩ B) + x(F2 ∩
B)− αU. That is, we want to compute the slack with respect to a given (weakened)
flow-cover inequality s′(F1 ∩ B) + x(F2 ∩ B) � αU, where the RHS of (FCI) is replaced
by αU. This implies the existence of an LP of size (1/ε)O(1)nO(log n) with an integrality
gap at most 2 + ε for the SINGLE-DEMAND FACILITY LOCATION problem.

In Section 5.4.1, we set up the notation and define a class of feasible solutions with a
certain special structure which we refer to as canonical feasible solutions. We design the
promised communication protocol restricted to canonical solutions in Section 5.4.2, and
extend it to arbitrary feasible solutions in Section 5.4.3.

7Note that since we are assuming that (x, y) is feasible, we get that x(J) = x(J ∩ B).
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5.4.1 Preliminaries.

Let (x, y) be a feasible solution for the flow-cover problem with demand D, and let
B = {i ∈ F : yi = 1} denote the support of y. In this terminology, B only indicates which
facilities are open, but it does not capture the relative demand being served through each
of them. However this distinction will be essential for designing the protocol, hence
we partition B into three disjoint sets B = F̃1 & F̃2 & F̃3, where F̃1 denotes the set of open
facilities operating at full capacity, F̃2 denotes the set of open facilities operating at partial
capacity and F̃3 denotes the set of facilities that are open but do not serve any demand.
Formally, we define these sets as follows:

F̃1 = {i ∈ B : xiD = siyi} ,

F̃2 = {i ∈ B : 0 < xiD < siyi} ,

F̃3 = {i ∈ B : xiD = 0} .

We first focus on feasible solutions (x, y) that exhibit a certain structure, and then gener-
alize to arbitrary solutions. Namely, we restrict our attention here and in Section 5.4.2 to
canonical feasible solutions defined as follows:

Definition 5.10. A feasible solution (x, y) with associated sets F̃1, F̃2, F̃3 is canonical if
F̃2 contains at most one facility, i.e., |F̃2| � 1. In other words, in a canonical feasible
solution, there is at most one facility j that supplies a non-zero demand xjD > 0 which
is not equal to its full capacity sj.

Recall that we are interested in computing

s′(F1 ∩ B) + x(F2 ∩ B)− αU (5.10)

in expectation, which can be expanded as follows:

s′(F1 ∩ F̃1) + s′(F1 ∩ F̃2) + s′(F1 ∩ F̃3)︸ ︷︷ ︸
s′(F1∩B)

+ x(F2 ∩ F̃1) + x(F2 ∩ F̃2) + x(F2 ∩ F̃3)︸ ︷︷ ︸
x(F2∩B)

−αU .

(5.11)

We get from the definition of the set F̃3 that the second to last term in the above equation
is 0 when restricted to canonical feasible solutions. In fact, one can completely get rid of
the overall contribution of F̃3 in the above equation, since intuitively, closing down the
facilities in F̃3 should not alter the feasibility of the solution, and hence Equation (5.11)
should still be positive even without accounting for the contribution of s′(F1 ∩ F̃3). In
the communication protocol setting, this intuition translates to designing a protocol that
only deals with canonical feasible solutions restricted to F̃3 = ∅.

To see that this is without loss of generality, consider a canonical feasible solution (x, y)
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such that F̃3 is not empty, and let (x, ȳ) be the projection of (x, y) on F̃1 ∪ F̃2 — that
is, for all i ∈ B \ F̃3, set ȳi = yi, and for all i ∈ F̃3, set ȳi = 0. It follows that (x, ȳ) is
also a canonical feasible solution, as the items whose support is F̃3 do not contribute to
the feasibility of the solution, and the cardinality of F̃2 does not change. Thus, for any
infeasible tuple (A, F1, F2), Equation (5.11) applied to (x, ȳ) can be written as

s′(F1 ∩ F̃1) + s′(F1 ∩ F̃2) + x(F2 ∩ F̃1) + x(F2 ∩ F̃2)− αU , (5.12)

which is also non-negative, as it is the slack of (x, ȳ) and (A, F1, F2). Therefore, for
any feasible solution (x, y), the slack as given by Equation (5.11) can be viewed as the
summation of Equation (5.12) and the non-negative term s′(F1 ∩ F̃3). The latter is easy
to compute with a small communication protocol8, thus if Alice and Bob can devise
a communication protocol Π that computes (5.12) in expectation, they can then easily
compute (5.11) in expectation. For example, Alice can generate a uniformly random bit
b ∈ {0, 1}, and

• if b = 0, then Alice and Bob run the protocol that computes s′(F1 ∩ F̃3), and return
twice its output.

• if b = 1, then Alice and Bob run the protocol Π that computes (5.12), and return
twice its output.

Moreover, since |F̃2| � 1, and using the fact that xiD = siyi for i ∈ F̃1, we can further
simplify Equation (5.12) as follows:

s′(F1 ∩ F̃1) + s(F2 ∩ F̃1) + γ(x, y, A, F1, F2)− αU , (5.13)

where the function γ := γ(x, y, A, F1, F2) is defined as

γ =

⎧⎪⎪⎨⎪⎪⎩
s′jyj if F̃2 = {j} ⊆ F1

xjD if F̃2 = {j} ⊆ F2

0 if F̃2 = {j} ⊆ A, or F̃2 = ∅ .

(5.14)

For simplicity of notation, we drop the parameters from γ(x, y, A, F1, F2) when it is clear
from the context.

5.4.2 Randomized Protocol for Canonical Feasible Solutions.

In what follows, we define a randomized communication protocol where Alice gets an
infeasible tuple (A, F1, F2), and Bob gets a canonical feasible solution (x, y) with F̃3 = ∅,
and the goal is to compute the value of (5.13) in expectation.

8To compute s′(F1 ∩ F̃3), Bob samples an index i ∈ [n]. If i /∈ F̃3, he outputs 0 and terminates the protocol,
otherwise he sends i to Alice. If i ∈ F1, Alice outputs n · s′(i), otherwise, she outputs 0.
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For a fixed ε > 0, we define α := α(ε) = 2/(2 + ε), δ := δ(ε) = ε/(6 + 2ε) as in the MIN-
KNAPSACK case. Similar to the protocol for the knapsack cover inequalities, Alice sends
Bob O(log n) bits at the beginning so that Bob knows Ilarge, Ismall, Ũ, σ̃ and Δ̃. Recall that:

Ilarge is the set of large items (i.e., i ∈ F such that s(i) � U),

Ismall is the set of small items,

Ũ is an under-approximation of the residual demand U,

D− Δ̃ is an over-approximation of s(Ilarge ∩ A)

and σ̃ is an under-approximation of s(Ismall ∩ A).

Moreover, knowing his input (x, y), Bob can construct the sets F̃1 and F̃2. Thus, by ex-
changing an additional O(log n) bits, Alice and Bob can both figure out which condition
is satisfied for Equation (5.14).

To compute the value of (5.13) in expectation, we distinguish between the following
cases:

Case 1: Either F̃2 = ∅, or F̃2 = {j} and j ∈ A ∪ F1. In this case, we have that the value γ

is either 0 or s′jyj. Bob now checks if

s(Ilarge ∩ (F̃1 ∪ F̃2)) � D− Δ̃ . (5.15)

Equation (5.15) holds: In the same way as in the MIN-KNAPSACK protocol, Alice
and Bob exchange O(log2 n) bits to identify an index i∗ ∈ Ilarge such that i∗ ∈
((F̃1 ∪ F̃2) \ A). More precisely, this index i∗ belongs to one of the following three
sets:

1. i∗ ∈ F2 ∩ F̃1,

2. i∗ ∈ F1 ∩ F̃1,

3. or i∗ = j and F̃2 = {j}.

Alice and Bob can thus exchange O(1) more bits to figure out the condition that
i∗ satisfies. In what follows, we design an O(log n)-communication protocol to
handle each of these cases.

If i∗ ∈ F2 ∩ F̃1, then Equation (5.13) can be rewritten as

s′(F1 ∩ F̃1) + s((F2 ∩ F̃1) \ {i∗}) + γ + (si∗ − αU) . (5.16)

One can see that each of the above four terms is non-negative, and similar to the
MIN-KNAPSACK protocol, Alice and Bob can exchange O(log n) bits and compute
the value of (5.16) as follows:
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1. Bob sends Alice the bit yj and the index j using �log(n)
+ 1 bits if and only
if F̃2 = {j}, and he sends 0 if F̃2 = ∅.

2. Alice samples a uniformly random index i ∈ [n + 1]. If i = n + 1, Alice uses
the knowledge of F̃2 (and thus γ) to compute the normalized value of the
last terms, that is, she outputs (n + 1) · (γ + si∗ − αU), and terminates the
communication. Otherwise, she sends i to Bob using �log(n)
 bits.

3. If i ∈ F̃1, Bob sends yi to Alice; otherwise, Bob outputs 0 and terminates the
communication.

4. If i ∈ F1, Alice outputs (n + 1) · s′iyi; if i ∈ F2 \ {i∗}, she outputs (n + 1) · siyi;
otherwise she outputs 0.

The above communication costs O(log n) bits, all outputs are non-negative and
can be computed with the information available to each player, and by linearity of
expectation, the expected output is exactly the slack (5.13) when i∗ ∈ F2 ∩ F̃1.

The case where i∗ ∈ F1 ∩ F̃1 is handled similarly, since Equation (5.13) can then be
rewritten as

s′((F1 ∩ F̃1) \ {i∗}) + s(F2 ∩ F̃1) + γ + s′i∗︸︷︷︸
=U

−αU ,

and hence the only difference from the previous protocol would be that Alice has
to output (n + 1) · (γ + U − αU) instead of (n + 1) · (γ + si∗ − αU) in Step 2.

In the remaining case, we have F̃2 = {j} and i∗ = j ∈ F1 ∩ Ilarge, and hence
γ = s′jyj > αU. This can be handled by changing the second step of the protocol
described earlier in such a way that Alice outputs (n + 1) · (s′j − αU) if i = n + 1,
since the slack can be rewritten in this case as

s′(F1 ∩ F̃1) + s(F2 ∩ F̃1) + s′j − αU .

Equation (5.15) does not hold: Recall that since (x, y) is a feasible solution (and
F̃3 = ∅), we have

D ≤ x(F̃1) + x(F̃2)

= x(Ismall ∩ F̃1) + x(Ismall ∩ F̃2) + x(Ilarge ∩ F̃1) + x(Ilarge ∩ F̃2)

≤ x(Ismall ∩ F̃1) + x(Ismall ∩ F̃2) + s(Ilarge ∩ F̃1) + s(Ilarge ∩ F̃2)

= x(Ismall ∩ F̃1) + x(Ismall ∩ F̃2) + s(Ilarge ∩ (F̃1 ∪ F̃2)) .

By the assumption that Equation (5.15) does not hold, together with the argument
in Equation (5.7), we conclude that

x(Ismall ∩ F̃1) + x(Ismall ∩ F̃2) > Δ̃ � σ̃ + (1− δ)Ũ . (5.17)
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Note that since |F̃2| � 1, we get that

x(Ismall ∩ F̃2) =

⎧⎪⎪⎨⎪⎪⎩
0 if F̃2 = ∅

0 if F̃2 = {j} ⊆ Ilarge

xjD if F̃2 = {j} ⊆ Ismall .

We also have that x(Ismall ∩ F̃1) = s(Ismall ∩ F̃1) by the definition of F̃1. Together
this gives that the summation s(Ismall ∩ F̃1) + x(Ismall ∩ F̃2) is lower bounded by
σ̃ + (1− δ)Ũ. We rewrite (5.13) as

s′(F1 ∩ F̃1) + s(F2 ∩ F̃1) + γ− αU (5.18)

= s′(Ilarge ∩ F1 ∩ F̃1) + s(Ilarge ∩ F2 ∩ F̃1) + s(Ismall ∩ (F̃1 \ A)) + γ− αU

= s′(Ilarge ∩ F1 ∩ F̃1) + s(Ilarge ∩ F2 ∩ F̃1) + s(Ismall ∩ (A \ B))

+ s(Ismall ∩ A ∩ F̃2) + s(Ismall ∩ F̃1)− s(Ismall ∩ A) + γ− αU .

The non-negativity of the first three terms is straightforward, and Alice and Bob can
compute them by exchanging O(log n) bits – For instance, to compute s′(Ilarge ∩
F1 ∩ F̃1), Alice samples uniformly i ∈ [n] and sends it to Bob, Bob responds with
b = 1 if i ∈ F̃1 and b = 0 otherwise. Alice then outputs n · s′i if i ∈ Ilarge ∩ F1 and
b = 1, and 0 otherwise. The protocols for the second and the third term are very
similar.

As for the remaining terms, i.e.,

s(Ismall ∩ A ∩ F̃2) + s(Ismall ∩ F̃1)− s(Ismall ∩ A) + γ− αU ,

we get that by adding and subtracting (σ̃ + (1 − δ)Ũ − x(Ismall ∩ F̃2)), we can
rewrite them as(

s(Ismall ∩ F̃1)− σ̃− (1− δ)Ũ + x(Ismall ∩ F̃2)
)

+
(

σ̃ + (1− δ)Ũ − αU − s(Ismall ∩ A)
)

+
(

s(Ismall ∩ A ∩ F̃2) + γ− x(Ismall ∩ F̃2)
)

. (5.19)

The non-negativity of the first part follows from (5.17), and Bob has all the infor-
mation to compute it on his own. The non-negativity of the second part follows
from our definition of σ̃ and Ũ, and their relation to δ and α. Moreover, Alice has
all the information to compute this part.

To see that the third part (i.e., s(Ismall ∩ A ∩ F̃2) + γ− x(Ismall ∩ F̃2)) is also non-
negative and can easily be computed by one of the players, note that:

1. If x(Ismall ∩ F̃2) = 0, then clearly it is non-negative. In this case, Bob com-
municates the set F̃2 to Alice using O(log n) bits so that she knows whether
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F̃2 = ∅, or the item j if F̃2 = {j} and j ∈ Ilarge. Once F̃2 is known to Alice, she
can compute both s(Ismall ∩ A ∩ F̃2) and γ (recall that γ would be either 0 or
s′jyj = U).

2. If x(Ismall ∩ F̃2) = xjD �= 0, then we have that F̃2 = {j} and j ∈ Ismall. From
our assumption of Case 1, we also have that j ∈ A ∪ F1. Since A and F1 are
two disjoint sets, we get that:

(a) If j ∈ A, then

s(Ismall ∩ A ∩ F̃2)︸ ︷︷ ︸
sjyj

+ γ︸︷︷︸
0

−xjD = sjyj − xjD � 0 .

(b) If j ∈ F1, then

s(Ismall ∩ A ∩ F̃2)︸ ︷︷ ︸
0

+ γ︸︷︷︸
sjyj

−xjD = sjyj − xjD � 0 .

Thus it is also non-negative, and Bob can compute it on his own in this case.

This concludes the communication problem in the case where either F̃2 = ∅, or
F̃2 = {j} where j ∈ A ∪ F1.

Case 2: F̃2 = {j} and j ∈ F2. In this case γ = xjD. This case is quite similar to Case 1,
with the difference being that Bob checks at the beginning if

s(Ilarge ∩ F̃1) � D− Δ̃ ,

i.e., without including F̃2 compared to (5.15).

If the condition was indeed satisfied, then the same reasoning as the first part of
Case 1 resolves this case. Otherwise, we get

s(Ismall ∩ F̃1) + xjD > σ̃ + (1− δ)Ũ , (5.20)

and using Equation (5.18) from the second part of Case 1 yields that that first four
terms in this case are non-negative and easy to compute. Similarly, adding and
subtracting (σ̃ + (1− δ)Ũ) to the last four terms of (5.18), and rearranging the
terms we get(

s(Ismall ∩ F̃1)− σ̃− (1− δ)Ũ + xjD
)
+

(
σ̃ + (1− δ)Ũ − αU − s(Ismall ∩ A)

)
.

The first part of the summation is non-negative by Equation (5.20) and can be
computed by Bob. The second part is the same as the second part in Equation (5.19).
It is non-negative by definition and can be computed by Alice. This completes the
proof.
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This concludes the promised communication problem in the case where Alice is given
an infeasible tuple (A, F1, F2), and Bob is given a canonical feasible solution with F̃3 = ∅.
As argued in Section 5.4.1, this generalizes to any canonical feasible solution without any
restriction on F̃3.

5.4.3 Randomized Protocol for Arbitrary Feasible Solutions.

We now extend the communication protocol of canonical feasible solutions to arbitrary
feasible solutions. To that end, we denote by R = {(x1, y1), (x2, y2), . . . , (xr, yr)} the set
of all canonical feasible solutions.

In this non-restricted setting, Alice still gets an infeasible tuple (A, F1, F2), but Bob gets a
feasible solution (x, y) that is not necessarily canonical, and the goal remains to compute
the slack of the corresponding flow-cover inequality (i.e., Equation (5.10)) in expectation.
We show that the communication protocol that we developed in the previous section
can be used as a black-box to handle this general case, by noting that any feasible
solution (x, y) can be written as a convex combination of canonical feasible solutions
(x1, y1), (x2, y2), . . . , (xr, yr). In other words, there exists λ1, λ2, . . . , λr � 0, ∑r

k=1 λk = 1,
such that

(x, y) =
r

∑
k=1

λk(xk, yk) . (5.21)

This is formalized in Lemma 5.11.

To see that this is enough, note that the expansion in Equation (5.21) of (x, y) allows us
to rewrite slack of the flow-cover inequalities in (5.10) as

s′(F1 ∩ B) + x(F2 ∩ B)− αU

= ∑
i∈F1

s′i
r

∑
k=1

λkyk
i + ∑

i∈F2

r

∑
k=1

λkxk
i D− αU

=
r

∑
k=1

λk

(
∑
i∈F1

s′iy
k
i + ∑

i∈F2

xk
i D− αU

)
.

Thus in order to compute the slack in expectation, Bob samples a canonical feasible
solution (xk, yk) ∈ R with probability λk, then together with Alice, they compute the
slack of

∑
i∈F1

s′iy
k
i + ∑

i∈F2

xk
i D− αU

as discussed in the previous section.

It remains to prove that any feasible solution can indeed be written as a convex combi-
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nation of canonical feasible solutions. This is formalized in Lemma 5.11.

Lemma 5.11. Let R = {(x1, y1), (x2, y2), . . . , (xr, yr)} be the set of all the canonical feasible
solutions for the flow cover problem, then any feasible solution (x, y) can be written as

(x, y) =
r

∑
k=1

λk(xk, yk) ,

such that λk � 0 for all 1 � k � r, and ∑k λk = 1.

Proof. Given a feasible solution (x, y), define its support F̃x,y = {i : i ∈ F, and yi = 1},
and define the set Rx,y to be the set of all canonical feasible solutions whose support
equals F̃x,y, i.e.,

Rx,y = {(x′, y) : (x′, y) ∈ R} ⊆ R .

Without loss of generality, we assume that F̃x,y = [n] to simplify the presentation.

We now consider the following polytope P(y):

P(y) =

⎧⎪⎨⎪⎩
z ∈ [0, 1]n, such that:
(∗) ∑n

i=1 zi = 1,
(∗∗) 0 � zi � siyi

D for all 1 � i � n

⎫⎪⎬⎪⎭

Note that for any feasible solution (x, y) to the flow cover problem, we have that
x ∈ P(y). Moreover, we get from Definition 5.10 that for any canonical feasible solution
(x′, y) ∈ Rx,y, all except at most one item i ∈ [n], either has x′i = 0 or x′i D = siyi. Thus
x′ satisfies at least n − 1 linearly independent constraints of type (∗∗) with equality.
Conversely, if a point x ∈ P(y) satisfies at least n − 1 constraints of type (∗∗) with
equality, then (x, y) ∈ Rx,y.

Recall that a point z is an extreme point solution of P(y) iff there are n linearly independent
constraints that are set to equality by z. Since constraint (∗) is an equality constraint
and is linearly independent from any set of n− 1 constraints from (∗∗), we conclude
that {x′ : (x′, y) ∈ Rx,y} is the set of all extreme points of P(y). This implies that for any
x ∈ P(y), there exists λk � 0 for each 1 � k � r such that ∑k λk = 1 and

x =
r

∑
k=1

λkxk .

Since all these points have the same y-support, it follows that

(x, y) =
r

∑
k=1

λk(xk, yk) .
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5.5 Algorithmic Aspects.

Theorem 5.1 relies on the existence of a quasi-polynomial size extended formulation for
the weakened knapsack cover inequalities. However, we do not know how to construct
the full extended formulation in quasi-polynomial time. Nevertheless, there is a way to
use the extended formulation algorithmically, which we describe here.

We adopt a more general point of view, since the findings of this section are applicable
beyond the context of the knapsack cover inequalities. Consider any system of p
inequalities A1x � b1, . . . , Apx � bp, and q solutions x(1), . . . , x(q) ∈ Rn of this system.
In the context of the MIN-KNAPSACK problem, the inequalities Aix � bi (i ∈ [p]) are
all the weakened knapsack cover inequalities and the solutions x(j) (j ∈ [q]) are all the
feasible solutions x ∈ {0, 1}n. Typically, both p and q are exponentially large as functions
of n.

To this data corresponds a slack matrix S ∈ R
p×q
�0 defined by Sij := Aix(j) − bi. As

observed by Yannakakis [107], every non-negative factorization S = FV where F ∈ R
p×r
�0

and V ∈ R
r×q
�0 determines a system

Aix− bi = Fiy ∀i ∈ [p] (5.22)

y � 0

whose projection to the x-space gives a polyhedron {x ∈ Rn | ∃y ∈ Rr : Ax − b =

Fy, y � 0} containing each of the solutions x(j) and being contained in each of the
halfspaces Aix � bi.

Usually, the number p of equations in (5.22) is much bigger than both the number n of
x-variables and rank r of the non-negative factorization. Thus the equation system is
largely overdetermined and can be replaced by a smaller equivalent subsystem with at
most n + r equations. However, it is not obvious to tell efficiently what are the indices i
for which the corresponding equation in (5.22) should be kept.

To avoid this difficulty, we assume that the way in which we want to use the extended
formulation (shorthand: EF) Ax− b = Fy, y � 0 is to solve the LP min{cᵀx | Ax � b}
for a given objective vector c ∈ Rn, through the extended formulation.

For I ⊆ [p], consider the linear program

LP(I) : min cᵀx
s.t. Aix− bi = Fiy ∀i ∈ I

y � 0 .
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In fact, we will only need to consider sets I of size at most n + r ' p.

Algorithm 4 solves the LP min{cᵀx | Ax � b} in several steps. In each step, it solves
the smaller LP(I) where I ⊆ [p] and calls a separation routine to check whether x∗, the
x-part of the optimum solution found, satisfies Ax � b or not. In the first case, it returns
x∗ and stops. In the second case, it adds the index i∗ of any violated constraint to I and
continues. At the beginning of the algorithm, I is initialized to [n]. To avoid technicalities,
we assume that LP([n]) is bounded. For the sake of concreteness, we assume furthermore
that the n first inequalities of the system Ax � b are the nonnegativity inequalities x1 � 0,
. . . , xn � 0, and that c ∈ Rn

�0.

Algorithm 4 Cutting-plane algorithm to solve min{cᵀx | Ax � b} through EF Ax− b =
Fy, y � 0

1: initialize I ←− [n]
2: initialize feasible←− false
3: repeat
4: solve LP(I), get optimum solution (x∗, y∗)
5: if there exists i∗ ∈ [p] such that Ai∗x∗ < bi∗ then
6: add i∗ to I
7: else
8: set feasible←− true
9: end if

10: until feasible = true
11: return x∗

To analyze the running time of the algorithm, we make the following assumptions:

• the size of each coefficient in (5.22) and each ci is upper-bounded by Δ = Δ(n);

• the separation problem (given x∗ ∈ Rn, find an index i∗ ∈ [p] such that Ai∗x < bi∗

or report that no such index exists) can be solved in Tsep(n) time;

• each single equation in (5.22) can be written down in Tconstr(n) time;

• LP(I) can be solved in time Tsolve(n) for any set I of size at most n + r, where
r = r(n) is the rank of the nonnegative factorization giving rise to the extended
formulation Ax− b = Fy, y � 0.

Notice that Tsolve(n) = O(n3(n + r)Δ) if an interior point method is used to solve LP(I).

Lemma 5.12. Under the above assumptions, the main loop of Algorithm 4 is executed at most
r + 1 times. Thus the complexity of Algorithm 4 is O(r · (Tsolve(n) + Tsep(n) + Tconstr(n))).

Proof. The result follows directly from the simple observation that each time a new
equation Ai∗x − bi∗ = Fi∗y added to the system Aix − bi = Fiy (i ∈ I), it is linearly
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independent from the current equations in the system. Notice that by assumption, the
algorithm starts with n linearly independent constraints. By the above observation, we
always have |I| � n + r.

From now on, we assume that the non-negative factorization of the slack matrix S comes
from a communication protocol with non-negative outputs computing S in expectation.
The protocol is specified by a binary protocol tree, in which each internal node is owned
either by Alice or Bob, and each leaf corresponds to an output of the protocol. At each
internal node u owned by Alice, a branching probability pbranch(i, u) ∈ [0, 1] is given for
each input i ∈ [p] of Alice. Similarly for each internal node v owned by Bob, we are
given a branching probability qbranch(j, v) ∈ [0, 1], where j ∈ [q] is Bob’s input. These
branching probabilities specify the chance for the protocol of following the left branch.
Finally, each leaf � has a nonnegative number λ(�) ∈ R�0 attached to it.

The corresponding extended formulation can be written as

Aix− bi = ∑
� leaf

preach(i, �) · y� ∀i ∈ [p] (5.23)

y� � 0 ∀� leaf

where preach(i, u) denotes the probability of reaching node u of the protocol tree on any
input pair of the form (i, ∗).

Lemma 5.13. Let Δ be any number that is at least

max{− log(preach(i, �)) | i ∈ [p], � leaf , preach(i, �) > 0} ,

and let h denote the height of the protocol tree. For any fixed i ∈ [p], one can write down the
right-hand side of the corresponding equation in (5.23) in O(2hΔ log Δ log log Δ) time and
O(2hΔ) space.

Proof. Clearly, at the root of the protocol tree, we have preach(i, root) = 1. At an internal
node u owned by Alice with left child v and right child w, we have

preach(i, v) = preach(i, u) · pbranch(i, u) ,

and

preach(i, w) = preach(i, u) · (1− pbranch(i, u)) = preach(i, u)− preach(i, v) .

In case u is owned by Bob, we simply have preach(i, v) = preach(i, w) = preach(i, u) since
the behavior of the communication protocol at node u on input pair (i, j) is independent
of i.
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Using this, we can compute recursively preach(i, u) for all nodes u of the protocol tree,
and thus for the leaves of the tree. All arithmetic operations are performed on numbers
of at most O(Δ) bits. If we use the Schoolbook algorithm for subtraction and the
Schönhage-Strassen algorithm for multiplication, we obtain the claimed bounds for the
time- and space-complexity.

Now, we discuss how Algorithm 4 and its analysis apply to the (weakened) knapsack
cover inequalities and the corresponding slack matrix (Sε

ab)a∈ f−1(0), b∈ f−1(1) as in (5.5),
where f is the weighted threshold function defining the knapsack. In order to do that,
we first have to construct the protocol tree of the protocol described in the proof of
Lemma 5.7. We claim that this can be done in time (1/ε)O(1)nO(log n).

The protocol has several deterministic parts (in which the branching probabilities are
in {0, 1} locally). Each corresponds to the resolution of a Karchmer-Wigderson game.
For writing down the corresponding subtrees of the protocol tree, we just need log2(n)-
depth monotone circuits of fan-in 2 for computing certain truncations of the weighted
threshold function f . The translation of the circuit into a protocol tree follows the
standard construction of Karchmer and Wigderson [64]. For constructing the circuits,
we rely either on the construction of Beimel and Weinreb [15, 16] or the simpler and
more recent construction of Chen, Oliveira and Servedio [34]. Both constructions can be
executed in nO(1) time.

The remaining parts of the protocol can be readily translated into the corresponding
subtrees of the protocol tree.

Since the reaching probabilities in the protocol tree can be written down with O(log n)
bits, each coefficient in the right-hand side of (5.23) can be written down in O(log n) bits.
Assuming as before that all item sizes and demand can be written down with O(n log n)
bits (which is without loss of generality), the coefficients of the left-hand side of (5.23)
can be written down with O(n log n) bits. Therefore, we can take Δ = O(n log n)

From what precedes and Lemma 5.13, we have that Tconstr(n) = (1/ε)O(1)nO(log n).
Moreover, Lemma 5.7 gives r(n) = (1/ε)O(1)nO(log n).

For the separation routine, we deviate significantly from Algorithm 4: instead of using
an exact separation routine (efficient exact separation of the knapsack cover inequalities
is an open problem), we rely on a separation trick from Carr et al. [29]. That is, we simply
check if the knapsack cover inequality for A := {i ∈ [n] | x∗i � 1/2} is satisfied. This is
enough to guarantee that the modified Algorithm 4 computes a quantity that is within a
2 + ε factor of the integer optimum for that particular cost function c. Unfortunately, by
relying on the pseudo-separation of Carr et al., we cannot guarantee that the modified
Algorithm 4 optimizes exactly over all weakened knapsack cover inequalities.
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If we further assume that the coefficients of c can be written with O(n log n) bits, we
conclude that one can find a (2+ ε)-approximation of min{∑n

i=1 cixi | ∑n
i=1 sixi � D, x ∈

{0, 1}n} in time (1/ε)O(1)nO(log n), without relying on the ellipsoid algorithm, using our
extended formulation.

5.6 Conclusion.

After the recent series of strong negative results on extended formulations, we have
presented a positive result inspired by a connection to monotone circuits. Namely, we
obtain the first quasi-polynomial-size LP relaxation of MIN-KNAPSACK with constant
integrality gap from polylog-depth circuits for weighted threshold functions.
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6 Scheduling Problems

In this chapter, we present an application for using integrality gap instances of LP
relaxations of a combinatorial problem, in order to prove the inapproximability results
of this problem in general computational models. These integrality gap instances in fact
lead us to studying structural properties of k-partite graphs.

We show a close connection between structural hardness for k-partite graphs and tight
inapproximability results for scheduling problems with precedence constraints. Assum-
ing a natural but nontrivial generalization of the bipartite structural hardness result
of [8], we obtain a hardness of 2− ε for the problem of minimizing the makespan for
scheduling precedence-constrained jobs with preemption on identical parallel machines.
This matches the best approximation guarantee for this problem [53, 47]. Assuming
the same hypothesis, we also obtain a super constant inapproximability result for the
problem of scheduling precedence-constrained jobs on related parallel machines, mak-
ing progress towards settling an open question in both lists of ten open questions by
Williamson and Shmoys [105], and by Schuurman and Woeginger [97].

The study of structural hardness of k-partite graphs is of independent interest, as it
captures the intrinsic hardness for a large family of scheduling problems. Other than
the ones already mentioned, this generalization also implies tight inapproximability to
the problem of minimizing the weighted completion time for precedence-constrained
jobs on a single machine, and the problem of minimizing the makespan of precedence-
constrained jobs on identical parallel machine, hence unifying the results of Bansal and
Khot [8] and Svensson [101], respectively.

6.1 Introduction

The study of scheduling problems is motivated by the natural need to efficiently allocate
limited resources over the course of time. Though some scheduling problems can be
solved to optimality in polynomial time, others turn out to be NP-hard. This difference in
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computational complexity can be altered by many factors, from the machines model that
we adopt, to the requirements imposed on the jobs, as well as the optimality criterion of
a feasible schedule. For instance, if we are interested in minimizing the completion time
of the latest job in the schedule (known as the maximum makespan), then the scheduling
problem is NP-hard to approximate within a factor of 3/2− ε, for any ε > 0, if the
machines are unrelated, whereas it admits a Polynomial Time Approximation Scheme
(PTAS) for the case of identical parallel machines [59]. Adopting a model in between
the two, in which the machines run at different speeds, but doing so uniformly for
all jobs (known as uniform parallel machines), also leads to a PTAS for the scheduling
problem [60].

Scheduling with Precedence Constraints. Although the former discussion somehow
suggests a similarity in the complexity of scheduling problems between identical parallel
machines and uniform parallel machines, our hopes for comparably performing algo-
rithms seem to be shattered as soon as we add precedence requirements among the jobs.
On the one hand, we know how to obtain a 2-approximation algorithm for the problem
where the parallel machines are identical [53, 47] (denoted as P|prec|Cmax in the language
of [54]); on the other hand, the best approximation algorithm known to date for the
uniform parallel machines case (denoted as Q|prec|Cmax), gives a log(m)/ log log(m)-
approximation guarantee [79], m being the number of machines. In fact, obtaining a
constant factor approximation algorithm for the latter or ruling out any such result, is a
major open problem in the area of scheduling algorithms. Perhaps as a testament to that
is the fact that it is listed by Williamson and Shmoys [105] as Open Problem 8, and by
Schuurman and Woeginger [97] as Open Problem 2.

Parallel Machines with and without Preemption. Moreover, our understanding of
scheduling problems even on the same model of machines does not seem to be complete
either. On the positive side, it is easy to see that the maximum makespan of any feasible
schedule for P|prec|Cmax is at least max {L, n/m}, where L is the length of the longest
chain of precedence constraints in our instance, and n and m are the number of jobs and
machines, respectively. The same lower bound still holds when we allow preemption, i.e.,
the scheduling problem P|prec, pmtn|Cmax. Given that both 2-approximation algorithms
of [53] and [47] rely in their analysis on the aforementioned lower bound, they also
yield a 2-approximation algorithm for P|prec, pmtn|Cmax. However, on the negative
side, our understanding for P|prec, pmtn|Cmax is much less complete. For instance, we
know that it is NP-hard to approximate P|prec|Cmax within any constant factor strictly
better than 4/3 [77], and assuming (a variant of) the Unique Games Conjecture (UGC),
the latter lower bound is improved to 2 [101]. However for P|prec, pmtn|Cmax, only
NP-hardness is known. It is important to note here that the hard instances yielding the
(2− ε) hardness for P|prec|Cmax are easy instances for P|prec, pmtn|Cmax. Informally
speaking, the hard instances for P|prec|Cmax can be thought of as k-partite graphs, where
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each partition has m + 1 vertices that correspond to n := m + 1 jobs, and the edges from
a layer to the layer above it emulate the precedence constraints. The goal is to schedule
these nk jobs on m machines. If the k-partite graph is complete, then any feasible schedule
has a makespan of at least 2k, whereas if the graph was a collection of perfect matchings
between each two consecutive layers, then there exists a schedule whose makespan is
k + 11. However, if we allow preemption, then it is easy to see that even if the k-partite
graph is complete, one can nonetheless find a feasible schedule whose makespan is
k + 1.

From Graph Ordering to Scheduling Inapproximability. The effort of closing the
inapproximability gap between the best approximation guarantee and the best known
hardness result for some scheduling problems was successful in recent years; two of
the results that are of particular interest for us are [8] and [101]. Bansal and Khot study
in [8] the scheduling problem 1|prec|∑j wjCj, the problem of scheduling precedence
constrained jobs on a single machine, with the goal of minimizing the weighted sum
of completion time, and they prove tight inapproximability results for it, assuming a
variant of the Unique Games Conjecture. Similarly, Svensson proves in [101] a hardness
of 2− ε for P|prec|Cmax, assuming the same conjecture. In fact, both papers rely on a
structural hardness result for bipartite graphs, first introduced in [8], by reducing a
bipartite graph to a scheduling instance, which leads to the desired hardness factor.

Our results. We propose a natural but non-trivial generalization of the structural
hardness result of [8] from bipartite to k-partite graphs; this generalization captures the
intrinsic hardness of a large family of scheduling problems.

On the one hand, our generalization rules out any constant factor polynomial time ap-
proximation algorithm for the scheduling problem Q|prec|Cmax. On the other hand, one
may speculate that the preemption flexibility, when added to the scheduling problem
P|prec|Cmax, renders this problem easier, especially that the hard instances of the latter
problem become easy when preemption is allowed. Contrary to such speculations, our
generalization to k-partite graphs enables us to prove that it is NP-hard to approxi-
mate the scheduling problem P|prec, pmtn|Cmax within any factor strictly better than 2.
Formally, we prove the following:

Theorem 6.1. Assuming Hypothesis 6.14, it is NP-hard to approximate the scheduling problems
P|prec, pmtn|Cmax within any constant factor strictly better than 2, and Q|prec|Cmax within
any constant factor.

This suggests that the intrinsic hardness of a large family of scheduling problems seems

1In fact, the gap is between k-partite graphs that have nice structural properties in the completeness
case, and behave like node expanders in the soundness case.
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to be captured by structural hardness results for k-partite graphs. For the case of k = 2,
our hypothesis coincides with the structured bipartite hardness result of [8], and yields
the following result:

Theorem 6.2. Assuming a variant of the Unique Games Conjecture, it is NP-hard to approxi-
mate the scheduling problem P|prec, pmtn|Cmax within any constant factor strictly less than
3/2.

In fact, the 3/2 lower bound also holds even if we only assume that 1|prec|∑j wjCj

is NP-hard to approximate within any factor strictly better than 2, by noting the con-
nection between the latter and a certain bipartite ordering problem. This connection
was observed and used by Svensson [101] to prove tight hardness of approximation
lower bounds for P|prec|Cmax, and this yields a somehow stronger statement; even if
the Unique Games Conjecture turns out to be false, 1|prec|∑j wjCj might still be hard to
approximate to within a factor of 2− ε, and our result for P|prec, pmtn|Cmax will still
hold as well. Formally,

Corollary 6.3. For any ε > 0, and η ≥ η(ε), where η(ε) tends to 0 as ε tends to 0, if 1|prec|
∑j wjCj has no (2− ε)-approximation algorithm, then P|prec, pmtn|Cmax has no (3/2− η)-
approximation algorithm.

Remark 6.4. Theorems 6.1 and 6.2 and Corollary 6.3 also hold for the special case of
the P|prec, pmtn|Cmax problem where all the jobs have size 1, denoted by P|prec, pmtn,
pj = 1|Cmax.

Although we believe that Hypothesis 6.14 holds, the proof is still eluding us, even if
we assume the Unique Games Conjecture. Nonetheless, understanding the structure of
k-partite graphs seems to be a very promising direction for understanding the inapprox-
imability of scheduling problems, due to its manifold implications in the latter problems.
As mentioned earlier, a similar structure for bipartite graphs was proved assuming a
variant of the Unique Games Conjecture in [8] (see Theorem 6.7).

Further Related Work The scheduling problem P|prec, pmtn|Cmax was first shown to
be NP-hard by Ullman [104]. However, if we drop the precedence rule, the problem can
be solved to optimality in polynomial time [81]. Similarly, if the precedence constraint
graph is a tree [84, 85, 51] or the number of machines is 2 [84, 85], the problem also
becomes solvable in polynomial time. Yet, for an arbitrary precedence constraints
structure, it remains open whether the problem is polynomial time solvable when the
number of machines is a constant greater than or equal to 3 [105]. A closely related
problem to P|prec, pmtn|Cmax is P|prec|Cmax, in which preemption is not allowed. In fact
the best 2-approximation algorithms known to date for P|prec, pmtn|Cmax were originally
designed to approximate P|prec|Cmax [53, 47], by noting the common lower bound for
a makespan to any feasible schedule for both problems. As mentioned earlier, [77]
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and [101] prove a 4/3 − ε NP-hardness and 2 − ε UGC-hardness, respectively, for
P|prec|Cmax, for any ε > 0. However, to this date, only NP-hardness is known for the
P|prec, pmtn|Cmax scheduling problem. Although one may speculate that allowing
preemption might enable us to get better approximation guarantees, no substantial
progress has been made in this direction since [53] and [47].

One can easily see that the scheduling problem P|prec|Cmax is a special case of Q|prec|Cmax,
since it corresponds to the case where the speed of every machine is equal to 1, and
hence the (4/3− ε) NP-hardness of [77] and the (2− ε) UGC-hardness of [101] also
apply to Q|prec|Cmax. Nonetheless, no constant factor approximation algorithm for
this problems is known; a log(m)-approximation algorithm was designed by Chudak
and Shmoys [36], and Chekuri and Bender [33] independently, where m is the number
of machines. Very recently, the upper bound was improved to log(m)/ log log(m) by
Li [79]

Outline We begin in Section 6.2 by formally defining our scheduling problems of
interest, and introducing the notation that we use throughout this chapter. In Section 6.3,
we present the natural LP formulation for the P|prec, pmtn, pj = 1|Cmax problem,
and show that the integrality gap of this LP is 2. Although we are interested in the
inapproximability of the problem in general computational models (i.e., not only the
limitations of LP based algorithms), the structure of the integrality gap instance that we
construct suggests a family of instances that seems to capture the intrinsic hardness of
the problem. Inspired by these integrality gap instances, we then show in Section 6.4
that known structural hardness results for bipartite graphs yield a 3/2 inapproximability
assuming a variant of the Unique Games Conjecture for the P|prec, pmtn|Cmax problem,
and motivate the need for a generalization to k-partite graphs in order to amplify our
inapproximability result to 2 instead of 3/2. We then propose our novel hypothesis for
k-partite graphs (Hypothesis 6.14) that will play an essential role in the hardness proofs
of Section 6.6. Namely, we use it in Section 6.6.1 to show a 2− ε inapproximability
for P|prec, pmtn|Cmax, and in Section 6.6.2 to prove a super constant inapproximability
result for the scheduling problem Q|prec|Cmax.

6.2 Preliminaries

In the scheduling problems that we consider, we are given a set M of m machines and a
set J of n jobs with precedence constraints, and the goal is to find a feasible schedule
that minimizes the makespan, i.e., the maximum completion time. We say that a job
Ji ∈ J is a predecessor of a job Jj ∈ J, and write it Ji ≺ Jj, if in any feasible schedule,
Jj cannot start executing before the completion of job Ji. Similarly, for two sets of jobs
Ji ⊆ J and Jj ⊆ J, Ji ≺ Jj is equivalent to saying that all the jobs in Jj are successors
of all the jobs in Ji.
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The main problems that we consider in this chapter are the following variants of
makespan minimization scheduling with precedence constraints:

P|prec, pmtn|Cmax: In this model, the machines are assumed to be be parallel and
identical, i.e., the processing time of a job Jj ∈ J is the same on any machine
Mi ∈ M (pi,j = pj for all Mi ∈ M). Furthermore, preemption is allowed, and
hence the processing of a job can be paused and resumed at later stages, not
necessarily on the same machine.

P|prec, pmtn, pj = 1|Cmax: This is the same as P|prec, pmtn|Cmax with the restriction
that each job has processing time pj = 1. Note that proving a lower bound on the
approximability of P|prec, pmtn, pj = 1|Cmax implies the same lower bound for
P|prec, pmtn|Cmax.

Q|prec|Cmax: In this model, the machines are assumed to be parallel and uniform, i.e.,
each machine Mi ∈M has a speed si, and the time it takes to process job Jj ∈ J

on this machine is pj/si.

Moreover, the complexity hypothesis that we suggest in this chapter (i.e., Hypothe-
sis 6.14) also yields the known results for the following two scheduling problems:

P|prec|Cmax: This is a restricted version of the P|prec, pmtn|Cmax problem, where the
preemption is not allowed.

1|prec|∑j wjCj: In this model, we only have one machine, and each job Jj ∈ J has an
associated weight wj ∈ R+. The goal in this problem is to find a schedule for these
jobs on this machine in a way that minimizes the weighted completion time of the
jobs. Namely, let Cσ

j be the completion time for a job Jj ∈ J in a feasible schedule
σ, then the goal is the find a feasible schedule σ∗ that minimzes

∑
Jj∈J

wjCσ
j .

6.3 Integrality Gap For P|prec, pmtn, pj = 1|Cmax

Our inapproximability results for the scheduling problems of interest are motivated by
a family of hard instances that fools a certain linear programming relaxation of P|prec,
pmtn, pj = 1|Cmax. Although this approach usually only rules out good approximation
algorithms based on this particular LP relaxation, the structure of these hard instances
naturally relates to the hardness of a certain graph ordering problem. This graph
ordering problem is known to be hard on bipartite graphs assuming the Unique Games
Conjecture [8] (See Theorem 6.7), and what we basically hypothesize in this chapter is
that a natural generalization of this problem on k-partite graphs is also hard.
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In order to motivate our k-partite graph ordering problem hypothesis, we present in
this section the natural LP relaxation of the P|prec, pmtn, pj = 1|Cmax problem, and
construct its corresponding family of integrality gap instances. The connection between
these instances, and our Hypothesis 6.14 will then becomes easy to see.

6.3.1 LP Relaxation of P|prec, pmtn, pj = 1|Cmax

In this section, we will be interested in a feasibility Linear Program, that we denote by
[SCHED-LP], for the scheduling problem P|prec, pmtn, pj = 1|Cmax. For a makespan
guess T, [SCHED-LP] has a set of indicator variables {xj,t} for j ∈ [n] and t ∈ [T]. A
variable xj,t is intended to be the fraction of the job Jj scheduled between time t− 1 and
t. The optimal makespan T∗ is then obtained by doing a binary search and checking at
each step if the LP is feasible. [SCHED-LP] is defined as follows:

n

∑
j=1

xj,t ≤ m ∀t ∈ [T] (6.1)

T

∑
t=1

xj,t = 1 ∀j ∈ [n] (6.2)

t′−1

∑
t=1

x�,t +
T

∑
t=t′+1

xk,t ≥ 1 ∀J� ≺ Jk, ∀t′ ∈ [T] (6.3)

xj,t ≥ 0 ∀j ∈ [n] , ∀t ∈ [T]

To see that [SCHED-LP] is a valid relaxation for the scheduling problem P|prec, pmtn,
pj = 1|Cmax, note that constraint (6.1) guarantees that the number of jobs processed at
each time unit is at most the number of machines, and constraint (6.2) says that in any
feasible schedule, all the jobs must be assigned. Also any schedule that satisfies the
precedence requirements must satisfy constraint (6.3).

6.3.2 Integrality Gap of the LP

In order to show that [SCHED-LP] has an integrality gap of 2, we start by constructing
a family of instances showing an integrality gap 3/2 and gradually increase this gap
to 2. The reason behind this incremental construction is that the 3/2 case captures the
intrinsic hardness of the problem, and we show how to use it as basic building block for
the construction of the target integrality gap instance of 2.

Basic Building Block We start by constructing an P|prec, pmtn, pj = 1|Cmax scheduling
instance I(d) parametrised by a large constant d ≥ 2, that shows that the integrality
gap of [SCHED-LP] is 3/2. This instance I(d) will then constitute our main building
block for the next reduction.
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J1 J2 J3 J4 J5 J6 J7 J8 J9

J10

J11

J12

J13 J14 J15 J16 J17 J18 J19 J20 J21

Figure 6.1 – Example of the integrality gap instance I(4) with 3 machines of [SCHED-LP].
The number of machines is m and the number of jobs in this case is then n = 2md− (d− 1) = 21.
Jobs whose color is grey, black and white correspond to jobs of layers 1, 2 and 3 respectively. A
directed edge from a job Ji to a job Jk implies that Ji ≺ Jk.

The instance I(d) is defined over m machines and n jobs, where n = 2dm− (d− 1).
The dependencies between the jobs in I(d) are as follows:

• The first dm− (d− 1) jobs J1, . . . , Jdm−(d−1) have no predecessors [Layer 1].

• A chain of (d− 1) jobs Jdm−(d−1)+1, . . . , Jdm such that Jdm−(d−1)+1 is the successor of
all the jobs in the Layer 1, and Jk−1 ≺ Jk for k ∈ {dm− (d− 1) + 2, . . . , dm} [Layer
2].

• The last dm− (d− 1) jobs Jdm+1, . . . , J2dm−(d−1) are successors of Jdm [Layer 3].

We illustrate an example of I(d) for m = 3 and d = 4 in Figure 6.1.

We first show that I(d) is an integrality gap of 3/2 for [SCHED-LP]. This basically
follows from the following lemma:

Lemma 6.5. Any feasible schedule for I(d) has a makespan of at least 3d − 2, however
[SCHED-LP] has a feasible solution {xj,t}, for t ∈ [2d] and j = 1, . . . , 2dm− (d− 1) of value
2d. Moreover, for t = d + 1 + �, � ∈ [d− 1], the machines in the feasible LP solution can still
execute a load of �

d , i.e., m−∑Jj∈J xj,t ≥ �
d .
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Proof. Consider the following fractional solution:

[Layer 1] xj,t =
1
d

∀j ∈ {1, 2, . . . , dm− (d− 1)}, ∀t ∈ [d] ,

[Layer 2] xdm−(d−1)+1,�+1 = xdm−(d−1)+2,�+2 = · · · = xdm,�+d−1 =
1
d

∀� ∈ [d] ,

[Layer 3] xj,t =
1
d

∀j ∈ {dm + 1, dm + 2, . . . , 2dm− (d− 1)},

∀t ∈ {d + 1, d + 2, . . . , 2d} .

One can easily verify that each job J is completely scheduled, i.e., ∑2d
t=1 xJ,t = 1. Moreover,

the workload at each time step is at most m. To see this, we consider the following three
types of time steps:

1. For t = 1, the workload is

1
d
×

⎛⎜⎝dm− (d− 1)︸ ︷︷ ︸
Layer 1

⎞⎟⎠ = m− 1 +
1
d
< m .

2. For t = 2, . . . , d, the workload is

1
d
×

⎛⎜⎝dm− (d− 1)︸ ︷︷ ︸
Layer 1

+ t− 1︸︷︷︸
Layer 2

⎞⎟⎠ = m− 1 +
t− 1

d
< m .

3. For t = d + 1, . . . , 2d, the workload is

1
d

⎛⎜⎝2d− t︸ ︷︷ ︸
Layer 2

+ dm− (d− 1)︸ ︷︷ ︸
Layer 3

⎞⎟⎠ = m− t− (d + 1)
d

< m .

Note that in this feasible solution, we have that for t = d+ 1+ i, i ∈ [d− 1], the machines
can still execute a load of i

d .

We have thus far verified that {xj,t} satisfies the constraints (6.1) and (6.2) of [SCHED-LP].
Hence it remains to check (6.3), i.e., we need to check that for any two jobs Jk, J� such
that Jk is a predecessor of J�, the following holds:

t−1

∑̃
t=1

x�,t̃ +
T

∑
t̃=t+1

xk,t̃ ≥ 1 , (6.4)

113



Chapter 6. Scheduling Problems

for all t ∈ [2d].

Note however that any two jobs Jk and J� such that Jk is a direct predecessor of J�, satisfy
the following properties by construction: If tk = min {t : xk,t > 0}, then

1. max {t : xk,t > 0} = tk + d− 1.

2. min {t : x�,t > 0} = tk + 1.

3. max {t : x�,t > 0} = tk + d.

Thus Equation 6.4 holds since we have that for any such jobs Jk, J�:

1. If t ∈ [tk − 1], then:

t−1

∑̃
t=1

x�,t̃︸ ︷︷ ︸
=0

+
T

∑
t̃=t+1

xk,t̃︸ ︷︷ ︸
=1

= 1 .

2. If t ∈ {tk, tk + 1, . . . , tk + d}, then:

t−1

∑̃
t=1

xk,t̃ +
2d

∑
t̃=t+1

x�,t̃ =
t−1

∑
t̃=tk

xk,t̃ +
tk+d

∑
t̃=t+1

x�,t̃

=
t− 1− tk + 1

d
+

tk + d− (t + 1) + 1
d

= 1 .

3. If t ∈ t ∈ {tk + d + 1, . . . , 2d}, then:

t−1

∑̃
t=1

x�,t̃︸ ︷︷ ︸
=1

+
T

∑
t̃=t+1

xk,t̃︸ ︷︷ ︸
=0

= 1 .

This concludes the feasibility of an LP solution with makespan 2d. It remains to show
that any actual feasible schedule must have a large makespan. It is not hard to see that
we should completely schedule all the jobs in Layer 1 so that we are able to start with
the first job in Layer 2. Similarly, due to the chain-like structure of Layer 2, it requires
d− 1 times steps to be scheduled, before any job in Layer 3 can start executing. Hence
the makespan of any feasible schedule is at least

dm− (d− 1)
m

+ (d− 1) +
dm− (d− 1)

m
= 3d− 2(d− 1)

m
− 1 ≥ 3d− 2.
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Final Instance We now construct our final integrality gap instance I(k, d) using the
basic building block I(d). This is basically done by replicating the structure of I(d),
and arguing that any feasible schedule for I(k, d) must have a makespan of roughly
2kd, whereas we can extend the LP solution of Lemma 6.5 for the instance I(d), to a
feasible LP solution for I(k, d) of value (k + 1)d. A key point that we use here is that
the structure of the LP solution of Lemma 6.5 enables us to schedule a fraction of the
chain jobs of a layer, while executing the non-chain jobs of the previous layer. We now
proceed to prove that the integrality gap of [SCHED-LP] is 2, by constructing a family
I(k, d) of scheduling instances, using the basic building block I(d).

Theorem 6.6. [SCHED-LP] has an integrality gap of c, where c is a constant arbitrarily close
to 2.

Proof. Consider the following family of instances I(k, d) for constant integers k and d,
constructed as follows:

• We have k + 1 layers {L1
1 ,L1

2 , . . . ,L1
k+1} similar to Layer 1 in I(d), and k layers

{L2
1 ,L2

2 , . . . ,L2
k } similar to Layer 2, i.e.,

– L1
i has dm− (d− 1) jobs J1

i,1, . . . , J1
i,dm−(d−1) for all i ∈ [k + 1], and

– L2
i has (d− 1) jobs J2

i,1, . . . , J2
i,(d−1) for all i ∈ [k].

• For i ∈ [k]:

– Connect L1
i to L2

i in the same way that Layer 1 is connected to Layer 2 in
I(d), that is, the job J2

i,1 ∈ L2
i is a successor for all the jobs in L1

i .

– Connect L2
i to L1

i+1 in the same way that Layer 2 is connected to Layer 3 in
I(d), that is, all the jobs in L1

i+1 are successors for the job J2
i,(d−1) ∈ L2

i .

Notice that for k = 1, the scheduling instance I(1, d) is the same as the previously
defined instance I(d). The construction is depicted in Figure 6.2.

In any feasible schedule, we need to first schedule the jobs in L1
1 , then those in L2

1 , then
L1

2 , and so on, until L1
k+1. Hence the makespan of any such schedule is at least

(k + 1)
dm− (d− 1)

m
+ k(d− 1) > 2kd + d− k− 1.

We now show that [SCHED-LP] has a feasible solution of value (k + 1)d. Let {xj,t} for
t = 1, . . . , 2d and j = 1, . . . , 2dm− (d− 1) be the feasible solution of value 2d obtained
in Lemma 6.5. It would be easier to think of {xj,t} as {x1

j,t} ∪ {x2
j,t} ∪ {x3

j,t} where for
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L1
1 · · · · · · · · · · · ·

L2
1

L1
2

...

· · · · · · · · · · · ·

L2
2

...

...

...

...

...

· · · · · · · · · · · ·L1
k+1

Figure 6.2 – Illustration of the integrality gap instance I(k, d).

i = 1, 2, 3, {xi
j,t} is the set of LP variables corresponding to variables in Layer i in I(d).

We now construct a feasible solution {yj,t} for I(k, d). We similarly think of {yj,t} as
{y1

j,t} ∪ {y2
j,t}, where yi

j,t is the set of LP variables corresponding to jobs in Li
� , for some

1 ≤ � ≤ k + 1. The set {yi
j,t} for I(k, d) can then be readily constructed as follows:

• for J1
1,j ∈ L1

1 , y1
j,t = x1

j,t for t ≤ 2d, and 0 otherwise.

• for J2
i,j ∈ L2

i , y2
j,t+(i−1)d = x2

j,t for i = 1, 2, . . . , k, and t ≤ 2d, and 0 otherwise.

• for J1
i,j ∈ L1

i , y1
j,t+(i−1)d = x3

j,t for i = 2, 3, . . . , k + 1, and t ≤ 2d, and 0 otherwise.

Using Lemma 6.5, we get that for t = d+ 1+ i, i ∈ [d− 1], the machines in the feasible LP
solution can still execute a load of i

d , and hence invoking the same analysis of Lemma 6.5
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with the aforementioned observation for every two consecutive layers of jobs, we get
that {yj,t} is a feasible solution for [SCHED-LP] of value (k + 1)d.

To recap, the results in this section can be summarized as follows: For a certain LP
relaxation of the P|prec, pmtn, pj = 1|Cmax problem, namely [SCHED-LP], we know the
following:

1. There exists a family of instances illustrated in Figure 6.1 for which [SCHED-LP]
has an integrality gap of 3/2.

2. If we appropriately replicate the structure in Figure 6.1 as shown in Figure 6.2,
then we can show that the integrality gap of [SCHED-LP] is 2.

Motivated by the structure of Figure 6.1, we show in the next section that P|prec, pmtn,
pj = 1|Cmax is in fact NP-hard to approximate within a factor of 3/2, assuming a variant
of the Unique Games Conjecture. In particular, that conjecture implies that given a
bipartite graph G, it is NP-hard to distinguish between the case where G behaves like an
expander, and the case where G behaves has a nice ordered structure. By carefully defining
a reduction from bipartite graphs to P|prec, pmtn, pj = 1|Cmax scheduling instances in
the same spirit as in Figure 6.1, we get the UG-hardness result of 3/2.

6.4 Hardness of P|prec, pmtn|Cmax assuming the UGC

Assuming a variant of the Unique Games Conjecture, Bansal and Khot [8] proved the
following structural hardness result for bipartite graphs:

Theorem 6.7. [Section 7.2 in [8]] For every ε, δ > 0, and positive integer Q, the following
problem is NP-hard assuming a variant of the UNIQUE GAMES Conjecture: given an n-by-n
bipartite graph G = (V, W, E), distinguish between the following two cases:

• YES Case: V can be partitioned into V0, . . . , VQ−1 and W can be partitioned into
W0, . . . , WQ−1, such that

– There is no edge between Vi and Wj for all 0 ≤ j < i < Q.

– |Vi| ≥ (1−ε)
Q n and |Wi| ≥ (1−ε)

Q n, for all i ∈ �Q�.
• NO Case: For any S ⊆ V, T ⊆ W, |S| = δn, |T| = δn, there is an edge between S and T.

The YES case of Theorem 6.7 is depicted in Figure 6.3.

The main result of this Section is that the scheduling problem P|prec, pmtn|Cmax is
NP-hard to approximate within a factor of 3/2− ε, assuming the variant of the Unique
Games Conjecture. This is formally stated in Theorem 6.8.
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V

V

· · ·
V1

· · ·
W1

· · ·
V2

· · ·
W2

· · ·
Vi

· · ·
Wi

· · ·

· · ·

· · ·

· · · · · ·
VQ−1

· · ·
WQ−1

Figure 6.3 – Bipartite Graph G = (V, W, E) satisfying the YES case of Theorem 6.7. For
each i = 0, · · · , Q− 1, |Vi|, |Wi| ≥ 1−ε

Q |V|. Moreover, the only allowed edges are from a vertex
w ∈ Wi to vertices v ∈ Vj, j ≤ i. In other words, an edge (w, v) such that w ∈ Wi, v ∈ Vj, and
j > i is prohibited.

Theorem 6.8. For any ε > 0, it is NP-hard to approximate P|prec, pmtn|Cmax within a factor
of 3/2− ε, assuming (a variant of) the Unique Games Conjecture.

In order to prove Theorem 6.8, we will provide a reduction that, given a bipartite graph
G = (V, W, E), creates in polynomial time a scheduling instance I of P|prec, pmtn,
pj = 1|Cmax such that:

Completeness: If G satisfies the YES case of Theorem 6.7, then there exists a schedule
for I that has a makespan of roughly 2Q.

Soundness: If G satisfies the NO case of Theorem 6.7, then any valid schedule for
I must have a makespan of at least roughly 3Q.

Note that since P|prec, pmtn, pj = 1|Cmax is a special case of P|prec, pmtn|Cmax, a
lower bound on the former directly implies the same lower bound on the latter. Hence
hereinafter, we restrict the discussion to the P|prec, pmtn, pj = 1|Cmax problem.

Reduction

We present a reduction from an n-by-n bipartite graph G = (V, W, E) to a scheduling
instance I. The reduction has a parameter Q, which corresponds to the constant in
Theorem 6.7:

• For each vertex v ∈ V, we create a set Jv of Qn jobs each of size 1, and let
JV :=

⋃
v∈V Jv.
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V

V

v1 v2 v3

w1 w2 w3

Jv1 Jv2 Jv3

J1
w1

J1
w2

J1
w3

J2
w1

J2
w2

J2
w3

J
Q

w1 J
Q

w1 J
Q

w1

Figure 6.4 – Reduction from a bipartite graph G = (V, W, E) to a scheduling instance I.
On the left side, we have the starting 3× 3 bipartite graph G = (V, W, E). On the right hand
side, we have the resulting scheduling instance I for Q = 3. A thick directed edge from (or to) a
set of jobs means that all the jobs in this set has this precedence constraint.

• For each vertex w ∈ W, we create a set Jw of Q(n + 1)− 1 jobs

Jw = {J1
w, J2

w, . . . , JQ−1
w } ∪J

Q
w ,

where J
Q

w is the set of the last Qn jobs, and the first Q− 1 jobs are the chain jobs.
We also define JW to be JW :=

⋃
w∈W J

Q
w .

• For each edge e = (v, w) ∈ E, we have Jv ≺ J1
w for all Jv ∈ Jv.

• For each w ∈ W, we have the following precedence constraints:

Ji
w ≺ Ji+1

w , ∀i ∈ [Q− 2] ,

JQ−1
w ≺ J

Q
w .

An illustration of this reduction is shown in Figure 6.4.
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In total, the number of jobs and precedence constraints is polynomial in n since

number of the jobs ≤ Qn2 + n(Q(n + 1)− 1) = 2Qn2 + Qn− n .

For a subset S of jobs in our scheduling instance I, we denote by Ψ(S) ⊆ V ∪W the set
of their representative vertices in the starting graph G. Similarly, for a subset S ⊆ V ∪W,
Ψ−1(S) ⊆ JV ∪JW is the set of all jobs, except for chain jobs, corresponding to vertices
in S, i.e.,

Ψ−1(S) =

⎛⎝ ⋃
v∈(S\W)

Jv

⎞⎠ ∪
⎛⎝ ⋃

w∈(S\V)

J
Q

w

⎞⎠ .

A subset S of jobs with S = Ψ(S) is said to be complete if S = Ψ−1(S).

W.l.o.g. assume that Q divides n. Finally the number of machines is n2. Before proceed-
ing with the proof of Theorem 6.8, we record the following easy observations:

Observation 6.9. If for some w ∈ W, there exist a feasible schedule σ in which a job
J ∈ J

Q
w starts before time T, then the set A ⊆ JV of all its predecessors in JV must have

finished executing in σ prior to time T −Q. Moreover A is complete, i.e., A = Ψ−1(w).

Observation 6.10. For any subset A ⊆ JV ∪JW , we have that

|Ψ (A)| ≥ |A|
nQ

,

where the bound is met with equality if A is complete.

Completeness

Lemma 6.11. Let G = (V, W, E) be an n-by-n bipartite graph, and let I be the P|prec, pmtn,
pj = 1|Cmax scheduling instance resulting from the reduction. If G satisfies the YES case of
Theorem 6.7 for some real ε > 0 and integer Q, then there exists a feasible schedule for I of
makespan 2Q + ε′, for some ε′ = ε′(ε, Q).

Proof. Let V0, V1, . . . , VQ−1, W0, W1, . . . , WQ−1 be the partitions as in the YES Case of
Theorem 6.7. Note that this implies that for all i ∈ �Q�, any vertex w ∈ Wi is only
connected to vertices in Vj where j ≤ i. We have also have that

|Wi|, |Vi| ≥ 1− ε

Q
n ∀i ∈ �Q� ,

which in turn implies that

|Wi|, |Vi| ≤
(

1− ε

Q
+ ε

)
n ∀i ∈ �Q� . (6.5)
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For a subset S ⊆ V ∪W, we denote by JS the set of jobs corresponding to vertices in S,
i.e., JS = ∪u∈SJu. Also, for an index i ∈ [2Q], we define a job set Ti as follows:

Ti =

{
Si ∪JVi−1 0 < i < Q
Si ∪J

Q
Wi−Q−1

Q ≤ i < 2Q

where

Si = {J�Wk−1
: 1 ≤ � < Q, k ∈ �Q� , and k + � = i} .

To see the intuition behind this partitioning, note that we get in this case for instance
that

T1 = JV0 T2 =
{
JV1 , J1

W0

}
T3 =

{
JV2 , J2

W0
, J1

W1

}
.

as shown in Figure 6.5.

Given the structure of the graph G and the properties of its partitions, we get that any
predecessor for a job in T2 must be in T1, and any predecessor of a job in T3 must be in
either T2 or T1. In general, we get by construction that if there exists two jobs J, J′ such
that J′ ≺ J and J ∈ J�

Wk
, then J′ can only be in one of the following two sets:

J′ ∈ JVk′ s.t. k′ ≤ k , or, J′ ∈ J�′
Wk′ s.t. k′ = k, �′ < � .

This then implies that a schedule σ in which we first schedule T1 then T2, and so on up
to T2Q is indeed a valid schedule. Now using equation (6.5) and the construction of our
scheduling instance I, we get that

|Ti| ≤ Qn2
(

1− ε

Q
+ ε

)
+ nQ

(
1− ε

Q
+ ε

)
≤ n(n + 1)(1 + εQ) .

Hence the total makespan of σ is at most

2Q

∑
i=1

|Ti|
n2 = 2Q

(
1 + εQ + O

(
1
n

))
,

which tends to 2Q + ε′ for large values of n, because Q is a constant.

Soundness

Lemma 6.12. Let G = (V, W, E) be an n-by-n bipartite graph, and let I be the P|prec, pmtn,
pj = 1|Cmax scheduling instance resulting from the reduction. If G satisfies the NO case of
Theorem 6.7 for some real δ > 0, then any feasible schedule for I must have a makespan of at
least 3Q− ε′, for some ε′ = ε′(δ, Q).
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· · · · · · J
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Figure 6.5 – The structure of the scheduling instance in the YES case of Theorem 6.7.
On the left, we have the directed graph depicting the precedence constraints of a scheduling
instance with sets J

(.)
(.) as defined in the proof of Lemma 6.11. On the right, we illustrate the

corresponding sets Ti for i = 1, · · · , 2Q defined in the proof of Lemma 6.11.

Proof. Assume towards contradiction that there exists a schedule for I with a maximum
makespan less than t := 3Q− 1− 2δQ, and let A be the set of jobs in JW that started
executing by or before time s := 2Q− 1− δQ, and denote by B the set of their prede-
cessors in JV . Note that B is complete by Observation 6.9. Now since t− s = Q− δQ,
we get that |A| ≥ δQn2, and hence, by Observation 6.10, |A| := |Ψ(A)| ≥ εQn2

Qn = δn.
Applying Observation 6.9 one more time, we get that all the jobs in B must have finished
executing in σ by time Q− δQ, and hence |B| ≤ Qn2(1− δ). Using the fact that B is
complete, we get that |B| := |Ψ(B)| ≤ Qn2(1−δ)

Qn = (1− δ)n, which contradicts with the
NO Case of Theorem 6.7.

Theorem 6.8 now follows by combining Lemmata 6.11 and 6.12.
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We note here that we can settle for a weaker structure of the graph corresponding to
the completeness case of Theorem 6.7. In particular, we can use a graph resulting from
Theorem 2 in [101], and yet get a hardness of 3/2− ε. Using the same reduction used
here, this will yield this somehow stronger statement:

Theorem 6.13. For any ε > 0, and η ≥ η(ε), where η(ε) tends to 0 as ε tends to 0, if 1|prec|
∑j wjCj has no (2− ε)-approximation algorithm, then P|prec, pmtn|Cmax has no (3/2− η)-
approximation algorithm.

6.5 Structured k-Partite Problem

Motivated by the resemblance between the basic building block of the integrality gap in
Section 6.3, and the hard structure of the bipartite graph yielding the inapproximability
of 3/2 in Section 6.4, we propose in this section a natural but nontrivial generalization
of Theorem 6.7 to k-partite graphs. Assuming hardness of this problem, we can get the
following hardness of approximation results:

1. It is NP-hard to approximate P|prec, pmtn|Cmax within a 2− ε factor.

2. It is NP-hard to approximate Q|prec|Cmax within any constant factor.

3. It is NP-hard to approximate 1|prec|∑j wjCj within a 2− ε factor.

4. It is NP-hard to approximate P|prec|Cmax within a 2− ε factor.

The first and second result are presented in Sections 6.6.1 and 6.6.2, respectively. More-
over, one can see that the reduction presented in [8] for the scheduling problem 1|prec|
∑j wjCj holds using the hypothesis for the case that k = 2. The same holds for the
reduction in [101] for the scheduling problem P|prec|Cmax. This suggests that this struc-
tured hardness result for k-partite graphs somehow unifies a large family of scheduling
problems, and captures their common intrinsic hard structure.

Recall that a graph G = (V, E) is said to be k-partite for an integer k ≥ 2, if the vertex
set V can be partitioned into k disjoint sets of V1, . . . , Vk ⊂ V, and the edge set E can be
partitioned into k− 1 disjoint sets E1, . . . , Ek−1 ⊆ E such that:

1. V = V1 & . . . &Vk and E = E1 & . . . & Ek−1, and

2. Ei ⊆ (Vi ×Vi+1) for i = 1, . . . , k− 1.

In other words, if we have an edge (v�, vj) ∈ E with v� ∈ Vi for some i = 2, . . . , k− 1,
then vj can either be in Vi−1 or in Vi+1. If we have that v� ∈ V1, then vj must be in V2.
Similarly, if v� ∈ Vk, then vj must be in Vk−1. For our purposes, we will be interested in
k-partite graphs where |V1| = · · · = |Vk| = n, i.e., |V| = kn.
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Hypothesis 6.14. [k-Partite Problem] For every ε, δ > 0, and constant integers k, Q > 1,
the following problem is NP-hard: given a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) with
|Vi| = n for all 1 ≤ i ≤ k and Ei being the set of edges between Vi and Vi+1 for all 1 ≤ i < k,
distinguish between following two cases:

• YES Case: every Vi can be partitioned into Vi,0, ..., Vi,Q−1, such that

– There is no edge between Vi,j1 and Vi−1,j2 for all 1 < i ≤ k, j1 < j2 ∈ [Q].

– |Vi,j| ≥ (1−ε)
Q n, for all 1 ≤ i ≤ k, j ∈ [Q].

• NO Case: For any 1 < i ≤ k and any two sets S ⊆ Vi−1, T ⊆ Vi, |S| = δn, |T| = δn,
there is an edge between S and T.

This says that if the k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) satisfies the YES Case,
then for every 1 ≤ i ≤ k− 1, the induced subgraph G̃ = (Vi, Vi+1, Ei) behaves like the
YES Case of Theorem 6.7, and otherwise, every such induced subgraph corresponds to
the NO case.

Recall that in order to prove an integrality gap of 2 in Section 6.3 for the LP correspond-
ing to the P|prec, pmtn, pj = 1|Cmax problem, we started from basic building block that
had an integrality gap of 3/2, and carefully replicated its structure to get the desired
gap 2. This is exactly where Hypothesis 6.14 comes into play; its structure can be seen a
generalization of Theorem 6.7 from bipartite graphs to k-partite graphs, and a carefully
tailored replication of the reduction in Section 6.4 should allow us to amplify the hard-
ness result in Theorem 6.8 to 2, instead of 3/2. Moreover, this k-partite structure turns
out be manifold as we show in Section 6.6.2; it yields a super constant inapproximability
for the Q|prec|Cmax problem.

6.6 Lower Bounds for Scheduling Problems

In this section, we show that, assuming Hypothesis 6.14, there is no c-approximation
algorithm for the scheduling problem P|prec, pmtn|Cmax, for any constant c strictly
better than 2, and there is no constant factor approximation algorithm for the scheduling
problem Q|prec|Cmax.

6.6.1 P|prec, pmtn|Cmax

We present in this section a reduction from a k-partite graph to an instance of the
scheduling problem P|prec, pmtn, pj = 1|Cmax, and we prove a tight inapproximability
result for its generalization P|prec, pmtn|Cmax, assuming Hypothesis 6.14. Formally, we
prove the following result:
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Figure 6.6 – k-partite Graph G = (V1, V2, · · · , Vk, E1, E2, · · · , Ek−1) satisfying the YES
case of Hypothesis 6.14. For each i = 0, · · · , Q− 1, j = 1, · · · , k, |Vi,j| ≥ 1−ε

Q |Vi|. Moreover,
if we assume that the paths are oriented upwards, then a path leading to a vertex v ∈ Vi,j can
only contain vertices from Vi′,j′ such that i′ < i, j′ ≤ j.

Theorem 6.15. Assuming Hypothesis 6.14, it is NP-hard to approximate the scheduling problem
P|prec, pmtn|Cmax within any constant factor strictly better than 2.

To prove this, we first reduce a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) to a scheduling
instance I(k), and then show that

1. If G satisfies the YES Case of Hypothesis 6.14, then I(k) has a feasible schedule
whose makespan is roughly kQ/2.

2. if G satisfies the NO Case of Hypothesis 6.14, then any schedule for I(k) must
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have a makespan of roughly kQ.

Reduction

The reduction has three parameters: an odd integer k, an integer Q such that Q ) k and
n divides Q, and a real ε ) 1/Q2 > 0.

Given a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1), we construct an instance I(k) of
the scheduling problem P|prec, pmtn, pj = 1|Cmax as follows:

• For each vertex v ∈ V2i−1 and every 1 ≤ i ≤ (k + 1)/2, we create a set J2i−1,v of
Qn− (Q− 1) jobs.

• For each vertex v ∈ V2i and every 1 ≤ i < (k + 1)/2, we create a chain of length
Q− 1 of jobs, i.e., a set J2i,v of Q− 1 jobs

J2i,v = {J1
2i,v, J2

2i,v, . . . , JQ−1
2i,v } ,

where we have Jl
2i,v ≺ Jl+1

2i,v for all l ∈ [Q− 2].

• For each edge e = (v, w) ∈ E2i−1 and every 1 ≤ i < (k + 1)/2, we have J2i−1,v ≺
J1
2i,w.

• For each edge e = (v, w) ∈ E2i and every 1 ≤ i < (k + 1)/2, we have JQ−1
2i,v ≺

J2i+1,w.

Finally the number of machines is (1 + Qε)n2. Note that this reduction can be thought
of as replicating the reduction of Section 6.4 depicted in Figure 6.4. We illustrate this
reduction on an example in Figure 6.7.

Theorem 6.15 now follows from the following lemma, that in turn follows from combin-
ing Lemmata 6.17 and 6.18.

Lemma 6.16. Scheduling instance I(k) has the following two properties.

1. If G satisfies the YES Case of Hypothesis 6.14, then I(k) has a feasible schedule whose
makespan is (1 + ε)kQ/2, where ε can be arbitrary close to zero.

2. if G satisfies the NO Case of Hypothesis 6.14, then any feasible schedule for I(k) must
have a makespan of (1− ε)kQ, where ε can be arbitrary close to zero.

Lemma 6.17 (Completeness). If the given k-partite graph G satisfies the properties of the YES
case of Hypothesis 6.14, then there exists a valid schedule for I(k) with maximum makespan
(1 + ε′)kQ/2, where ε′ can be made arbitrary close to zero.
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Figure 6.7 – Reduction from a 5-partite graph G = (V1, V2, V3, V4, V5, E1, E2, E3, E4) to a
scheduling instance I. On the left side, we have the starting 5-partite graph G. On the right
hand side, we have the resulting scheduling instance I for Q = 3. A thick directed edge from
(or to) a set of jobs means that all the jobs in this set has this precedence constraint.

Proof. Assume that G satisfies the properties of the YES Case of Hypothesis 6.14, and let
{Vs,�} for s ∈ [k] , � ∈ �Q� denote the good partitioning of the vertices of G. We use this
partitioning to derive a partitioning {Si,j} for the jobs in the scheduling instance I(k)
for 1 ≤ i ≤ (k− 1)Q/2− 1, j ∈ �Q�, where a set of jobs Si,j can be either big or small.
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The intuition behind this big/small distinction is that a job J is in a big set if it is part of
the Qn− (Q− 1) copies of a vertex v ∈ V2i−1 for 1 ≤ i ≤ (k + 1)/2, and in a small set
otherwise.

These sets can now be formally defined as follows:

Big sets: SQ(i−1)+1,j :=
⋃

v∈V2i−1,j

J2i−1,v ∀1 ≤ i ≤ k + 1
2

, j ∈ �Q�

Small sets: SQ(i−1)+1+l,j :=
⋃

v∈V2i,j

Jl
2i,v ∀1 ≤ i <

k + 1
2

, j ∈ �Q� , l ∈ [Q− 1] .

We first provide a brief overview of the schedule before defining it formally. Since S1,0 is
the set of the jobs corresponding to the vertices in V1,0, scheduling all the jobs in S1,0 in
the first time step enables us to start the jobs at the first layer of the chain corresponding
to vertices in V2,0 (i.e., S2,0). Therefore in the next time step we can schedule the jobs
corresponding to the vertices in V1,1, (i.e. S1,1) and S2,0. This further enables us to
continue to schedule the jobs in the second layer of the chain corresponding to the
vertices in V2,0 (i.e., S3,0), the jobs at the first layer of the chain corresponding to vertices
in V2,1 (i.e., S2,1), and the jobs corresponding to the vertices in V1,2 (i.e., S1,2). We can
keep going the same way, until we have scheduled all the jobs. Since the number of
partitions of each vertex set Vi is Q, and length of each of our chains is Q− 1, we can
see that in the suggested schedule, we are scheduling in each time step at most Q sets,
out of which exactly one is big, and none of the precedence constraints are violated. An
example of a scheduling instance of this case is depicted in Figure 6.8.

Formally speaking, let Tt be the union of Si,j such that t = i + j− 1, where 1 ≤ i ≤
(k− 1)Q/2 + 1 and j ∈ �Q�, hence each Tt consist of at most Q sets of the jobs in which
exactly one of them is a big set and at most Q− 1 of them are small sets. Therefore, for
t ∈ �(k + 1)Q/2�, we have

|Tt| ≤ |V2i−1,j| · (Qn− (Q− 1)) + |V2i,j| · (Q− 1)

≤ (1/Q + ε)n · (Qn− (Q− 1)) + (1/Q + ε)n · (Q− 1)

≤ (1/Q + ε)n · (Qn) ≤ (1 + Qε)n2 .

One can easily see that all the jobs in a set Tt can be scheduled in a single time step since
the number of machines is (1 + Qε)n2. Hence consider the following schedule: for each
t ∈ �(k + 1)Q/2�, schedule all the jobs in Tt between time t and t + 1. We claim that
this schedule does not violate any precedence constraint. This is true because we first
schedule the predecessors of the job, and then the job in the following steps. Formally, if
J1 ≺ J2 with J1 ∈ Tt1 and J2 ∈ Tt2 , then t1 < t2.

Lemma 6.18 (Soundness). If the given k-partite graph G satisfies the properties of the No
Case of Hypothesis 6.14, then any feasible schedule for I(k) has a maximum makespan of at
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Figure 6.8 – An example of a scheduling instance corresponding to the YES case of
Hypothesis 6.14. The figure on the left corresponds to scheduling instance corresponding to
the YES case of Hypothesis 6.14 for Q = 4. Big rectangles correspond to big sets Si,j, whereas
small rectangle corresponds to small sets. Note that there are no precedence constraints between
the sets of jobs who has the same fill pattern. The figure on the right depicts the corresponding
scheduling. On time t ∈ �12�, we are scheduling the jobs in set Tt, i.e., the sets of jobs Si,j such
that i + j− 1 = t.

least (1− ε′)kQ, where ε′ can be made arbitrary close to zero.
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Proof. Assume that G satisfies the NO Case of Hypothesis 6.14, and consider the follow-
ing partitioning of the jobs:

Big partitions: SQ(i−1)+1 := ∪v∈V2i−1J2i−1,v ∀1 ≤ i ≤ (k + 1)/2 ,

Small partitions: SQ(i−1)+1+l := ∪v∈V2i J
l
2i,v ∀1 ≤ i < (k + 1)/2, l ∈ �Q− 1� .

Note that {S} partitions the jobs into (k− 1)Q/2 + 1 partitions such that the size of a
big partition is n(nQ− c) ≥ n(n− 1)Q and the size of a small partition is n. Let fi be the
first time that a (1− δ) fraction of the jobs in Si is completely executed, and let si be the
first time that more than δ fraction of the jobs in Si is started. Because of the expansion
property of the NO Case, we can not start more that δ fraction of the jobs in the second
partition, before finishing at least 1− δ fraction of the jobs in the first partition. This
implies that f1 ≤ s2. Similarly, f1 + 1 ≤ s3 and f1 + Q− 2 ≤ sQ . The same inequalities
hold for any big partition and the small partitions following it. This means that, beside
δ fraction of the jobs in the i-th and (i + 1)-th big partitions, the rest of the jobs in the
(i + 1)-th big partition start Q− 1 steps after finishing the jobs in the i-th big partition.
Also we need at least (1−δ)n(n−1)Q

(1+Qε)n2 = (1− ε1)Q time to finish 1− δ fraction of the jobs in
a big partition. This gives that the makespan is at least:

(1− ε1)(k + 1)Q/2 + (k− 1)(Q− 1)/2 ≥ (1− ε2)kQ ,

where ε2 = ε2(Q, k, ε, δ), which can be made small enough for an appropriate choice of
Q, k, ε and δ.

We illustrate the difference between the schedules corresponding to the completeness
case and the soundness case in Figure 6.9.

6.6.2 Q|prec|Cmax

In this section, we reduce a given k-partite graph G to an instance I(k) of the scheduling
problem Q|prec|Cmax, and show that if G corresponds to the YES Case of Hypothesis 6.14,
then the maximum makespan of I(k) is roughly n, whereas a graph corresponding to
the NO Case leads to a scheduling instance whose makespan is roughly the number of
vertices in the graph, i.e., nk. Formally, we prove the following theorem.

Theorem 6.19. Assuming Hypothesis 6.14, it is NP-hard to approximate the scheduling problem
Q|prec|Cmax within any constant factor.
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Figure 6.9 – Structure of the soundness versus completeness of P|prec, pmtn, pj = 1|Cmax
assuming Hypothesis 6.14. The schedule on the left corresponds to the case where the starting
graph represents the NO Case of Hypothesis 6.14; note the most of the machines are idle most
of the time in this case. The schedule on the right corresponds to the case where the starting
graph represents the YES Case of the hypothesis; Note that the all the machines are packed
almost all the time. This case also illustrates our partitioning of the jobs in sets {Tt}, where
Tt =

⋃
i,j:i+j−1=t Si,j

Reduction

We present a reduction from a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) to an instance
I(k) of the scheduling problem Q|prec|Cmax. The reduction is parametrised by a
constant k, a constant Q ) k such that n divides Q where n is the number of jobs in the
scheduling instance, and a large enough number of machines m such that m ) nk.

• For each vertex in v ∈ Vi, let Jv,i be a set of m2(k−i) jobs with processing time mi−1,
for every 1 ≤ i ≤ k.

• For each edge e = (v, w) ∈ Ei, we have Jv,i ≺ Jw,i+1, for 1 ≤ i < k .
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Figure 6.10 – The reduction from a 3-partite graph to a scheduling instance I of
Q|prec|Cmax. On the left, have the starting 3-partite graph G = (V1, V2, V3, E1, E2). On
the right, we have the resulting scheduling instance over m machines according to the reduction
in Section 6.6.2. Big rectangles correspond to sets of m2(k−1) = m4 jobs mapping to vertices
in V1. Smaller rectangles correspond to sets of m2(k−2) = m2 jobs mapping to vertices in V2.
Circles corresponds to jobs corresponding to vertices of V3 since in this case m2(k−i) = 1.

• For each 1 ≤ i ≤ k we create a set Mi of m2(k−i) machines with speed mi−1.

We illustrate this reduction in Figure 6.10. For convenience, we later on refer to all the
jobs corresponding to vertices in i-th partition as Ji, i.e.,

Ji =
⋃

v∈Vi

Jv,i .
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Completeness

We show that if the given k-partite graph satisfies the properties of the YES Case, then
there exist a schedule with makespan (1 + ε1)n for some small ε1 > 0. Towards this end,
assume that the given k-partite graph satisfies the properties of the YES Case and let
{Vi,j} for 1 ≤ i ≤ k and 0 ≤ j ≤ Q− 1 be the claimed partitioning of Hypothesis 6.14.

The partitioning of the vertices naturally induces a partitioning {J̃i,j} for the jobs for
1 ≤ i ≤ k and 0 ≤ j ≤ Q− 1 in the following way:

J̃i,j =
⋃

v∈Vi,j

Jv,i .

Consider the schedule where for each 1 ≤ i ≤ k, all the jobs in a set J̃i,0, . . . , J̃i,Q−1 are
scheduled on the machines in Mi. Moreover, we start the jobs in J̃i,j after finishing the
jobs in both J̃i−1,j and J̃i,j−1 (if such sets exist). In other words, we schedule the jobs as
follows (see Figure 6.11):

• For each 1 ≤ i ≤ k, we first schedule the jobs in J̃i,0, then those in J̃i,1 and so on
up until J̃i,Q−1. The scheduling of the jobs on machines in M0 starts at time 0 in
the previously defined order.

• For each 2 ≤ i ≤ k, we start the scheduling of jobs J̃i,0 right after the completion
of the jobs in J̃i−1,0.

• To respect the remaining precedence requirements, we start scheduling the jobs in
J̃i,j right after the execution of jobs in J̃i,j−1 and as soon as the jobs in J̃i−1,j have
finished executing, for 2 ≤ i ≤ k and 1 ≤ j ≤ Q− 1.

By the aforementioned construction of the schedule, we know that the precedence
constraints are satisfied, and hence the schedule is feasible. That is, since we are in YES
Case, we know that vertices in Vi′,j′ might only have edges to the vertices in Vi,j for all
1 ≤ i′ < i ≤ k and 1 ≤ j′ ≤ j < Q, which means that the precedence constraints may
only be from the jobs in J̃i′,j′ to jobs in J̃i,j for all 1 ≤ i′ < i ≤ k and 0 ≤ j′ ≤ j < Q.
Therefore the precedence constraints are satisfied.

Moreover, we know that there are at most m2(k−i)n(1 + ε)/Q jobs of length mi−1 in J̃i,j,
and m2(k−i) machines with speed mi−1 in each Mi for all 1 ≤ i ≤ k, j ∈ �Q�. Thus,
it takes (1 + ε)n/Q time to schedule all the jobs in J̃i,j on the machines in Mi for all
1 ≤ i ≤ k, j ∈ �Q�, which in turn implies that we can schedule all the jobs in a set J̃i,j

between time (i + j− 1)(1 + ε)n/Q and (i + j)(1 + ε)n/Q. Hence, the makespan is at
most (k + Q)(1 + ε)n/Q which is equal to (1 + ε1)n, by the assumption that Q ) k.
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Soundness

We shall now show that if the k-partite graph G corresponds to the NO Case of Hypothe-
sis 6.14, then any feasible schedule for I(k) must have a makespan of at least cnk, where
c := (1− 2δ)(1− k2/m) can be made arbitrary close to one.

Lemma 6.20. In a feasible schedule σ for I(k) such that the makespan of σ is at most nk,
the following is true: for every 1 ≤ i ≤ k, at least a (1 − k2/m) fraction of the jobs in
Li = ∪v∈ViJv,i are scheduled on machines in Mi.

Proof. We first show that no job in Li can be scheduled on machines in Mj, for all
1 ≤ j < i ≤ k. This is true, because any job J ∈ Ji has a processing time of mi−1, whereas
the speed of any machine M ∈Mj is mj−1 by construction, and hence scheduling the job
J on the machine M would require mi−1/mj−1 ≥ m time steps. But since m ) nk, this
contradicts the assumption that the makespan is at most nk.

We now show that at most k2/m fraction of the jobs in Li can be scheduled on the
machines in Mj for 1 ≤ i < j ≤ k. Fix any such pair i and j, and assume that all
the machines in Mj process the jobs in Li during all the T ≤ nk time steps of the

schedule. This accounts for a total T m2(k−j)mj−1

mi−1 ≤ m2k−j−ink jobs processed from Li,

which constitutes at most m2k−j−ink
nm2(k−i) ≤ k

m fraction of the total number of jobs in Li.

Let σ be a schedule whose makespan is at most nk, and fix γ > k2/m to be a small
constant. From Lemma 6.20 we know that for every 1 ≤ i ≤ k, at least an (1− γ) fraction
of the jobs in Li is scheduled on machines in Mi. From the structure of the graph in the
NO Case of the k-partite Problem, we know that we cannot start more than δ fraction
of the jobs in Li before finishing (1− δ) fraction of the jobs in Li−1, for all 2 ≤ i ≤ k.
Hence the maximum makespan of any such schedule σ is at least (1− 2δ)(1− γ)nk. See
figure 6.11.

6.7 Conclusion

We proposed in this chapter a natural but nontrivial generalization of Theorem 6.7,
that seems to capture the hardness of a large family of scheduling problems with
precedence constraints. Namely, we showed that if the structural k-partite hypothesis in
Hypothesis 6.14 holds, then we close the approximability gap of P|prec, pmtn|Cmax and
we rule out any constant factor approximation for Q|prec|Cmax.
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Figure 6.11 – Structure of the soundness versus completeness of Q|prec|Cmax assuming
Hypothesis 6.14. The schedule on the left corresponds to the case where the graph represents
the NO Case of Hypothesis 6.14; note that most of the machines are idle but for a small fraction
of times. The schedule on the right corresponds to the case where the graph represents the YES
Case; the schedule is almost packed. This case also illustrates the ordering of the jobs within each
machine according to the partitioning of the jobs in the k-partite graph.
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7 Conclusion and Future Directions

We conclude in this section with some natural remaining open problems suggested by
the work presented in the previous chapters.

7.1 LP-lower bounds

We presented in Chapter 4 Linear Programming lower bounds for the VERTEX COVER

problem and the INDEPENDENT SET problem. We believe that our approach extends to
many other related problems, as we proved that it also applies to q-UNIFORM-VERTEX-
COVER. Moreover, we would like to stress that our reduction is agnostic to whether it
is used for LPs or SDPs, and Lasserre gap instances for 1F-CSP together with [76] and
our reduction would provide SDP hardness of approximation for the VERTEX COVER

problem. This already holds for the INDEPENDENT SET problem as we saw in Section 4.7;
there it only matters that the starting CSP has a (large) gap between the soundness and
completeness, and does not necessarily need to have only one free bit.

Note that we are only able to establish hardness of approximations for the stable set prob-
lem within any constant factor, whereas assuming P �= NP we can establish hardness of
approximation within n1−ε. The reason for this gap is that the standard amplification
techniques via graph products do not fall into the reduction framework in [25]. Also,
there will be limits to amplification, as established by the upper bounds in Section 4.6.
Thus it would be actually interesting to narrow down this gap between the lower bound
of Ω(1) and the upper bound of O(

√
n).

Moreover, it would interesting to understand the structure of the graph used in the
proof of Theorem 4.12. For our purposes, arguing about the size of the vertex cover in
the soundness and completeness case followed from the soundness and completeness of
the original 1F-CSP instance that, in turn, followed from the starting UNIQUE GAMES

instance. In particular, it is plausible that a further understanding of the structure of this
graph could yield SOS lower bounds for the VERTEX COVER problem, or perhaps certify
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that this family of graphs is actually easy as far as the SOS hierarchy is concerned.

7.2 Knapsack

We presented in Chapter 5 the first quasi-polynomial-size LP relaxation of MIN-KNAPSACK

with constant integrality gap from polylog-depth circuits for weighted threshold func-
tions.

This result sheds new light on the approximability of MIN-KNAPSACK via small LPs
by connecting it to the complexity of monotone circuits. For instance, it follows from
our results that proving that no nO(1)-size LP relaxation for MIN-KNAPSACK can have
integrality gap at most α for some α > 2 would rule out the existence of O(log n)-depth
monotone circuits with bounded fan-in for weighted threshold functions on n inputs,
which is an open problem.

Finally, let us further mention two open questions following this work. First, it would
be interesting to find an efficient (quasi-polynomial time) procedure to explicitly write
down our linear program for MIN-KNAPSACK. Second, it would be interesting to
understand whether there is a “combinatorial” interpretation of our relaxation.

7.3 The Scheduling Problems and the k-Partite Hypothesis

We proposed in Chapter 6 a natural but nontrivial generalisation of Theorem 6.7, that
seems to capture the hardness of a large family of scheduling problems with precedence
constraints. We have shown that if the structural k-partite hypothesis (i.e., Hypothe-
sis 6.14) holds, then we close the approximability gap of P|prec, pmtn|Cmax and we rule
out any constant factor approximation for Q|prec|Cmax. It is interesting to investigate
whether this generalisation also illustrates potential intrinsic hardness of other schedul-
ing problems, for which the gap between the best known approximation algorithm and
the best known hardness result persists.

A natural direction would be to prove Hypothesis 6.14; we know how to prove a less-
structured version of it using the bipartite graph resulting from the variant of the UNIQUE

GAMES Conjecture in [8] (See Appendix B in [14]). One can also tweak the dictatorship
Tε,t of [8], to yield a k-partite graph instead of a bipartite one. However, composing this
test with a UNIQUE GAMES instance adds a noisy component to our k-partite graph, that
we do not know how to control, since it is due to the non-perfect completeness of the
UNIQUE GAMES instance. One can also try to impose (a variant of) this dictatorship test
on d-to-1 GAMES instances, and perhaps prove the hypothesis assuming the d-to-1
Conjecture, although we expect the size of the partitions will deteriorate as k increases.
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A List of Problems

To facilitate the reading of the various chapters of the thesis, we repeat here the definition
of all the problems that we tackle, and include the definition of some of the problems
that we only mention throughout the thesis for completeness.

Graph Problems

We start by defining the VERTEX COVER problem, and its generalization on k-uniform
hypergraphs that we denote by q-UNIFORM-VERTEX-COVER. We also define the INDE-
PENDENT SET problem, the complement of the VERTEX COVER problem.

VERTEX COVER: Given a graph G = (V, E), we say that a subset C ⊆ V of vertices is
a vertex cover of G if every edge e ∈ E has at least one of its two endpoints in
C. In the VERTEX COVER problem, the goal is to find the minimum cardinality
vertex cover, or equivalently the minimum weighted vertex cover if G was vertex-
weighted.

q-UNIFORM-VERTEX-COVER: Given a k-uniform hypergraph H = (V, E) (i.e., each
hyperedge e ∈ E contains exactly k vertices), we say that a subset C ⊂ V is a vertex
cover of G, if each hyperedge e ∈ E has at least one its k vertices in C. The goal in
the q-UNIFORM-VERTEX-COVER problem is then to find the minimum cardinality
(weight) vertex cover of G.

INDEPENDENT SET: Given a graph G = (V, E), we say that a subset I ⊆ V of vertices
is an independent set of G if no edge e ∈ E has both its endpoints in C. In the
INDEPENDENT SET problem, the goal is to find the maximum cardinality (weight)
independent set. This notion naturally generalize to hypergraphs.

MAX CUT: Given a graph G = (V, E), the value of a cut S ⊆ V is the number of edges
going from S to V\S. In the MAX CUT problem, the goal is to find the maximum
value cut of G.
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UNIQUE GAMES: A UNIQUE GAMES instance U = (G, [R], Π) is defined by a graph
G = (V, E), where every edge uv ∈ E is associated with a bijection map πu,v ∈ Π
such that πu,v : [R] �→ [R] (we set πv,u := π−1

u,v). Here, [R] is known as the label set.
The goal is to find a labeling Λ : V �→ [R] that maximizes the number of satisfied
edges, where an edge uv is satisfied by Λ if πu,v(Λ(u)) = Λ(v).

Constraint Satisfaction Problems

A CONSTRAINT SATISFACTION PROBLEM Πn,R,P is defined by specifying:

1. The number of variables n, where the variables in the cases are denoted by
x1, · · · , xn.

2. The domain [R] of variables (or equivalently the domain size R), which means that
every variable xi is allowed to take values from {0, 1, · · · , R− 1}.

3. The family of predicates P = {P1, · · · , P�}, where each predicate Pi for i = 1, · · · , �
has an arity ki ∈ N+. In other words, each Pi is of the form

Pi : [R]ki �→ {0, 1} .

An instance I ∈ Πn,R,P is further specified by a collection C = {CS1,A1 , · · · , CSm,Am} of
constraints, where each constraint CS,A ∈ C is of predicate type PC for some PC ∈ P,
and evaluates as follows for an assignment x ∈ [R]n of the variables:

CS,A(x) = PC(xi1 � A1, · · · , xik � Ak) ,

where

• k is tha arity of the predicate PC.

• S ⊂ {1, 2, · · · , n} with |S| = k is the ordered set of indices of the variables on
which CS,A evaluates.

• A ∈ [R]k is the literals assignment of the variables in S.

For the Boolean case, the entry Aj of the vector A = (A1, · · · , Ak) dictates whether the
variable xij appears negated in CS,A or not.

Given an instance I ∈ Πn,R,P, and an assignment x ∈ [R]n the value of I evaluated on
x is

I(x) =
1
m

m

∑
i=1

CSi ,Ai(x) .
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Furthermore, the goal in these problems is to find an optimal assignment that maximizes
the number of satisfied constraints, i.e., to find

argmaxx∈[R]k I(x) .

Before we proceed with the definition of the CONSTRAINT SATISFACTION PROBLEMS of
interest, we shall find define the following three (families) of predicates:

The family of 1F-CSP predicates: A binary predicate P of arity k is said to be an 1F-
CSP predicate if P has only two accepting configurations out the of 2k possible
ones. For a fixed arity k, 1F-CSP := 1F-CSPk is the family of all such predicates.

The K-NOR predicate: The K-NOR := K-NORk,R is an R domain predicate of arity k
that has exactly one accepting configuration out of the Rk possible ones. Namely,
this accepting configuration is the all-zeros input.

The 3-SAT predicate: The 3-SAT predicate is the boolean OR predicate of arity 3, i.e.,
3-SAT(x1, x2, x3) = x1 ∨ x2 ∨ x3.

Equipped with this, we can readily define the CONSTRAINT SATISFACTION PROBLEMS

that appear throughout this thesis:

1F-CSPn: The 1F-CSPn is a boolean CONSTRAINT SATISFACTION PROBLEM over n
variables where the family of predicates P is the set of all 1F-CSPk predicates,
where the arity k is usually clear from the context.

K-NORn: The K-NORn is a domain R CONSTRAINT SATISFACTION PROBLEM over n
variables where P contains only the K-NORk,R predicate, where the arity k and
the domain size R are usually clear from the context.

MAX 3-SATn: The MAX 3-SATn is a boolean CONSTRAINT SATISFACTION PROBLEM over
n variables where the only allowed predicate is the 3-SAT predicate.

Note that both MAX CUT and UNIQUE GAMES defined earlier can also be seen as CON-
STRAINT SATISFACTION PROBLEMS, where the predicate in the first is the XOR predicate,
and the predicate in the second is only satisfied if the variable assignment (i.e., vertices
labels) satisfy the bijective maps associated with the edges.

MIN-KNAPSACK Problem

In the Minimum Knapsack Problem (MIN-KNAPSACK), we are given a demand D ≥ 0,
and n items where each item i ∈ {1, 2, · · · , n} is associated with a cost ci ∈ R+ and size
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si ∈ R+. A feasible solution of the knapsack problem is a set S ⊆ {1, 2, · · · , n} such
that ∑i∈S si ≥ D. The goal in the MIN-KNAPSACK problem is to find the minimum cost
feasible solution.

SINGLE-DEMAND FACILITY LOCATION Problem

In the SINGLE-DEMAND FACILITY LOCATION problem, we are given a set F of n facilities,
such that each facility i ∈ F has a capacity si, an opening cost fi, and a per-unit cost ci

to serve the demand. The goal is to serve the demand D by opening a subset S ⊆ F of
facilities such that the combined cost of opening these facilities and serving the demand
is minimized.

Scheduling Problems

In the scheduling problems that we consider, we are given a set M of m machines and a
set J of n jobs with precedence constraints, and the goal is find a feasible schedule that
minimizes the makespan, i.e., the maximum completion time. We will be interested in
the following two variants of this general setting:

P|prec, pmtn|Cmax: In this model, the machines are assumed to be be parallel and
identical, i.e., the processing time of a job Jj ∈ J is the same on any machine
Mi ∈ M (pi,j = pj for all Mi ∈ M). Furthermore, preemption is allowed, and
hence the processing of a job can be paused and resumed at later stages, not
necessarily on the same machine.

P|prec|Cmax: This is a restricted version of the P|prec, pmtn|Cmax problem, where the
preemption is not allowed.

Q|prec|Cmax: In this model, the machines are assumed to be parallel and uniform, i.e.,
each machine Mi ∈M has a speed si, and the time it takes to process job Jj ∈ J

on this machine is pj/si.

Moreover, we also consider the single machine scheduling problem 1|prec|∑j wjCj

where we have one machine, and precedence constraints between the n jobs, but the goal
is the problem is to find the schedule that has the minimum weighted completion time
of the jobs.
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Electrical and Computer Engineering - BE October 2008 – June 2012

• Core Courses GPA: 4.0

Professional

Industry

Experience

������, NYC, United States

SWE Intern, Geo Data June 2016 – September 2016

Worked on training a machine learning model to detect business closure from their corresponding
websites.

�������	, Beirut, Lebanon

Systems Engineer, PHY layer june 2012 – April 2013

Designed and implemented a low-power transmitter operating on the 802.11b standard. I also helped
in the design of the receiver’s side.

���������, Carlsbad, CA, United States

Systems Engineer, PHY layer june 2011 – September 2011

Worked on the implementation of (mainly transmitter’s) blocks that are used in 802.1 b/g wifi
transmitter as well as the WiGig standard.

Professional

Academic

Experience

��������	� ��  ��
���	��, Seattle, Washington

Visiting Researcher November 2016 – May 2017

I worked on a research project with my host Prof. Thomas Rothvoß on different open problems in
(hyper)graph theory, and scheduling theory.

������ ����	��
��
�� ���������� �� ��������, Lausanne, Switzerland

Research Assistant October 2013 – Present

Worked with my advisor Prof. Ola Svensson on different Scheduling and Allocation problems, as
well as the tools used to show the hardness of approximation of certain NP-Complete problems, in
different computational models.

�������� ��������	� �� �����	, Beirut, Lebanon

Research Assistant October 2012 – July 2013

Worked on a research project with Prof. Ibrahim Abou Faycal to assess the performance of mis-
matched decoding when an ISI channel is used under timing phase uncertainty.

Publications A. Bazzi, S. Fiorini, S. Huang, O. Svensson. Small Extended Formulation for Knapsack Cover
Inequalities from Monotone Circuits. ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017. 151



A. Norouzi-Fard, A. Bazzi, I. Bogunovic, M. El-Halabi, Y. Hsieh, V. Cevher. An Efficient Streaming
Algorithm for the Submodular Cover Problem. 30th Neural Information Processing Systems (NIPS),
2016.

A. Bazzi, S. Fiorini, S. Pokutta, O. Svensson. No Small Linear Program Approximates Vertex Cover
within a Factor 2− ε. 56th Annual Symposium on Foundations of Computer Science (FOCS), 2015

A. Bazzi, A. Norouzi-Fard. Towards Tight Lower Bounds for Scheduling Problem. 23rd Annual
European Symposium on Algorithms (ESA), 2015

Teaching

Experience

������ ����	��
��
�� ���������� �� ��������, Lausanne, Switzerland

Teaching assistant Spring 2014, 2015 & 2016

Teaching assistant for the (master-level) course Topics in Theoretical Computer Science.

Teaching assistant Fall 2014 & 2015
Teaching assistant for the (bachelor-level) course Algorithms.

�������� ��������	� �� �����	, Beirut, Lebanon

Lab Instructor October 2012 – June 2013

Lab Instructor for the Introduction to Programming course.

Lab assistant Fall 2009-2010 & Spring 2011-2012
Lab assistant for the Introduction to Programming course. I was also a problem setter for the solving
sessions.

Teaching assistant Spring 2009-2010 & Spring 2011-2012
Teaching assistant for the Data Structures and Algorithms course and the Operating Systems course
respectively.

Awards &

Honors • I wrote and acquired a Swiss National Foundation project funding for a six month visit to UW,
totalling 25700CHF, for the following scientific project: ”Approximate Formulation Complexity
of NP-hard Optimization Problems”, 2016.

• Ranked second in the second ACM Lebanese Collegiate Programming Contest, LAU June 2010.

• Dean’s Honor List at AUB for the fall 2011-2012, spring 2011-2012.

Languages Fluent in English and Arabic. Advanced knowledge in French.
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