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The theory of deterministic sequencing and scheduling has expanded 
rapidly during the past years. We survey the state of the art with 
respect to optimization and approximation algorithms and interpret 
these in terms of computational complexity theory. Special cases 
considered are single machine scheduling, identical, uniform and 
unrelated parallel machine scheduling, and open shop, flow shop 
and job shop scheduling. This paper is a revised version of the 
survey by Graham et al. (Ann. Discrete Math. 5(1979)287-326), with 
emphasis on recent developments. -

1. INTRODUCTION 

In this paper we attempt to survey the rapidly expanding area of 
deterministic scheduling theory. Although the field only dates back 
to the early fifties, an impressive amount of literature has been 
created and the remaining open problems are currently under heavy 
attack. An exhaustive discussion of all available material would 
be impossible - we will have to restrict ourselves to the most sig
nificant results, paying special attention to recent developments 
and omitting detailed theorems and proofs._ For further information 
the reader is referred to the classic book by Conway, Maxwell and 
Miller [Conway et al. 1967], the introductory textbook by Baker 
[Baker 1974], the advanced expository articles collected by Coffman 
[Coffman 1976] and a few survey papers and theses [Bakshi & Arora 
1969; Lenstra 1977; Liu 1976; Rinnooy Kan 1976]. This paper itself 
is a revised and updated version of a recent survey [Graham et al. 
1979]. 
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The outline of the paper is as follows. Section 2 introduces 
the essential notation and presents a detailed problem classifica
tion. Sections 3, 4 and 5 deal with single machine, parallel 
machine, and open shop, flow shop and job shop problems, respec
tively. In each section we briefly outline the relevant complexity 
results and optimization and approximation algorithms. Section 6 
contains some concluding remarks. 

We shall be making extensive use of concepts from the theory 
of computational complexity [Cook 1971; Karp 1972]. Several intro
ductory surveys of this area are currently available [Karp 1975; 
Garey & Johnson 1979; Lenstra & Rinnooy Kan 1979] and hence terms 
like (pseudo)polynomial-time algorithm and (binary and unary) NP
hardness will be used without further explanation. 

2. PROBLEM CLASSIFICATION 

2.1. Introduction 

Suppose that n jobs Jj (j = 1, ... ,n) have to be processed on m 
machines Mi (i = 1, ... ,m). Throughout, we assume that each machine 
can process at most one job at a time and that each job can be 
processed on at most one machine at a time. Various job, machine 
and scheduling characteristics are reflected by a three-field prob
lem classification alBly, to be introduced in this section. 

2.2. Job data 

In the first place, the following data can be specified for each 
Jj: 

a number of operations mj; 
one or more processing times Pj or Pij, that Jj has to spend 
on the various machines on which it requires processing; 
a release date rj, on which Jj becomes available for process
ing; 
a due date dj, by which Jj should ideally be completed; 
a weight Wj, indicating the relative importance of Jj; 
a nondecreasing real cost function fj, measuring the cost 
fj(t) incurred if Jj is completed at time t. 

In general, mj, Pj, Pij, rj, dj and Wj are integer variables. 

2.3. Machine environment 

We shall now describe the first field a= a1a2 specifying the 
machine environment. Let O denote the empty symbol. 

If a1 E {o,P,Q,R}, each Jj consists of a single operation that 
can be processed on any Mi; the processing time of Jj on Mi is Pij• 
The four values are characterized as follows: 

a1 = 0 : single machine; Plj = Pji 
a1 = P: identical parallel machines; Pij = Pj (i 1, ... ,m); 



a1 = Q: uniform parallel machines; Pij Pj/qi for a given 
speed qi of Mi (i = 1, ... ,m); 
a1 = R: unrelated parallel machines. 
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If ci1 = O, we have an open shop, in which each Jj consists of a 
set of operations {01j,---,Omj}. Oij has to be processed on Mi 
during Pij time units, but the order in which the operations are 
executed is immaterial. If a1 E {F,J}, an ordering is imposed on 
the set of operations corresponding to each job. If a1 = F, we have 
a fJow shop, in which each Jj consists of a chain (01j,···,Omj). 
Oij has to be processed on Mi during Pij time units. If a1 = J, we 
have a job shop, in which each Jj consists of a chain (Olj,---,Omjj). 
Oij has to be processed on a given machine µij during Pij time 
units, with µi-1,j 7- µij for i = 2, ... ,mj. 

If a2 is a positive integer, then mis constant and equal to 
a 2 . If a2 = 0 then mis assumed to be variable. Obviously, a1 = 0 

if and only if a2 = 1. 

2.4. Job characteristics 

The second field Sc {S 1 , ... ,S5 } indicates a number of job charac
teristics, which are defined as follows. 
1. S1 E {pmtn,o} 

2. 

3. 

4. 

5. 

S1 = pmtn : Preemption (job splitting) is allowed: the pro
cessing of any operation may be interrupted and 
resumed at a later time. 

S2 
S3 E 

S3 = 
S3 
S4 E 

S4 

S4 
P5 E 

S5 = 

0 No preemption is allowed. 
{prec,tree,o} 
prec: A precedence relation ➔ between the jobs is speci

fied. It is derived from a directed acyclic graph 
G with vertex set {1, ... ,n}. If G contains a 
directed path from j to k, we write Jj ➔ Jk and 

tree 

0 

{rj,o} 

require that Jj is completed before Jk can start. 
G is a rooted tree with either outdegree at most 
one for each vertex or indegree at most one for 
each vertex. 
No precedence relation is specified. 

rj Release dates that may differ per job are specified. 
o : All rj = 0. 
{ mf<;iii, o } 

mj~ffi A constant upper bound on mj is specified (only 
if a 1 = J). 

0 : All mj are arbitrary integers. 
{Pij=l,o} -
Pij=l: Each operation has unit processing time (if 

a1 E { 0 ,P,Q}, we write Pj=l; if a1 R, Pij=l will 
not occur). 

S5 = o All Pij (pj) are arbitrary integers. 
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2.5. Optimality criteria 

The third field y E {fmax,Lfj} refers to the optimality criterion 
chosen. Given a schedule, we can compute for each Jj: 

the completion time Cj; 
the lateness Lj = Cj-d·; 
the tardiness Tj = max{O,Cj-dj}; 
the unit penalty Uj = 0 if Cj $ dj, uj = 1 otherwise. 

The optimality criteria most commonly chosen involve the minimiza
tion of 

where fmax = maxj{fj(Cj)} with fj(Cj) = Cj,Lj, respectively, or 

Lfj E {LCj,LTj,LUj,LWjCj,LWjTj,LWjUj} 

where Lfj = L~=1 fj(Cj) with fj(Cj) = Cj,Tj,Uj,WjCj,WjTj,WjUj, 
respectively. 

It should be noted that LWjCj and LWjLj differ by a constant 
LWjdj and hence are equivalent. Furthermore, any schedule minimi
zing Lmax also minimizes Tmax and Umax, but not vice versa. 

The optimal value of y will be denoted by y*, the value pro
duced by an (approximation) algorithm A by y(A). If a known upper 
bound p on y(A)/y* is best possible in the sense that examples 
exist for which y(A)/y* equals or asymptotically approaches p, this 
will be denoted by a dagger (t). 

2.6. Examples 

1lpreclLmax: minimize maximum lateness on a single machine sub
ject to general precedence constraints. This problem can be 
solved in polynomial time (Section 3.2). 

Rlpmtnlrcj : minimize total completion time on a variable number 
of unrelated parallel machines, allowing preemption. The com
plexity of this problem is unknown (Section 4.4.3). 

J31Pij=11Cmax : minimize maximum completion time in a 3-machine 
job shop with unit processing times. This problem is NP-hard 
(Section 5.4.1). 

2.7. Reducibility among scheduling problems 

Each scheduling problem in the class outlined above corre_sponds to 
an 7-tuple (vo, ... ,v6), where Vi is a ver~ex of graph Gi drawn in 
Figure 1 (i = 0, ... ,6). For two problems P' = (vQ, ... ,v6) and P = 
(v0 , ••. ,v6), we write P' ➔ P if either vi= vi or Gi contains a 
directed path from vl to vi, for i = 0, •.. ,6. The reader should 
verify that P' ➔ P implies P' ~ P. The graphs thus define elemen
tary reductions among scheduling problems. It follows that 

if P' ➔ P and Pis well solved, then P' is well solved; 
if P' ➔ P and P' is NP-hard, then Pis NP-hard. 
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Figure 1 

3. SINGLE MACHINE PROBLEMS 

3.1. Introduction 
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The single machine case has been the object of extensive research 
ever since the seminal work by Jackson [Jackson 1955] and Smith 
[Smith 1956]. We will give a brief survey of the principal results, 
classifying them according to the optimality criterion chosen. As 
a general result, we note that if all rj = 0 we need only consider 
schedules without preemption and without machine idle time [Conway 
et al. 196 7]. 

3.2. Minimizing maximum cost 

A crucial result in this section is an O(n2 ) algorithm to solve 
llpreclfrnax for arbitrary nondecreasing cost functions [Lawler 
1973]. At each step of the algorithm, let S denote the index set 
of unscheduled jobs, let p(S) = IjES Pj, and let S' c S indicate 
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the jobs all whose successors have been scheduled. One selects Jk 
for the last position among {Jjlj Es} by requiring that 
fk(p(S)) 5 fj (p(S)) for all j ES'. 

This method has been generalized to an O(n2 ) algorithm for 
llpmtn,prec,rjlfmax [Baker et al. 1982]. First, the release dates 
are modified such that rj+Pj 5 rk whenever Jj ➔ Jk. Next, the jobs 
are scheduled in order of nondecreasing release dates; this creates 
a number of blocks that can be considered separately. From among 
the jobs without successors in a certain block, a job Jk that 
yields minimum cost when put in the last position is selected, the 
other jobs in the block are rescheduled in order of nondecreasing 
release dates, and Jk is assigned to the remaining time intervals. 
By repeated application of this procedure to each of the resulting 
subblocks, one obtains an optimal schedule with at most n-1 preemp
tions in O(n2 ) time. 

The remainder of this section deals with nonpreemptive Lrnax 
problems. The general llrjlLmax problem is unary NP-hard [Lenstra 
et al. 1977]. However, polynomial algorithms exist if all rj are 
equal, all dj are equal, or all Pj are equal. The first case is 
solved by a specialization of Lawler's method, known as Jackson's 
rule [Jackson 1955]: schedule the jobs in order of nondecreasing 
due dates. The second case is solved similarly by scheduling the 
jobs in order of nondecreasing release dates. 

As to the third case, llrj,Pj=llLmax is solved by the extended 
Jackson's rule: at any time, schedule an available job with small
est due date. The problem 1 lrj,Pj=PILrnax, where pis an arbitrary 
integer, requires a more sophisticated approach [Simons 1978]. Let 
us first consider the simpler problem of finding a feasible sched
ule with respect to given release dates rj and deadlines dj. If 
application of the extended Jackson's rule yields such a schedule, 
we are finished; otherwise, let Ji be the first late job and let 
Jk be the last job preceding Ji such that dk > di. If Jk does not 
exist, there is no feasible schedule; otherwise, the only hope of 
obtaining such a schedule is to postpone Jk by forcing it to yield 
precedence to the set of jobs currently between Jk and Ji. This is 
achieved by declaring the interval between the starting time of Jk 
and the smallest release date of this set to be a forbidden region 
in which no job is allowed to start and applying the extended 
Jackson's rule again subject to this constraint. Since at each 
iteration at least one starting time of the form rj+hp (1 5 j,h 5 n) 
is excluded, at most n 2 iterations will occur and the feasibility 
question is answered in O(n 3log n) time. An improved implementation 
requires only O(n log n) time [Garey et al. 1981A]. Bisection search 
over the possible Lmax values leads to a polynomial algorithm for 
llrj,Pj=PILrnax· -

These three special cases remain well solved in the presence 
of precedence constraints. It suffices to update release and due 
dates such that rj < rk and dj < dk whenever Jj ➔ Jk [Lageweg 
et al. 1976]. 

Various elegant enumerative methods exist for solving 
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llprec,rjlLmax· Baker and Su [Baker & Su 1974] obtain a lower bound 
by allowing preemption; their enumeration scheme simply generates 
all active schedules, i.e. schedules in which one cannot decrease 
the starting time of an operation without increasing the starting 
time of another one. McMahon and Florian [McMahon & Florian 1975] 
propose a more ingenious approach; a slight modification of their 
algorithm allows very fast solution of quite large problems 
[Lageweg et al. 1976]. earlier [earlier 1980] describes a related 
method of comparable efficiency. 

Very little work has been done on worst-case analysis of approxi
mation algorithms for single machine problems. For llrjlLrnax, 
Potts [Potts 1980B] presents an iterative version of the extended 
Jackson's rule (IJ) and shows that, if rj ~ 0 and dj ~ 0 
(j = 1, ... ,n), 

L (IJ)/L* < ~ 
max max - 2 • (t) 

3.3. Minimizing total cost 

The case 11 IIwjej can be solved in O(n log n) time by Smith's rule: 
schedule the jobs according to nonincreasing ratios wj/Pj [Smith 
1956]. If all weights are equal, this amounts to the SPT rule of 
executing the jobs on the basis of shortest processing time first, 
a rule that is often used in more complicated situations without 
much empirical, let alone theoretical, support for its superior 
quality (cf. Section 5.4.2). · 

This result has been extended to O(n log n) algorithms that 
deal with tree-like [Horn 1972; Adolphson & Hu 1973; Sidney 1975] 
and even series-parallel [Lawler 1978] precedence constraints; see 
[Adolphson 1977] for an O(n 3) algorithm covering a slightly more 
general case. The crucial observation to make here is that, if 
Jj ➔ Jk with wj/Pj < wk/Pk and if all other jobs either have to 
precede Jj, succ_eed Jk, or are incomparable with both, then Jj and 
Jk are adjacent in at least one optimal schedule and can effective
ly be treated as one job with processing time Pj+Pk and weight 
wj+wk. By successive application of this device, starting at the 
bottom of the precedence tree, one will eventually obtain an opti
mal schedule. Addition of general precedence constraints results 
in NP-hardness, even if all Pj = 1 or·all Wj = 1 [Lawler 1978; 
Lenstra & Rinnooy Kan 1978]. 

If release dates are introduced, llrjliej is already unary 
NP-hard [Lenstra et al. 1977]. In the preemptive case, 
llpmtn,rjliej can be solved by an obvious extension of Smith's 
rule, but, surprisingly, llpmtn,rjlLwjej is unary NP-hard 
[Labetoulle et al. 1979]. 

For llrjlLwjej, several elimination criteria and branch-and
bound algorithms have been proposed [Rinaldi & Sassano 1977; 
Bianco & Ricciardelli 1981; Hariri & Potts 1981]. 
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11 IIwjTj is a unary NP-hard problem [Lawler 1977; Lenstra et al. 
1977], for which various enumerative solution methods have been 
proposed. Elimination criteria developed for the problem [Emmons 
1969; Shwimer 1972] can be extended to the case of arbitrary non
decreasing cost functions [Rinnooy Kan et al. 1975]. Lower bounds 
can be based on a linear assignment relaxation using an underesti
mate of the cost of assigning Jj to position k [Rinnooy Kan et al. 
1975], a fairly similar relaxation to a transportation problem 
[Gelders & Kleindorfer 1974, 1975], and relaxation of the require
ment that the machine can process at most one job at a time 
[Fisher 1976]. In the latter approach, one attaches "prices" 
(i.e., Lagrangean multipliers) to each unit-time interval. Multi
plier values are sought for which a cheapest schedule does not 
violate the capacity constraint. The resulting algorithm is quite 
successful on problems with up to 50 jobs, although a straightfor
ward but cleverly implemented dynamic programming approach [Baker 
& Schrage 1978] offers a surprisingly good alternative. 

If all Pj = 1, we have a simple linear assignment problem, 
the cost of assigning Jj to position k being given by fj(k). If 
all Wj = 1, the problem can be solved by a pseudopolynomial algo
rithm in O(n4 Ipj) time [Lawler 1977]; the computational complexity 
of 11 IITj with respect to a binary encoding remains an open question. 

Addition of precedence constraints yields NP-hardness, even 
for llprec,pj=llITj [Lenstra & Rinnooy Kan 1978]. 

If we introduce release dates, .llrj,Pj=lliwjTj can again be 
solved as a linear assignment problem, whereas 11rjlITj is obvi
ously unary NP-hard. 

An algorithm due to Moore [Moore 1968] allows solution of 11 IIUj 
in O(n log n) time: jobs are added to the schedule in order of 
nondecreasing due dates, and if addition of Jj results in this job 
being completed after dj, the scheduled job with the largest pro
cessing time is marked to be late and removed. This procedure can 
be extended to cover the case in which certain specified jobs have 
to be on time [Sidney 1973]; the further generalization in which 
jobs have to meet given deadlines occurring at or after their due 
dates is binary NP-hard [Lawler-]. The problem also remains solv
able in O(n log n) time if we add agreeable weights (i.e., 
Pj <Pk=:> Wj ~ Wk) [Lawler 1976A] or agreeable release dates (i.e., 
dj < dk =:> rj :S: rk) [Kise et al. 1978]. 11 I_IwjUj is binary NP-hard 
[Karp 1972], but can be solved by dynamic programming in O(nipj) 
time [Lawler & Moore 1969]. 

Again, 1lprec,pj=1IIUj is NP-hard [Garey & Johnson 1976], 
even for chain-like precedence constraints [Lenstra & Rinnooy Kan 
1980]. 

Of course, llrjlLUj is unary NP-hard, but dynamic programming 
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techniques can be applied to solve llpmtn,rjlIUj in O(n 6 ) time and 
llpmtn,rjliwjUj in O(n 3 (Iwj) 3 ) time [Lawler-]. 

For 11 IIwjUj, Sahni [Sahni 1976] presents algorithms Ak with 
O(n 3k) running time such that 

Iw.U.(Ak)/Iw.U~;:,: 1 - k!' 
J J J J 

where Uj = 1-Uj. For lltreeliwjUj, Ibarra and Kim [Ibarra & Kim 
197B] give algorithms Bk of order O(knk+2 ) with the same worst
case error bound. 

4. PARALLEL MACHINE PROBLEMS 

4.1. Introduction 

Recall from Section 2.3 the definitions of identical, uniform and 
unrelated machines, denoted by P, Q and R, respectively. 

Nonpreemptive parallel scheduling problems tend to be diffi
cult. This can be inferred immediately from the fact that P2J JCmax 
and P2J IIwjCj are binary NP-hard [Bruno et al. 1974; Lenstra et al. 
1977]. If we are to look for polynomial algorithms, it follows that 
we should either restrict attention to the special case Pj = 1, as 
we do in Section 4.2, or concern ourselves with the ICj criterion, 
as we do in the first three subsections of Section 4.3. The remain
ing part of Section 4.3 is entirely devoted to enumerative optimi
zation methods and approximation algorithms for various NP-hard 
problems. 

The situation is much brighter with respect to preemptive 
parallel scheduling. For example, PlpmtnlCmax has long been known 
to admit a simple O(n) algorithm [McNaughton 1959]. Many new 
results for the ICj, Cmax, Lmax, IUj and IwjUj criteria have been 
obtained quite recently. These are summarized in Section 4.4. With 
respect to other criteria, P2JpmtnJiwjCj turns out to be NP-hard 
(see Section 4.4.1). Little is known about PJpmtnJITj, but we know 
from Section 3.3.2 that llpmtnliwjTj is already NP-hard. 

4.2. Nonpreemptive scheduling: unit processing times 

A simple transportation network model provides an efficient solu
tion method for Qlpj=llifj and Qlpj=llfmax• 

Let there be n sources j (j = 1, .. :,n) and mn sinks (i,k) 
(i = 1, ... ,m, k = 1, ... ,n). Set the cost of arc (j, (i,k)) equal to 
Cijk = fj(k/qi). The arc flow Xijk is to have the interpretation: 

if Jj is executed on Mi in the k-th position, 
otherwise. 
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Then the problem is to minimize 

1:i,j,k cijkxijk 

subject to 

1:. k xijk -- 1 
l., 

1:. xijk 
:,; 1 

J 

xijk ~ 0 

or max. . k{c . . kx .. k} l.,J, l.J l.J 

for all j, 

for all i,k, 

for all i,j,k. 

The time required to prepare the data for this transportation prob
lem is O(mn2). A careful analysis reveals that the problem can be 
solved (in integers) in O(n 3 ) time. Since we may assume that m:,; n, 
the overall running time is O(n3). 

We note that the special case Plpj=1l1:Uj can be solved in 
O(n log n) time [Lawler 1976A]. The problem Plrj,Pj=plLmax is 
solvable in polynomial time by an extension of the corresponding 
single machine algorithm (see Section 3.2) [Simons 1980]. 

4.2.2. Plprec,pj=11Cmax 

Plprec,pj=11Cmax is known to be NP-hard [Ullman 1975; Lenstra & 

Rinnooy Kan 1978]. It is an open question whether this remains 
true for any constant value of m ~ 3. The problem is well solved, 
however, if the precedence relation is of the tree-type or if 
m = 2. 

Pltree,pj=11Cmax can be solved in O(n) time by Hu's algorithm 
[Hu 1961; Hsu 1966; Sethi 1976A]. The level ·of a job is defined as 
the number of jobs in the unique path to the root of the precedence 
tree. At the beginning of each time unit, as many available jobs 
as possible are scheduled on them machines, where highest priority 
is granted to the jobs with the largest levels. Thus, Hu's algo
rithm is a nonpreemptive list scheduling algorithm, whereby at 
each step the available job with the highest ranking on a priority 
list is assigned to the first machine that becomes available. It 
can also be viewed as a critical path scheduling algorithm: the 
next job chosen is the one which heads the longest current chain 
of unexecuted jobs. 

If the precedence constraints are in the form of an intree 
(each job has at most one successor), then Hu's algorithm can be 
adapted to minimize Lmaxi in the case of an outtree (each job has 
at most one predecessor), the Lmax problem turns out to be NP-hard 
[Brucker et al. 1977]. There are some recent algorithmic and NP
hardness results concerning·Plprec,pj=11cmax for precedence con
straints other than intrees or outtrees, such as opposing forests 
(combinations of intrees and outtrees), level graphs, and so forth 
[Dolev 1981; Garey et al. 1981B; Warmuth 1980]. 

P2lprec,pj=11Cmax can be solved by various polynomial algo-
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rithms [Fujii et al. 1969, 1971; Coffman & Graham 1972; Gabow 1980]. 
In the approach due to Fujii et al., an undirected graph is 

constructed with vertices corresponding to jobs and edges {j,k} 
whenever Jj and Jk can be executed simultaneously, i.e., Jj f Jk 
and Jk f Jj. An optimal schedule is then derived from a maximum 
cardinality matching in the graph. Such a matching can be found in 
O(n 3) time [Lawler 1976B]. 

The Coffman-Graham approach leads to an O(n2 ) list algorithm. 
First the jobs are labelled in the following way. Suppose labels 
1, .•. ,k have been applied and Sis the subset of unlabelled jobs 
all 'of whose successors have been labelled. Then a job in Sis 
given the label k+l if the labels of its immediate succesors are 
lexicographically minimal with respect to all jobs in S. The prior
ity list is given by ordering the jobs according to decreasing la
bels. It is possible to execute this algorithm in time almost linear 
inn plus the number of arcs in the precedence graph, if the graph 
is given in the form of a transitive reduction [Sethi 1976B].· 

Recently, Gabow developed an algorithm which has the same 
running time, but which does not require such a representation of 
the precedence graph. 

Garey and Johnson present polynomial algorithm for this prob
lem where, in addition, each job becomes available at its release 
date and has to meet a given deadline. In this approach, one proc
esses the jobs in order of increasing modified deadlines. This 
modification requires O(n2 ) time if all rj = O [Garey & Johnson 
1976] and O(n 3 ) time in the general case LGarey & Johnson 1977]. 

We note that Plprec,pj=11Ecj is NP-hard [Lenstra & Rinnooy 
Kan 1978]. Hu's algorithm does not yield an optimal rcj schedule 
in the case of intrees, but in the case of outtrees critical path 
scheduling minimizes both cmax and rcj [Rosenfeld-]. The Coffman
Graham algorithm also minimizes rcj [Garey-]. 

As far as approximation algorithms for Plprec,pj=ll~ax are con
cerned, the NP-hardness proof given in [Lenstra & Rinnooy Kan 1978] 
implies that, unless P = NP, the best possible worst-case bound for 
a polynomial-time algorithm would be 4/3. The performance of both 
Hu's algorithm and the Coffman-Graham algorithm has been analyzed. 

When critical path (CP) scheduling is used, Chen and Liu 
[Chen 1975; Chen & Liu 1975] and Kunde [Kunde 1976] show that 

4 

C (CP)/C* < { 3 
max max - 2 __ 1_ 

m-1 

form= 2, 

form~ 3. 
(t) 

Lam and Sethi [Lam & Sethi 1977] use the Coffman-Graham {CG) algo
rithm to generate lists and show that 

C (CG)/C* ~ 2 - ~ (m ~ 2). 
max max m 

(t) 

If SS denotes the algorithm which schedules as the next job the 
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one having the greatest number of successors then it can be shown 
[Ibarra & Kim 1976] that 

C (SS)/C* < i form= 2. 
max max - 3 

( t) 

Examples show that this bound does not hold form 2:': 3. 

Finally, we mention some results for the more general case in which 
all Pj E {1,k}. Both P2Jprec,pjE{1,2}lcmax and P2Jprec,pjE{1,2}ILCj 
are NP-hard [Ullman 1975; Lenstra & Rinnooy Kan 1978]. For 
P2lprec,pjE{1,k}Jcmax, Goyal [Goyal 1977] proposes a generalized 
version of the Coffman-Graham algorithm (GCG) and shows that 

4 

C (GCG)/C* $ J333 
max max L3 1 

2 2k 

fork= 2, 

for k 2:': 3. 

4.3. Nonpreemptive scheduling: general processing times 

(t) 

The following generalization of the SPT rule for 11 ILCj (see Sec
tion 3.3.1) solves Pl ILCj in O(n log n) time [Conway et al. 1967]. 
Assume n = km (dummy jobs with zero processing times can be added 
if not) and suppose Pl$ ... $ Pn· Assign them jobs J(j-l)m+l, 
J(j-l)m+2, ... ,Jjm tom different machines (j = 1, ... ,k) and exe
cute the k jobs assigned to each machine in SPT order. 

With respect to Pl ILWjCj, Eastman, Even and Isaacs [Eastman 
et al. 1964] show that after renumbering the jobs according to 
nonincreasing ratios Wj/Pj 

1 n > l n j _ 1 n LW,C.(LS) - -2 L. 1w,p, - (L, lLk 1w.pk -2 L. 1w.p.). (t) 
J J J= J J m J= = J J= J J 

It follows from this inequality that 

m+n n j 
LwjCj:::;,: m(n+l) Lj=l Lk=l wjpk. 

In [Elmaghraby & Park 1974; Barnes & Brennan 1977] branch-and
bound algorithms based on this lower bound are developed. 

Sahni [Sahni 1976] constructs algorithms Ak (in the same spirit as 
his approach for 11 JLwjUj mentioned in Section 3.3.3) with 
O(n(n2k)m-1) running time for which 

LW .C. (A_ ) /LW .C'!' 
J J k J J 

Form= 2, the running time of Ak can be improved to O(n2k). 
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The algorithm for solving Pl ltcj given in the previous section can 
be generali·zed to the case of uniform machines [ Conway et al . 196 7]. 
If Jj is the k-th last job executed on Mi, a cost contribution 
kPij = kpj/qi is incurred. Z:Cj is a weighted sum of the Pj and is 
minimized by matching then smallest weights k/qi in nondecreasing 
order with the Pj in nonincreasing order. The procedure can be im
plemented to run in O(n log n) time [Horowitz & Sahni 1976]. 

RI IZ:Cj can be formulated and solved as an mxn transportation prob
lem [Horn 1973; Bruno et al. 1974]. Let 

{1 
xijk = 0 

if Jj is the k-th last job executed on Mi, 
otherwise. 

Then the problem is to minimize 

m n n 
z:i=l Z:j=l z:k=l kpijxijk 

subject to 

m n 
1 z:. 1 Z:k=l xijk = for all j, 

i= 
n 

~ 1 for all i,k, Z:. 1 xijk J= 

xijk ~ 0 for all i,j,k. 

This problem, like the similar one in Section 4.2.1, can be solved 
in O(n 3) time. 

4.3.4. Other cases: enumerative optimization methods 

As we noted in S_ection 4. 1, P2 I I Cmax and P2 I I Z:wjCj are NP-hard. 
Hence it seems fruitless to attempt to find polynomial-time opti
mization algorithms for criteria other than Z:Cj. Moreover, 
P2ltreelZ:Cj is known to be NP-hard, both for intrees and outtrees 
[Sethi 1977]. It follows that it is also not possible to extend 
the above algorithms to problems with precedence constraints. The 
only remaining possibility for optimization methods seems to be 
implicit enumeration. 

RI ICmax can be solved by a branch-and-bound procedure de
scribed in [Stern 1976]. The enumerative approach for identical 
machines in [Bratley et al. 1975] allows inclusion of release dates 
and deadlines as well. 

A general dynamic programming technique [Rothkopf 1966; Lawler 
& Moore 1969] is applicable to parallel machine problems with the 
Cmax, Lmax, Z:wjCj and LWjUj optimality criteria, and even to 
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problems with the LWjTj criterion in the special case of a common 
due date. 

Let us define Fj(t1, ••• ,tm) as the minimum cost of a schedule 
without idle time for J1, ••• ,Jj subject t6 the constraint that the 
last job on Mi is completed at time ti, for i = 1, ••. ,m. Then, 'in 
the case of fmax criteria, 

F.(t1 , •• ,t) = minl<"< {max{f.(t.),F. 1 ct1 , .. ,t.-p .. , •• ,t )}}, 
J m -l-m J i J- i J..J m 

and in the case of Lfj criteria, 

F.(t1 , .. ,t) = minl<"< {f.(t.)+F. 1 (t1 , •• ,t.-p .. , •• ,t )}. 
J m -l-m . J i J- i J..J m 

In both cases, the initial conditions are 

if ti= 0 for i = 1, •. ,m, 
otherwise. 

Appropriate implementation of these equations yields O(mncm-1) 
computations for a variety of problems, where C is an upper bound 
on the completion time of any job in an optimal schedule. Among 
these problems are PI rj I Cmax, Q 11 Lmax and Q 11 LWjCj. P 11 LWjUj can 
be solved in O(mn(maxj{dj})m) time. 

Still other dynamic programming approaches can be used to 
solve Pl ILfj and Pl lfmax in O(m•min{3n,n2nc}) time. 

4.3.5. Other cases: approximation algorithms 

4.3.5.1. Pl ICmax 

By far the most studied scheduling model from the viewpoint of 
approximation algorithms is Pl IC~ax· We refer to [Garey et al.1 

1978] for an easily readable introduction into the techniques in
volved in many of the "performance guarantees" mentioned below. 

Perhaps the earliest and simplest result on the worst-case 
performance of l.ist scheduling is given in [Graham 1966]: 

1 
C (LS)/C* $ 2 - . 

max max m 
(t) 

If the jobs are selected in LPT order, then the bound can be con
siderably improved, as is shown in [Graham 1969]: 

I < i - 1 C (LPT) C* - 3 3m. max max 
( t) 

A somewhat better algorithm, called multi/it (MF) and based on a 
completely different principle, is given in [Coffman et al. 1978]. 
The idea behind MF is to find (by binary search) the smallest 
"capacity" a set of m "bins" can have and still accommodate all 
jobs when the jobs are taken in order of nonincreasing Pj and each 
job is placed into the first bin into which it will fit. The set 



of jobs in the i-th bin will be processed by Mi. If k packing at
tempts are made, the algorithm (denoted by MFk) runs in time 
O(n log n + knm) and satisfies 

C (MFk)/C* 
max max 

-k 
::; 1.22 + 2 . 

15 

We note that if the jobs are not ordered by decreasing Pj then all 
that can be guaranteed by this method is 

C (MF)/C* 
max max 

2 
$ 2 - -m+l. ( t) 

The following algorithm Zk was introduced in [Graham 1969]: sched
ule the k largest jobs optimally, then list schedule the remaining 
jobs arbitrarily. It is shown in [Graham 1969] that 

c (Z ) /C* $ 1 + ( 1 - ..!_) / ( 1 + rl~mlj) 
max• k max m 

and that when m divides k, this is best possible. Thus, we can make 
the bound as close to 1 as desired by taking k sufficiently large. 
Unfortunately, the best bound on the running time is O(nkm). 

A very interesting algorithm for Pl !Cmax is given by Sahni 
[Sahni 1976]. He presents algorithms Ak with O(n(n2k)m- 1 ) running 
time which satisfy 

C (A. ) /C* 
max k max 

Form= 2, algorithm A2 can be improved to run in time O(n2k). As 
in the cases of 11 IIwjUj (Section 3.3.3) and Pl IIwjCj (Section 
4.3.1), the algorithms Ak are based on a clever combination of 
dynamic programming and rounding and are beyond the scope of the 
present discussion. 

Several bounds are available which take into account the pro
cessing times of the jobs. In [Graham 1969] it is shown that 

C (LS)/C* $ 1 + (m-1)max.{p.}/I.p .. 
max max J J J J 

For the case of LPT, Ibarra and Kim [Ibarra & Kim 1977] prove that 

C (LPT)/C* $ 1 + 2 <m-l) for n ~ 2(m-1)max.{p.}/min.{p.}. 
max max n J J J J 

4 . 3 . 5 . 2 . Q I I Cmax 

In the literature on approximation algorithms for scheduling prob
lems, it is usually assumed that unforced _idleness (UI) of machines 
is not allowed, i.e., a machine cannot be idle when jobs are avail
able. In the case of identical machines, UI need not occur in an 
optimal schedule if there are no precedence constraints or if all 
Pj = 1. Allowing UI may yield better solutions, however, in the 
cases which are to be discussed in Sections 4.3.5.2-5. The optimal 
value of Cmax under the restriction of no UI will be denoted by 
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C~ax, the optimum if UI is allowed by C~ax(UI). 
Liu and Liu [Liu & Liu 1974A, 1974B, 1974C] study numerous 

questions dealing with uniform machines. They define the algorithm 
Ak as follows: schedule the k longest jobs first, resulting in a 
completion time of Ck(Ak), and schedule the remaining tasks for a 
total completion time of Cmax(Ak). If Cmax<Ak) > Ck(Ak), then 

C (A_ ) /C* (UI) 
max k max 

where all qi~ 1 and 

~ 1 + 1 
Q 

1 
QE.q. 

l. l. 

k+1 1 q · l 1 k 1 { {r---1 J } _+_} Q = max min . E r l •-- -
J 1. 1 q 1. qJ. r q . lq . , r . q. • 

J J 1 1 

This is best possible when the qi are integers and Eiqi divides k. 
Gonzalez, Ibarra and Sahni [Gonzalez et al. 1977] consider 

the following generalization LPT' of LPT: assign each job, in 
order of nonincreasing processing time, to the machine on which it 
will be completed soonest. Thus, unforced idleness may occur in 
the schedule. They show 

2 
c (LPT') /C* ~ 2 - m+l. max max 

Also, examples are given for which Cmax(LPT')/C~ax approaches 3/2 
as m tends to infinity. 

4.3.5.3. RI lcmax 

Very little is known about approximation algorithms for this model. 
Ibarra and Kim [Ibarra & Kim 1977] consider five algorithms, typi
cal of which is to schedule Jj on the machine that executes it 
fastest, i.e., on an Mi with minimum Pij• For all five algorithms 
A they prove 

C (A)/C* ~ m 
max max 

with equality possible for four of the five. For the special case 
R2l ICmax, they give an O(n log n) algorithm G such that 

C (G) /C* ~ 1+/s_ 
max max 2 

(t) 

Potts [Potts-] proposes an RI lcmax algorithm based on linear pro
gramming (LP), the running time of which is polynomial only for 
fixed m. He proves 

C (LP)/C* ~ 2. 
max max 

(t) 

4.3.5.4. PlpreclCmax 

In the presence of precedence constraints it is somewhat unexpected 
[Graham 1966] that the 2-(1/m) bound still holds, i.e., 
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C (LS)/C* ~ 2 - .!.._ 
max max m 

Now, consider executing the set of jobs twice: the first time us
ing processing times Pj, precedence constraints, m machines and an 
arbitrary priority list, the second time using processing times 
Pj ~ Pj, weakened precedence constraints, m' machines and a (pos
sibly different) priority list. Then [Graham 196~] 

m-1 
C' (LS)/C (LS) ~ 1 + , . 

max max m 

Even when critical path (CP) scheduling is used, examples exist 
[Graham-] for which 

C (CP)/C* 
max max 

2 
1 
m 

(t) 

It is known [Graham-] that unforced idleness (UI) has the follow
ing behavior: 

C (LS)/C* (UI) ~ 2 - .!.._ 
max max m 

(t) 

Let Cfuax<pmtn) denote the optimal value of Cmax if preemption is 
allowed. As in the case of UI, it is known [Graham-] that 

C (LS)/C* (pmtn) ~ 2 - l. 
max max m 

(t) 

Liu [Liu 1972] shows that 

C* (UI)/C* (pmtn) ~ 2 - - 2-
max max m+l · 

(t) 

4.3.5.5. QlpreclCmax 

Liu and Liu [Liu & Liu 1974B] also consider the presence of prece
dence constraints in the case of uniform machines. They show that, 
when unforced idleness or preemption is allowed, 

C (LS)/C* (UI) ~ l+max.{q.}/min.{q,}-max.{q.}/L.q., (t) 
max max 1. 1. 1. 1. 1. 1. 1. 1. 

C (LS)/C* (pmtn) ~ l+max.{q.}/min.{q.}-max.{q.}/L.q .. (t) 
max max 1. 1. • 1. 1. 1. 1. 1. 1. 

When all qi= 1 this reduces to the earlier 2-(1/m) bounds for 
these questions on identical machines. 

Suppose that the jobs are executed twice: the first time us
ing m machines of speeds q 1 , •.. ,qm, the second time using m' ma
chines of speeds qi, ... ,q~•- Then 

C' (LS)/C* (UI) ~max.{q.}/min.{q'.}+(L.q.-max.{q.})/L.q'..(t) 
max max 1. 1. · 1. 1. 1. 1. 1. 1. 1. 1. 

Jaffe [Jaffe 1979] develops an algorithm LSi, that uses list sched
uling on the fastest i machines for an appropriately chosen value 
of i. It is shown that 
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C (LSi)/C* (UI) $ l"m + O(ml/4 ) 
max max 

and examples are given for which the bound lm-1 is approached 
arbitrarily closely. 

4.4. Preemptive scheduling 

4.4.1. PlpmtnlECj 

A theorem of McNaughton [McNaughton 1959] states that for 
PlpmtnlEwjCj there is no schedule with a finite number of preemp
tions which yields a smaller criterion value than an optimal non
preemptive schedule. The finiteness restriction can be removed by 
appropriate application of results from open shop theory. It there
fore follows that the procedure of Section 4.3.1 can be applied to 
solve PlpmtnlEcj. It also follows that P2lpmtnlEwjCj is NP-hard, 
since P2l IEwjCj is known to be NP-hard. 

McNaughton's theorem does not apply to uniform machines, as can be 
demonstrated by a simple counterexample. There is, however, a poly
nomial algorithm for QlpmtnlECj. 

One can show that there exists an optimal preemptive schedule 
in which Cj $ Ck if Pj < Pk [Lawler & Labetoulle 1978]. Accordingly, 
first place the jobs in SPT order. Then obtain an optimal schedule 
by preemptively scheduling each successive job in the available 
time on them machines so as to minimize its completion time 
[Gonzalez 1977]. This procedure can be implemented in O (n log n + mn) 
time and yields an optimal schedule with no more than (m-1) (n-~m) 
preemptions. It has been extended to cover the case in which ECj 
is minimized subject to a common·deadline for all jobs [Gonzalez 
1977]. 

4.4.3. RlpmtnlECj 

Very little is known about RlpmtnlEcj. This remains one of the 
more vexing questions in the area of preemptive scheduling. 

4.4.4. Plpmtn,preclCmax 

An obvious lower bound on the value of an optimal PlpmtnlCmax 
schedule is given by 

1 
max{max. {p.}, - L .p.}. 

J J m J J 

A schedule meeting this bound can be constructed in O(n) time 
[McNaughton 1959]: just fill the machines successively, scheduling 
the jobs in any order and splitting a job whenever the above time 
bound is met. The number of preemptions occurring in this schedule 
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is at most m-1. It is possible to design a class of problems for 
which this number is minimal, but the general problem of minimiz
ing the number of preemptions is easily seen to be NP-hard. 

In the case of precedence constraints, Plpmtn,prec,pj=llCmax 
turns out to be NP-hard [Ullman 1976], but Plpmtn,treelCmax and 
P2lpmtn,prec1Cmax can be solved by a polynomial-time algorithm due 
to Muntz and Coffman [Muntz & Coffman 1969, 1970]. This is as 
follows. 

Define lj(t) to be the level of a Jj wholly or partly unexe
cuted at time t. Suppose that at time t m' machines are available 
and that n' jobs are currently maximizing lj(t). If m' < n', we 
assign m'/n' machines to each of then' jobs, which implies that 
each of these jobs will be executed at speed m'/n'. If m' ~ n', we 
assign one machine to each job, consider the jobs at the next 
highest level, and repeat. The machines are reassigned whenever a 
job is completed or threatens to be processed at a higher speed 
than another one at a currently higher level. Between each pair of 
successive reassignment points, jobs are finally rescheduled by 
means of McNaughton's algorithm for PlpmtnlCmax- The algorithm 
requires O(n2 ) time [Gonzalez & Johnson 1980]. 

Gonzalez and Johnson [Gonzalez & Johnson 1980] have developed 
a totally different algorithm that solves Plpmtn,treelCmax by 
starting at the roots rather than the leaves of the tree and de
termines priority by considering the total remaining processing 
time in subtrees rather than by looking at critical paths. The 
algorithm runs in O(n log m) time and introduces at most n-2 pre
emptions into the resulting optimal schedule. 

Lam and Sethi [Lam & Sethi 1977], much in the same spirit as their 
work mentioned in Section 4.2.2, analyze the· performance of the 
Muntz-Coffman (MC) algorithm for Plpmtn,preclCmax· They show 

C (MC)/C* ~ 2 - 2 (m ~ 2). 
max max m 

4.4.5. Qlpmtn,preclCmax 

Horvath, Lam and Sethi [Horvath et al. 1977] adapt the Muntz
Coffman algorithm to solve QlpmtnlCmax and Q2lpmtn,prec1Cmax in 
O(mn2 ) time. This results is an optimal schedule with no more 
than (m-1)n2 preemptions. 

A computationally more efficient algorithm due to Gonzalez 

(t) 

and Sahni [Gonzalez & Sahni 1978B] solves QlpmtnlSnax in O(n) time, 
if the jobs are given in order of nonincreasing Pj and the machines 
in order of nonincreasing qi. This proced~re yields an optimal 
schedule with no more than 2(m-1) preemptions, which can be shown 
to be a tight bound. 

The optimal value of Cmax is given by 

k k n m 
max{maxl~k~m-l{Ej=l pj/Ei=l qi}, Ej=lpj/Ii=l qi}, 
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where Pl~ ••• ~ Pn and ql ~ ••. ~~-This result generalizes the 
one given in Section 4.4.4. 

The Gonzalez-Johnson algorithm for Plpmtn,treelCmax mentioned 
in the previous section can be adapted to the case Q2lpmtn,tree1Cmax• 

Jaffe [Jaffe 1980] studies the performance of maximal usage sched
ules (MUS) for Qlpmtn,preclCmax, i.e., schedules without unforced 
idleness in which at any time the jobs being processed are assigned 
to the fastest machines. It is shown that 

C (MUS) /C* :5 .1ro° + .!_ 
max max 2 

and examples are given for which the bound lm-1 is approached ar
bitrarily closely. 

4.4.6. RlpmtnlCmax 

Many preemptive scheduling problems involving independent jobs on 
unrelated machines can be formulated as linear programming problems 
[Lawler & Labetoulle 1978]. For instance, solving RlpmtnlCmax is 
equivalent to minimizing 

C 
max 

subject to 

m 
xij/pij 1 E. 1 = 

1= 
(j = 1, ..• ,n), 

m 
E. 1 x .. :5 C 
1= 1J max 

(j = 1, .•• ,n), 

n 
E. 1 x. :5 C 

J= 1j max 
(i = 1, ... ,m), 

X .. ~ 0 
1J 

(i 1, ..• ,m, j = 1, .•• ,n). 

In this formulation Xij represents the total time spent by Jj on 
Mi. The linear program can be solved in polynomial time [Khachiyan 
1979], and a feasible schedule can be constructed in polynomial 
time by applying the algorithm for olpmtnlCmax, discussed in Sec
tion 5.2.2. 

This procedure can be modified to yield an optimal schedule 
with no more than about 7m2/2 preemptions. It remains an open 
question as to whether O(m2 ) preemptions are necessary for an op
timal preemptive schedule. 

For fixed m, it seems to be possible to solve the linear pro
gram in linear time. Certainly, the special case R2lpmtn1Cmax can 
be solved in O(n) time [Gonzalez et al. 1981]. 

We note that a similar linear programming formulation can be 
given for Rlpmtn,rjlLmax [Lawler & Labetoulle 1978]. 
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4.4 .. 7. Plpmtn,prec,rjlLmax 

PlpmtnlLmax and Plpmtn,rjlCmax can be solved by a procedure due to 
Horn [Horn 1974]. The O(n2 ) running time has been reduced to 0(mn) 
[Gonzalez & Johnson 1980]. 

More generally, the existence of a feasible preemptive sched
ule with given release dates and deadlines can be tested by means 
of a network flow model in 0(n 3) time [Horn 1974]. A binary search 
can then be conducted on the optimal value of Lmax, with each 
tri'.al value of Lmax inducing deadlines which are checked for fea
sibility by means of the network computation. It can be shown that 
this yields an 0(n 3min{n2 ,log n + log maxj{Pj}}) algorithm 
[Labetoulle et al. 1979]. 

In the case of precedence constraints, the algorithms of 
Brucker, Garey and Johnson for Plintree,pj=llLmax, P2lprec,pj=11Lmax 
and P2lprec,rj,Pj=11Lmax (see Section 4.2.2) have preemptive coun
terparts. E.g., Plpmtn,intreelLmax can be solved in O(n2 ) time 
[Lawler 1980]; see also the next section. 

4.4.8. Qlpmtn,prec,rjlLmax 

In the case of uniform machines, the existence of a feasible pre
emptive schedule with given release dates and a common deadline 
can be tested in O(n log n + mn) time; the algorithm generates 
O(mn) preemptions in the worst case [Sahni & Cho 1980]. More gen
erally, Qlpmtn,rjlCmax and, by symmetry, QlpmtnlLmax are solvable 
in O(n log n + mn) time; the number of preemptions generated is 
O(mn) [Sahni & Cho 1979B; Labetoulle et al. 1979]. 

The first feasibility test mentioned in the previous section 
has been adapted to the case of two uniform machines [Bruno & 

Gonzalez 1976] and extended to a polynomial-time algorithm for 
Q2lpmtn,rjlLmax [Labetoulle et al. 1979]. 

Most recently, Martel has found a polynomial-time algorithm 
for Qlpmtn,rjlLmax [Martel 1981]. This method :Ls in fact a special 
case of a more general algorithm for computing maximal poly
matroidal network flows [Lawler & Martel 1980]. 

In the case of precedence constraints, Q2lpmtn,prec1Lmax and 
Q2lpmtn,prec,rjlLmax can be solved in O(n2 ) and O(n6 ) time, re
spectively [Lawler 1980]. 

Binary NP-hardness has been established for llpmtnliwjUj (see Sec
tion 3.3.3) and PlpmtnlIUj [Lawler 1981]. For any fixed number of 
uniform machines, QmlpmtnliwjUj can be soived in pseudopolynomial 
time: O(n2 (Iwj) 2 ) if m = 2 and O(n3m-5(Iwj)2) if m ~ 3 [Lawler 1981]. 
Hence, QmlpmtnlIUj is solvable in strictly polynomial time. 
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5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS 

5.1. Introduction 

We now pass on to problems in which each job requires execution on 
more than one machine. Recall from Section 2.3 that in an open 
shop (denoted by 0) the order in which a job passes through the 
machines is immaterial, whereas in a flow shop (F) each job has 
the same machine ordering (M1, ••• ,Mm) and in a job shop (J} possi
bly different machine orderings are specified for the jobs. We 
survey these problem classes in Sections 5.2, 5.3 and 5.4, respec
tive.ly. 

We shall be dealing exclusively with the Cmax criterion. 
Other optimality criteria lead usually to NP-hard problems, such as: 

021 ILmax [Lawler et al. 1981], 
ol IEcj, olpmtnlECj [Gonzalez 1979B], 
F21 ILmax [Lenstra et al. 1977], F2lpmtn1Lmax [Cho & Sahni 
1978], 
F21 IECj [Garey et al. 1976], F3lpmtnlECj, J2lpmtnlECj 
[Lenstra -] • 

Notable exceptions are olpmtn,rjlLmax• which is solvable in poly
nomial time by linear programming [Cho & Sahni 1978], and 021 IECj 
and F2lpmtnlECj, which are open. 

5.2. Open shop scheduling 

5.2.1. Nonpreemptive case 

The case 021 lcmax admits of an O(n) algorithm [Gonzalez & Sahni· 
1976]. A simplified exposition is given below. 

For convenience, let aj = Plj, bj = P2j· Let A= {Jjlaj ~ bj}, 
B = {Jjlaj < bj}. Now choose Jr and Jt to be any two distinct jobs 
(whether in A or B) such that 

ar ~ maXJjEA{bj}, bt ~· maXJjEB{aj}. 

Let A' = A-{Jr,Jt}, B' = B-{Jr,Jt}. We assert that it is possible 
to form feasible schedules for B'U{Ji} and for A'u{Jr} as indicated 
in Figure 2(a), the jobs in A' and B' being ordered arbitrarily. 
In each of these separate schedules, there is no idle time on 
either machine, from the start of the first job on that machine to 
the completion of the last job on that machine. 

Let T1 = Lj aj, T2 = Ej bj. Suppose T1-at ~ T2-br (the case 
T1-at < T2-br being symmetric). We then combine the two schedules 
as shown in Figure 2(b), pushing the jobs-in B'u{Jt} on M2 to the 
right. Again, there is no idle time on either machine, from the 
start of the first job to the completion of the last job. 

We finally propose to move the processing of Jr on M2 to the 
first position on that machine. There are two cases to consider. 
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(1) ar $ T2-br· The resulting schedule is as in Figure 2(c). The 
length of the schedule is max{T1,T2}. 

(2) ar > T2-br. The resulting schedule is as in Figure 2(d). The 
length of the schedule is max{T1,ar+br}. 

For any feasible schedule we obviously have that 

Since, in all cases, we have met this lower bound, it follows that 
the schedules constructed are optimal. 

There is little hope of finding poly!}c:>mial-time algorithms 
for nonpreemptive open shop problems more complicated than 
021 ICmax• 031 ICmax is binary NP-hard [Gonzalez & Sahni 1976] and 
02lrjlCmax, 02ltree1Cmax and ol ICmax are unary NP-hard [Lawler et 
al. 1981; Lenstra -]. 

The special case of 031 ICmax is which maxj{Phj} $ minj{Pij} 
for some pair (Mh,Mi) (h ~ i) is likely to be solvable in polyno
mial time [Adiri & Hefetz 1980]. 

5.2.2. Preemptive case 

The result on 021 lcmax presented in the previous section shows 
that there is no advantage to preemption form= 2, and hence 
02lpmtn1Cmax can be solved in O(n) time. More generally, 
olpmtnlCmax is solvable in polynomial time as well [Gonzalez & 

Sahni 1976; Lawler & Labetoulle 1978; Gonzalez 1979A]. We had al
ready occasion to refer to this result in Section 4.4.6. 
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If release dates are introduced, o2lpmtn,rj1cmax is still 
solvable in 0(n) time [Lawler et al. 1981]. As mentioned in Section 
5.1, even olpmtn,rjlLmax is well solved [Cho & Sahni 1978]. 

5.3. Flow shop schedulino 

5.3.1. F21Blcmax' F3!B!Cmax 

A fundamental algorithm for solving F2! !Cmax is due to Johnson 
[Johnson 1954]. He shows that there exists an optimal schedule in 
which Jj precedes Jk if min{p1j,P2k} $ min{p2j,Plk}. It follows 
that the problem can be solved in 0(n log n) time: arrange first 
the jobs with Plj $ P2j in order of nondecreasing Plj and subse
quently the remaining jobs in order of nonincreasing P2j· 

Some special cases involve start lags £1j and stop lags £2j 
for ~rj, that represent minimum time intervals between starting 
times on M1 and M2 and between completion times on Ml and M2, 
respectively [Mitten 1958; Johnson 1958; Nabeshima 1963; Szwarc 
1968]. Defining lj = min{£1j-Plj,£2j-P2j} and applying Johnson's 
algorithm to processing times (Plj+£j,P2j+£j) will produce an 
optimal permutation schedule, i.e., one with identical processing 
orders on all machines [Rinnooy Kan 1976]. If we drop the latter 
restriction, the problem is unary NP-hard [Lenstra -]. 

A fair amount of effort has been devoted to identifying 
special flow shop problems that can still be solved in polynomial 
time .. The crucial notion here is that of a nonbottleneck machine, 
that can effectively be treated as though it can process any number 
of jobs at the same time. For example, F3l ICmax can be solved by 
applying Johnson's algorithm to processing times (P1j+P2j,P2j+P3j) 
if m,:1.Xj{P2j} $ max{minj{P1jLminj{P3j}} [Johnson 1954]. Many other 
special cases appearing in the literature, including some of the 
work on ordered flow shops [Smith et al. 1975, 1976], can be 
discussed in this framework [Monma & Rinnooy Kan 1981; Achuthan 
1980]. 

The general F31 ICmax problem, however, is unary NP-hard, and 
the same applies to F2lrjlCmax and F2ltree1Cmax [Garey et al. 1976; 
Lens tr a et al. 1977]. 

It should be noted that an interpretation of precedence 
constraints which differs from our definition is possible. If 
Jj ➔• Jk only means that 0ij should precede 0ik for i = 1,2, then 
F2ltree' ICmax can be solved in 0(n log n) time [Sidney 1979]. In 
fact, Sidney's algorithm applies even to series-parallel precedence 
constraints. The arguments used to establish this result are very 
similar to those referred to in Section 3.3.1 and apply to a larger 
class of scheduling problems [Monma & Sid~ey 1979]. The general 
case F2lprec' !Cmax is unary NP-hard [Monma 1980]. 

Gonzalez, Cho and Sahni [Gonzalez & Sahni 1978A; Cho & Sahni 
1978] consider the case of preemptive flow shop scheduling. Since 
preemptions on Ml and Mm can be removed without increasing Cmax, 
Johnson's algorithm solves F2lpmtn!Cmax as well. F3lpmtn!Cmax and 
F2!pl7ltn,rjlCmax turn out to be unary NP-hard. 
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5.3.2. Fl lcmax 

As a general result, we note that there exists an optimal flow 
shop schedule with the same processing order on M1 and M2 and the 
same processing order on Mm-1 and Mm [Conway et al. 1967]. It is, 
however, not difficult to construct a 4-rnachine example in which a 
job "passes" another one between M2 and M3 in the optimal schedule. 
Nevertheless, it has become tradition in the literature to assume 
identical processing orders on all machines, so that in effect 
only the best permutation schedule has to be determined. 

Most research in this area has focused on enumerative methods. 
The usual enumeration scheme is to assign jobs to the t-th posi
tion in the schedule at the t-th level of the search tree. Thus, at 
a node at that ~E:~e_l_~_ partial sche<'.lu_l~ (J0 ( lJ,. -~----~J_0 _(..e,)_)_ h_~s _ __!?e_eI!._ 
formed and the jobs with index set S = {1, •.. ,n} - {a(l) , ... ,a(t)} 
are candidates for the (t+l)-st position~ One then needs to find a 
lower bound on the value of all possible completions of the partial 
schedule. It turns out that almost all lower bounds developed so 
far are generated by the following bounding scheme [Lageweg et al. 
1978]. 

Let us relax the capacity constraint that eaGh machine can 
process at most one job at a time, for all machines but at most 
two, say, Mu and Mv (1 ~ u ~ v ~ m). We then obtain a problem of 
scheduling {Jjlj ES} on five machines N*u,Mu,Nuv,Mv,Nv* in that 
order, which is specified as follows. Let C(a,i) denote the com
pletion time of Jo(t) on Mi. N*u, Nuv and Nv* have infinite capac
ity; the processing times on these machines are defined by 

max 1<.< {c(a,i) 
u-1 

phj}, q*Uj = + Eh . -l.-U =i 
v-1 

4uvj 
= E phj' h=u+l 

4v*j 
= Em 

phj" h=v+l 

Mu and Mv have capacity 1 and processing times Puj and Pvj, respec
tively. Note that we can interpret N*u as yielding release dates 
q*Uj on Mu and Nv* as setting due dates -qv*j on Mv, with respect 
to which Lmax is to be minimized. 

Any of the machines N*u,Nuv,Nv* can be removed from this 
problem by underestimating its contribution to the lower bound to 
be the minimum processing time on that machine. Valid lower bounds 
are obtained by adding these contributions to the optimal solution 
value of the remaining problem. 

For the case that u = v, removing N*u and Nu* from the problem 
produces the machine-based bound used in [Ignall & Schrage 1965; 
McMahon 1971 ] : 

max 1< < {min. S{q .} + E. p . + min. S{q .}}. 
-U-m JE *UJ JES UJ JE i.l*J 

Removing only N*u results in a 11 ILmax problem on Mu, which can be 
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solved by Jackson's rule (Section 3.2) and provides a slightly 
stronger bound. 

If u ~ v, removal of N*U' Nuv and Nv* yields an F21 ICmax 
problem, to be solved by Johnson's algorithm (Section 5.3.1). As 
pointed ciut in that section, solution in polynomial time remains 
possible if Nuv is taken fully into account; the resulting bound 
dominates the job-based bound proposed in [McMahon 1971] and is 
the best one currently available. 

All other variations on this theme (e.g., taking u = v and 
considering the resulting llrjlLmax problem) would involve the 
solution of NP-hard problems. The development of fast algorithms 
or strong lower bounds for these problems thus emerges as a possi
bly fruitful research area. 

An alternative and somewhat more efficient enumeration scheme 
[Potts 1980A] builds up a schedule from the front and from the 
back at the same time. The adaptation of the above bounding scheme 
to this approach is straightforward. 

The computational performance of branch-and-bound algorithms 
for Fl ICmax might be improved by the use of elimination criteria. 
Particular attention has been paid to conditions under which all 
completions of (Jo(l) , ... ,Jo(£) ,Jj) can be eliminated because a 
schedule at least as good exists among the completions of 
(J0 (1) , ..• ,Jo(£) ,Jk,Jj). If all information obtainable from the 
processing times of the other jobs is disregarded, the strongest 
condition under which this is allowed is as follows. Defining ~i = 
C(okj,i)-C(oj,i), we can exclude Jj for the (£+1)-st position if 

( i = 2 , ••• , m) 

[McMahon 1969; Szwarc 1971, 1973]. Inclusion of these and similar 
dominance rules can be very helpful from a computational point of 
view,. depending on the lower bound used [Lageweg et al. 1978]. It 
may be worthwhile to consider further extensions that, for instance, 
involve the processing times of the unscheduled jobs- (Gupta-& -Reddf 
1978; Szwarc 1978]. 

Not much has been done in the way of worst-case analysis of approx
imation algorithms for Fl ICmax· It is not hard to see that for any 
active schedule (AS) 

C (AS)/C* ~ max .. {p .. }/min .. {p .. }. 
max max i,J iJ i,J iJ 

(t) 

Gonzalez and Sahni [Gonzalez & Sahni 1978A] show that 

C (AS)/C* ~ m. 
max max 

(t) 

This bound is tight even for LPT schedules, in which the jobs are 
ordered according to nonincreasing sums of processing times. They 
also give an O(mn log n) algorithm H based on Johnson's algorithm 
with 



c (H)/C* s r~21. 
max max 

It thus appears that, in general, the obvious algorithms can 
deviate quite substantially from the optimum. 

5.3.3. No wait in process 

In a variation on the flow shop problem, each job, once started, 
has to be processed without interruption until it is completed. 

27 

This no wait constraint may arise out of certain job characteristics 
(e.g., the "hot ingot" problem in which metal has to be processed 
at continuously high temperature) or out of the unavailability of 
intermediate storage in between machines. 

The resulting Fino waitlCmax problem can be formulated as a 
traveling salesman problem with cities 0,1, .•. ,n and intercity 
distances 

i i-1 
cjk = maxlSiSm{Eh=l phj - Eh=l phk} (j,k = 0,l, ... ,n)' 

where Pi0 = 0 (i = 1, .•• ,m) [Piehler 1960; Reddi & Ramamoorthy 
1972; Wismer 1972]. 

For the case F2lno waitlCmax, the traveling salesman problem 
assumes a special structure and the results from [Gilmore & Gomory 
1964] can be applied to yield an O(n2 ) algorithm [Reddi & 

Ramamoorthy 1972]. F4lno waitlCmax is unary NP-hard [Papadimitriou 
& Kanellanis 1980], and the same is true for O2lno waitlCmax and 
J2lno waitlCmax [Sahni & Cho 1979A]. In spite of a challenging 
prize awarded for its solution [Lenstra et al. 1977], 
F3lno waitlCmax is still open. 

The no wait constraint may lengthen the optimal flow shop 
schedule considerably. It can be shown [Lenstra -] that 

C* (no wait)/C* < m form~ 2. 
max max 

5.4. Job shop scheduling 

5.4.1. J2181Cmax, J3l81Cmax 

(t) 

A simple extension of Johns_on' s algorithm for F2 I I Cmax allows 
solution: of J2lmjS21Cmax in O(n log ri) time [Jackson 1956].- Let 
Ji be the set of jobs with operations on Mi only (i = 1,2) and Jhi 
the set of jobs that go from Mh to Mi (hi= 12,21). Order the 
latter two sets by means of Johnson's algorithm and the former two 
sets arbitrarily. One then obtains an optimal schedule by executing 
the jobs on Ml in the order cJ12,J1,J21) and on M2 in the order 
{J21,J2,J12). 

Another special case, J21Pij=11Cmax• is solvable in O(n log n) 
time as well [Hefetz & Adiri 1979]. 

This, however, is probably as far as we can get. J2lmjS31Cmax 
and J3lmjS21Cmax are binary NP-hard [Lenstra et al. 1977; Gonzalez 
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Job shop problem, represented 
as a disjunctive graph 

Figure 3 

Job shop schedule, represented 
as an acyclic directed graph 

& Sahni 1978A], J21PijE{l,2}ICmax and J31Pij=11Cmax are unary NP
hard [Lenstra & Rinnooy Kan 1979], and these results are still 
true if preemption is allowed. 

5 • 4 • 2 • J I I Cmax 

The general job shop problem is extremely hard to solve optimally. 
An indication of this is given by the fact that a 10-job 10-machine 
problem, formulated in 1963 [Muth & Thompson 1963], still has not 
been solved. 

A convenient problem representation is provided by the dis
junctive graph model, introduced by Roy and Sussmann [Roy & 

Sussmann 1~64]. Assume each operation Oij being renumbered as Ou 
with u = rk:imk + i and add two fictitious_initial and final oper
ations o0 and O* with Po= p* = 0. The -di~junctive _graph is then 
defined as follows. There is a vertex u with weight Pu correspond
ing to each operation Ou. The directed conjunctive arcs link the 
consecutive operations of each job, and link o0 to all first oper
ations.and all last operations to O*. A pair of directed disjunc
tive arcs connects every two operations that have to be executed 
on the same mac~ine. A feasible schedule corresponds to the selec
tion of one disjunctive arc of every such pair, granting precedence 
of one operation over the other on their common machine, in such a 
way that the resulting directed graph is acyclic. The value of the 
schedule is giyen by the weight of the maximum weight path from 0 
to_ *.• We refer to Figure 3 for an example. 

At a typical stage of any enumerative algorithm, a certain 
subset D of disjunctive arcs will have been selected. We consider 
the directed graph obtained by removing all other disjunctive arcs. 
Let the maximum weights of paths from Oto u and from u to*, 
excluding Pu, be denoted by ru and qu, respectively. In particular, 
r* is an obvious lower bound on the value of any feasible schedule 
obtainable from the current graph [Charlton & Death 1970]. We can 
get a far better bound in a manner very similar to the development 
of flow shop bounds in Section 5.3.2 [Lageweg et al. 1977]. 
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Let us relax the capacity constraints for all machines except 
Mi. We then obtain a problem of scheduling the operations Ou on Mi 
with release dates ru, processing times Pu, due dates -qu and 
precedence constraints defined by the directed graph, so as to 
minimize maximum lateness. As pointed out in Section 3.2, this 
llprec,rjlLmax problem is NP-hard, but there exist fast enumerative 
methods for its solution on each Mi. Again, almost all lower bounds 
proposed in the literature appear as special cases of the above 
one by underestimating the contribution of ru, qu or both, by 
ignoring the precedence constraints, or by restricting the set of 
machines over which maximization is to take place. 

The currently best job shop algorithm [McMahon & Florian 1975] 
involves the llrjlLmax bound combined with the enumeration of 
active schedules. Starting from Oo, we consider at each stage the 
subset S of operations all of whose predecessors have been sched
uled and calculate their earliest possible compfetion times ru+Pu· 
It can be shown [Giffler & Thompson 1960] that-it is sufficient to 
consider only a machine on which the minimum value of ru+Pu is 
achieved and to branch by successively scheduling next on that 
machine all Ov for which rv < minouEs{ru+Pul- In this scheme, 
several disjunctive arcs are added to D at each stage. An alterna
tive approach whereby at each stage one disjunctive arc of some 
crucial pair is selected leads to a computationally inferior 
approach [Lageweg et al. 1977]. 

Surrogate duality relaxations of the job shop problem are 
investigated in [Fisher et al. 1981]. Either the precedence con
straints fixing the machine orders for the jobs or the capacity 
constraints of the machines can be weighted and aggregated to a 
single constraint. For fixed values of the multipliers, the result
ing problems can be solved in (pseudo)polynomial time. Although 
this approach leads to stronger lower bounds, it appears to be too 
time consuming to have much computational value. 

As far as approximation algorithms are concerned, the performance 
guarantees due to [Gonzalez & Sahni 1978A] for flow shop algorithms 
AS and LPT (see Section 5.3.2) also apply to the case of a job 
shop. 

A considerable effort has been invested in the empirical test
ing of various priority rules [Gere 1966; Conway et al. 1967; Day 
& Hottenstein 1970; Panwalkar & Iskander 1977]. No rule appears to 
be consistently better than any other and in practical situations 
one would be well advised to exploit any special structure that 
the problem at hand has to offer. 

6. CONCLUDING REMARKS 

If one thing emerges from the preceding survey, it is the amazing 
success of complexity theory as a means of differentiating between 
easy and hard problems. Within the very detailed problem 
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classification developed especially for this purpose, surprisingly 
few open problems remain. For an extensive class of scheduling 
problems, a computer program has been developed that classifies 
these problems according to their computational complexity 
[Lageweg et al. 1981A, 1981B]. It employs elementary reductions 
such as those defined in Section 2.7 in order to deduce the conse
quences of the development of a new polynomial-time algorithm or a 
new NP-hardness proof. 

As far as polynomial-time algorithms are concerned, the most 
impn~ssive recent advances have occurred in the area of parallel 
machine scheduling and are due to researchers with a computer 
science background, recognizable as such by their use of terms 
like tasks and processors rather than jobs and machines. Single 
machine, flow shop and job shop scheduling has been traditionally 
the domain of operations researchers; here, an analytical approach 
to the performance of approximation algorithms is badly needed. 

Several extensions of the problem class considered in this 
paper appear to be worthy of further study. A quite natural one 
involves the presence of additional limited resources, with the 
property that each job requires the use of a part of each resource 
during its execution. These problems turn out to be fairly compli
cated. We refer to. [Davis 1966, 1973] for surveys and extensive 
bibliographies on resource constrained project scheduling, to 
[Blazewicz et al. 1980] for a partial complexity classification of 
this problem class, and to [Garey & Johnson 1981] for the famous 
special case of bin packing models. 

More fundamentally, the strictly deterministic character .. of 
our models represents one of their major _shortcomings. ':rhe investi
gation of their stochastic counterparts is of obvious interest and 
forms the subject of several contributions to this volume. 

The area of deterministic sequencing and scheduling has 
emerged as one of the more fruitful interfaces between computer 
science and operations research. Proper consideration for the 
practical relevance of further theoretical work should continue to 
make it a challenging research area for many years to come. 
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