
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

BW 146/81

E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN

RECENT DEVELOPMENTS IN DETERMINISTIC SEQUENCING
AND SCHEDULING: A SURVEY

Preprl nt

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

lllll llllll llll llll lllli'liil" lllf llil IIII Ill lllll Ill llllll
3 0054 00035 5959

Ptunte.d a:t the. Ma-the.ma:Uc.ai. Ce.ntlte., 413 Kfl.U.t6laan, Anu,teJuiam.

The. Ma.the.ma.tic.al. Ce.nttz.e. , 6ou.nded the. 11-th 06 Fe.bJz.uall.y 1946, ,u., a. non
p1r,06,i..t ii'lll.>:tUlLtwn a.,i_m,i_ng a.t the. p1r,omotion 06 pWl.e. ma.the.ma:Uc..o and -la
a.ppUc.a:tion6. It b., 1.>pon1.>01r,e.d by the. Ne.:the,Jr,,ta.nd6 Gove,1r,nme.nt :thMugh the
Ne.:thVt1.a.nd6 01r,gavuza:Uon 601r, the. Advanc.e.me.nt 06 PUll.e. Re.1.>e.Mc.h (Z.W.O.).

1980 Mathematics Subject Classification: 90B35, 68C15, 68C25

RECENT DEVELOPMENTS IN DETERMINISTIC SEQUENCING
AND SCHEDULING: A SURVEY

E.L. LAWLER

University of California, Berkeley

J.K. LENSTRA

Mathematisch Centrum, Amsterdam

A.H.G. RINNOOY KAN
Erasmus University, Rotterdam

ABSTRACT

The theory of deterministic sequencing and scheduling has expanded rapidly

during the past years. We survey the state of the art with respect to

optimization and approximation algorithms and interpret these in terms of

computational complexity theory. Special cases considered are single machine

scheduling, identical, uniform and unrelated parallel machine scheduling,

and open shop, flow shop and job shop scheduling. This paper is a revised

version of the survey by Graham et al. (Ann. Discrete Math. 5(1979)287-326),

with emphasis on recent developments.

KEY WORDS & PHRASES: deterministic scheduling, single mac4ine, parallel

machines, open shop, flow shop, job shop, polynomial-time algorithm, NP

hardness, worst-case analysis.

NOTE: This report will appear in Deterministic and Stochastic Scheduling,

edited by M.A.H. Dempster, J.K. Lenstra and A.H.G. Rinnooy Kan, to be

published by Reidel, Dordrecht, in 1982.

RECENT DEVELOPMENTS IN DETERMINISTIC SEQUENCING AND SCHEDULING:
A SURVEY

ABSTRACT

1 1 2 3 E.L. Law er , J.K. Lenstra , A.H.G. Rinnooy Kan

1university of California, Berkeley
2Mathematisch Centrurn, Amsterdam
3Erasmus University, Rotterdam

1

The theory of deterministic sequencing and scheduling has expanded
rapidly during the past years. We survey the state of the art with
respect to optimization and approximation algorithms and interpret
these in terms of computational complexity theory. Special cases
considered are single machine scheduling, identical, uniform and
unrelated parallel machine scheduling, and open shop, flow shop
and job shop scheduling. This paper is a revised version of the
survey by Graham et al. (Ann. Discrete Math. 5(1979)287-326), with
emphasis on recent developments. -

1. INTRODUCTION

In this paper we attempt to survey the rapidly expanding area of
deterministic scheduling theory. Although the field only dates back
to the early fifties, an impressive amount of literature has been
created and the remaining open problems are currently under heavy
attack. An exhaustive discussion of all available material would
be impossible - we will have to restrict ourselves to the most sig
nificant results, paying special attention to recent developments
and omitting detailed theorems and proofs._ For further information
the reader is referred to the classic book by Conway, Maxwell and
Miller [Conway et al. 1967], the introductory textbook by Baker
[Baker 1974], the advanced expository articles collected by Coffman
[Coffman 1976] and a few survey papers and theses [Bakshi & Arora
1969; Lenstra 1977; Liu 1976; Rinnooy Kan 1976]. This paper itself
is a revised and updated version of a recent survey [Graham et al.
1979].

2

The outline of the paper is as follows. Section 2 introduces
the essential notation and presents a detailed problem classifica
tion. Sections 3, 4 and 5 deal with single machine, parallel
machine, and open shop, flow shop and job shop problems, respec
tively. In each section we briefly outline the relevant complexity
results and optimization and approximation algorithms. Section 6
contains some concluding remarks.

We shall be making extensive use of concepts from the theory
of computational complexity [Cook 1971; Karp 1972]. Several intro
ductory surveys of this area are currently available [Karp 1975;
Garey & Johnson 1979; Lenstra & Rinnooy Kan 1979] and hence terms
like (pseudo)polynomial-time algorithm and (binary and unary) NP
hardness will be used without further explanation.

2. PROBLEM CLASSIFICATION

2.1. Introduction

Suppose that n jobs Jj (j = 1, ... ,n) have to be processed on m
machines Mi (i = 1, ... ,m). Throughout, we assume that each machine
can process at most one job at a time and that each job can be
processed on at most one machine at a time. Various job, machine
and scheduling characteristics are reflected by a three-field prob
lem classification alBly, to be introduced in this section.

2.2. Job data

In the first place, the following data can be specified for each
Jj:

a number of operations mj;
one or more processing times Pj or Pij, that Jj has to spend
on the various machines on which it requires processing;
a release date rj, on which Jj becomes available for process
ing;
a due date dj, by which Jj should ideally be completed;
a weight Wj, indicating the relative importance of Jj;
a nondecreasing real cost function fj, measuring the cost
fj(t) incurred if Jj is completed at time t.

In general, mj, Pj, Pij, rj, dj and Wj are integer variables.

2.3. Machine environment

We shall now describe the first field a= a1a2 specifying the
machine environment. Let O denote the empty symbol.

If a1 E {o,P,Q,R}, each Jj consists of a single operation that
can be processed on any Mi; the processing time of Jj on Mi is Pij•
The four values are characterized as follows:

a1 = 0 : single machine; Plj = Pji
a1 = P: identical parallel machines; Pij = Pj (i 1, ... ,m);

a1 = Q: uniform parallel machines; Pij Pj/qi for a given
speed qi of Mi (i = 1, ... ,m);
a1 = R: unrelated parallel machines.

3

If ci1 = O, we have an open shop, in which each Jj consists of a
set of operations {01j,---,Omj}. Oij has to be processed on Mi
during Pij time units, but the order in which the operations are
executed is immaterial. If a1 E {F,J}, an ordering is imposed on
the set of operations corresponding to each job. If a1 = F, we have
a fJow shop, in which each Jj consists of a chain (01j,···,Omj).
Oij has to be processed on Mi during Pij time units. If a1 = J, we
have a job shop, in which each Jj consists of a chain (Olj,---,Omjj).
Oij has to be processed on a given machine µij during Pij time
units, with µi-1,j 7- µij for i = 2, ... ,mj.

If a2 is a positive integer, then mis constant and equal to
a 2 . If a2 = 0 then mis assumed to be variable. Obviously, a1 = 0

if and only if a2 = 1.

2.4. Job characteristics

The second field Sc {S 1 , ... ,S5 } indicates a number of job charac
teristics, which are defined as follows.
1. S1 E {pmtn,o}

2.

3.

4.

5.

S1 = pmtn : Preemption (job splitting) is allowed: the pro
cessing of any operation may be interrupted and
resumed at a later time.

S2
S3 E

S3 =
S3
S4 E

S4

S4
P5 E

S5 =

0 No preemption is allowed.
{prec,tree,o}
prec: A precedence relation ➔ between the jobs is speci

fied. It is derived from a directed acyclic graph
G with vertex set {1, ... ,n}. If G contains a
directed path from j to k, we write Jj ➔ Jk and

tree

0

{rj,o}

require that Jj is completed before Jk can start.
G is a rooted tree with either outdegree at most
one for each vertex or indegree at most one for
each vertex.
No precedence relation is specified.

rj Release dates that may differ per job are specified.
o : All rj = 0.
{ mf<;iii, o }

mj~ffi A constant upper bound on mj is specified (only
if a 1 = J).

0 : All mj are arbitrary integers.
{Pij=l,o} -
Pij=l: Each operation has unit processing time (if

a1 E { 0 ,P,Q}, we write Pj=l; if a1 R, Pij=l will
not occur).

S5 = o All Pij (pj) are arbitrary integers.

4

2.5. Optimality criteria

The third field y E {fmax,Lfj} refers to the optimality criterion
chosen. Given a schedule, we can compute for each Jj:

the completion time Cj;
the lateness Lj = Cj-d·;
the tardiness Tj = max{O,Cj-dj};
the unit penalty Uj = 0 if Cj $ dj, uj = 1 otherwise.

The optimality criteria most commonly chosen involve the minimiza
tion of

where fmax = maxj{fj(Cj)} with fj(Cj) = Cj,Lj, respectively, or

Lfj E {LCj,LTj,LUj,LWjCj,LWjTj,LWjUj}

where Lfj = L~=1 fj(Cj) with fj(Cj) = Cj,Tj,Uj,WjCj,WjTj,WjUj,
respectively.

It should be noted that LWjCj and LWjLj differ by a constant
LWjdj and hence are equivalent. Furthermore, any schedule minimi
zing Lmax also minimizes Tmax and Umax, but not vice versa.

The optimal value of y will be denoted by y*, the value pro
duced by an (approximation) algorithm A by y(A). If a known upper
bound p on y(A)/y* is best possible in the sense that examples
exist for which y(A)/y* equals or asymptotically approaches p, this
will be denoted by a dagger (t).

2.6. Examples

1lpreclLmax: minimize maximum lateness on a single machine sub
ject to general precedence constraints. This problem can be
solved in polynomial time (Section 3.2).

Rlpmtnlrcj : minimize total completion time on a variable number
of unrelated parallel machines, allowing preemption. The com
plexity of this problem is unknown (Section 4.4.3).

J31Pij=11Cmax : minimize maximum completion time in a 3-machine
job shop with unit processing times. This problem is NP-hard
(Section 5.4.1).

2.7. Reducibility among scheduling problems

Each scheduling problem in the class outlined above corre_sponds to
an 7-tuple (vo, ... ,v6), where Vi is a ver~ex of graph Gi drawn in
Figure 1 (i = 0, ... ,6). For two problems P' = (vQ, ... ,v6) and P =
(v0 , ••. ,v6), we write P' ➔ P if either vi= vi or Gi contains a
directed path from vl to vi, for i = 0, •.. ,6. The reader should
verify that P' ➔ P implies P' ~ P. The graphs thus define elemen
tary reductions among scheduling problems. It follows that

if P' ➔ P and Pis well solved, then P' is well solved;
if P' ➔ P and P' is NP-hard, then Pis NP-hard.

G3

Figure 1

3. SINGLE MACHINE PROBLEMS

3.1. Introduction

5

08

The single machine case has been the object of extensive research
ever since the seminal work by Jackson [Jackson 1955] and Smith
[Smith 1956]. We will give a brief survey of the principal results,
classifying them according to the optimality criterion chosen. As
a general result, we note that if all rj = 0 we need only consider
schedules without preemption and without machine idle time [Conway
et al. 196 7].

3.2. Minimizing maximum cost

A crucial result in this section is an O(n2) algorithm to solve
llpreclfrnax for arbitrary nondecreasing cost functions [Lawler
1973]. At each step of the algorithm, let S denote the index set
of unscheduled jobs, let p(S) = IjES Pj, and let S' c S indicate

6

the jobs all whose successors have been scheduled. One selects Jk
for the last position among {Jjlj Es} by requiring that
fk(p(S)) 5 fj (p(S)) for all j ES'.

This method has been generalized to an O(n2) algorithm for
llpmtn,prec,rjlfmax [Baker et al. 1982]. First, the release dates
are modified such that rj+Pj 5 rk whenever Jj ➔ Jk. Next, the jobs
are scheduled in order of nondecreasing release dates; this creates
a number of blocks that can be considered separately. From among
the jobs without successors in a certain block, a job Jk that
yields minimum cost when put in the last position is selected, the
other jobs in the block are rescheduled in order of nondecreasing
release dates, and Jk is assigned to the remaining time intervals.
By repeated application of this procedure to each of the resulting
subblocks, one obtains an optimal schedule with at most n-1 preemp
tions in O(n2) time.

The remainder of this section deals with nonpreemptive Lrnax
problems. The general llrjlLmax problem is unary NP-hard [Lenstra
et al. 1977]. However, polynomial algorithms exist if all rj are
equal, all dj are equal, or all Pj are equal. The first case is
solved by a specialization of Lawler's method, known as Jackson's
rule [Jackson 1955]: schedule the jobs in order of nondecreasing
due dates. The second case is solved similarly by scheduling the
jobs in order of nondecreasing release dates.

As to the third case, llrj,Pj=llLmax is solved by the extended
Jackson's rule: at any time, schedule an available job with small
est due date. The problem 1 lrj,Pj=PILrnax, where pis an arbitrary
integer, requires a more sophisticated approach [Simons 1978]. Let
us first consider the simpler problem of finding a feasible sched
ule with respect to given release dates rj and deadlines dj. If
application of the extended Jackson's rule yields such a schedule,
we are finished; otherwise, let Ji be the first late job and let
Jk be the last job preceding Ji such that dk > di. If Jk does not
exist, there is no feasible schedule; otherwise, the only hope of
obtaining such a schedule is to postpone Jk by forcing it to yield
precedence to the set of jobs currently between Jk and Ji. This is
achieved by declaring the interval between the starting time of Jk
and the smallest release date of this set to be a forbidden region
in which no job is allowed to start and applying the extended
Jackson's rule again subject to this constraint. Since at each
iteration at least one starting time of the form rj+hp (1 5 j,h 5 n)
is excluded, at most n 2 iterations will occur and the feasibility
question is answered in O(n 3log n) time. An improved implementation
requires only O(n log n) time [Garey et al. 1981A]. Bisection search
over the possible Lmax values leads to a polynomial algorithm for
llrj,Pj=PILrnax· -

These three special cases remain well solved in the presence
of precedence constraints. It suffices to update release and due
dates such that rj < rk and dj < dk whenever Jj ➔ Jk [Lageweg
et al. 1976].

Various elegant enumerative methods exist for solving

7

llprec,rjlLmax· Baker and Su [Baker & Su 1974] obtain a lower bound
by allowing preemption; their enumeration scheme simply generates
all active schedules, i.e. schedules in which one cannot decrease
the starting time of an operation without increasing the starting
time of another one. McMahon and Florian [McMahon & Florian 1975]
propose a more ingenious approach; a slight modification of their
algorithm allows very fast solution of quite large problems
[Lageweg et al. 1976]. earlier [earlier 1980] describes a related
method of comparable efficiency.

Very little work has been done on worst-case analysis of approxi
mation algorithms for single machine problems. For llrjlLrnax,
Potts [Potts 1980B] presents an iterative version of the extended
Jackson's rule (IJ) and shows that, if rj ~ 0 and dj ~ 0
(j = 1, ... ,n),

L (IJ)/L* < ~
max max - 2 • (t)

3.3. Minimizing total cost

The case 11 IIwjej can be solved in O(n log n) time by Smith's rule:
schedule the jobs according to nonincreasing ratios wj/Pj [Smith
1956]. If all weights are equal, this amounts to the SPT rule of
executing the jobs on the basis of shortest processing time first,
a rule that is often used in more complicated situations without
much empirical, let alone theoretical, support for its superior
quality (cf. Section 5.4.2). ·

This result has been extended to O(n log n) algorithms that
deal with tree-like [Horn 1972; Adolphson & Hu 1973; Sidney 1975]
and even series-parallel [Lawler 1978] precedence constraints; see
[Adolphson 1977] for an O(n 3) algorithm covering a slightly more
general case. The crucial observation to make here is that, if
Jj ➔ Jk with wj/Pj < wk/Pk and if all other jobs either have to
precede Jj, succ_eed Jk, or are incomparable with both, then Jj and
Jk are adjacent in at least one optimal schedule and can effective
ly be treated as one job with processing time Pj+Pk and weight
wj+wk. By successive application of this device, starting at the
bottom of the precedence tree, one will eventually obtain an opti
mal schedule. Addition of general precedence constraints results
in NP-hardness, even if all Pj = 1 or·all Wj = 1 [Lawler 1978;
Lenstra & Rinnooy Kan 1978].

If release dates are introduced, llrjliej is already unary
NP-hard [Lenstra et al. 1977]. In the preemptive case,
llpmtn,rjliej can be solved by an obvious extension of Smith's
rule, but, surprisingly, llpmtn,rjlLwjej is unary NP-hard
[Labetoulle et al. 1979].

For llrjlLwjej, several elimination criteria and branch-and
bound algorithms have been proposed [Rinaldi & Sassano 1977;
Bianco & Ricciardelli 1981; Hariri & Potts 1981].

8

11 IIwjTj is a unary NP-hard problem [Lawler 1977; Lenstra et al.
1977], for which various enumerative solution methods have been
proposed. Elimination criteria developed for the problem [Emmons
1969; Shwimer 1972] can be extended to the case of arbitrary non
decreasing cost functions [Rinnooy Kan et al. 1975]. Lower bounds
can be based on a linear assignment relaxation using an underesti
mate of the cost of assigning Jj to position k [Rinnooy Kan et al.
1975], a fairly similar relaxation to a transportation problem
[Gelders & Kleindorfer 1974, 1975], and relaxation of the require
ment that the machine can process at most one job at a time
[Fisher 1976]. In the latter approach, one attaches "prices"
(i.e., Lagrangean multipliers) to each unit-time interval. Multi
plier values are sought for which a cheapest schedule does not
violate the capacity constraint. The resulting algorithm is quite
successful on problems with up to 50 jobs, although a straightfor
ward but cleverly implemented dynamic programming approach [Baker
& Schrage 1978] offers a surprisingly good alternative.

If all Pj = 1, we have a simple linear assignment problem,
the cost of assigning Jj to position k being given by fj(k). If
all Wj = 1, the problem can be solved by a pseudopolynomial algo
rithm in O(n4 Ipj) time [Lawler 1977]; the computational complexity
of 11 IITj with respect to a binary encoding remains an open question.

Addition of precedence constraints yields NP-hardness, even
for llprec,pj=llITj [Lenstra & Rinnooy Kan 1978].

If we introduce release dates, .llrj,Pj=lliwjTj can again be
solved as a linear assignment problem, whereas 11rjlITj is obvi
ously unary NP-hard.

An algorithm due to Moore [Moore 1968] allows solution of 11 IIUj
in O(n log n) time: jobs are added to the schedule in order of
nondecreasing due dates, and if addition of Jj results in this job
being completed after dj, the scheduled job with the largest pro
cessing time is marked to be late and removed. This procedure can
be extended to cover the case in which certain specified jobs have
to be on time [Sidney 1973]; the further generalization in which
jobs have to meet given deadlines occurring at or after their due
dates is binary NP-hard [Lawler-]. The problem also remains solv
able in O(n log n) time if we add agreeable weights (i.e.,
Pj <Pk=:> Wj ~ Wk) [Lawler 1976A] or agreeable release dates (i.e.,
dj < dk =:> rj :S: rk) [Kise et al. 1978]. 11 I_IwjUj is binary NP-hard
[Karp 1972], but can be solved by dynamic programming in O(nipj)
time [Lawler & Moore 1969].

Again, 1lprec,pj=1IIUj is NP-hard [Garey & Johnson 1976],
even for chain-like precedence constraints [Lenstra & Rinnooy Kan
1980].

Of course, llrjlLUj is unary NP-hard, but dynamic programming

9

techniques can be applied to solve llpmtn,rjlIUj in O(n 6) time and
llpmtn,rjliwjUj in O(n 3 (Iwj) 3) time [Lawler-].

For 11 IIwjUj, Sahni [Sahni 1976] presents algorithms Ak with
O(n 3k) running time such that

Iw.U.(Ak)/Iw.U~;:,: 1 - k!'
J J J J

where Uj = 1-Uj. For lltreeliwjUj, Ibarra and Kim [Ibarra & Kim
197B] give algorithms Bk of order O(knk+2) with the same worst
case error bound.

4. PARALLEL MACHINE PROBLEMS

4.1. Introduction

Recall from Section 2.3 the definitions of identical, uniform and
unrelated machines, denoted by P, Q and R, respectively.

Nonpreemptive parallel scheduling problems tend to be diffi
cult. This can be inferred immediately from the fact that P2J JCmax
and P2J IIwjCj are binary NP-hard [Bruno et al. 1974; Lenstra et al.
1977]. If we are to look for polynomial algorithms, it follows that
we should either restrict attention to the special case Pj = 1, as
we do in Section 4.2, or concern ourselves with the ICj criterion,
as we do in the first three subsections of Section 4.3. The remain
ing part of Section 4.3 is entirely devoted to enumerative optimi
zation methods and approximation algorithms for various NP-hard
problems.

The situation is much brighter with respect to preemptive
parallel scheduling. For example, PlpmtnlCmax has long been known
to admit a simple O(n) algorithm [McNaughton 1959]. Many new
results for the ICj, Cmax, Lmax, IUj and IwjUj criteria have been
obtained quite recently. These are summarized in Section 4.4. With
respect to other criteria, P2JpmtnJiwjCj turns out to be NP-hard
(see Section 4.4.1). Little is known about PJpmtnJITj, but we know
from Section 3.3.2 that llpmtnliwjTj is already NP-hard.

4.2. Nonpreemptive scheduling: unit processing times

A simple transportation network model provides an efficient solu
tion method for Qlpj=llifj and Qlpj=llfmax•

Let there be n sources j (j = 1, .. :,n) and mn sinks (i,k)
(i = 1, ... ,m, k = 1, ... ,n). Set the cost of arc (j, (i,k)) equal to
Cijk = fj(k/qi). The arc flow Xijk is to have the interpretation:

if Jj is executed on Mi in the k-th position,
otherwise.

10

Then the problem is to minimize

1:i,j,k cijkxijk

subject to

1:. k xijk -- 1
l.,

1:. xijk
:,; 1

J

xijk ~ 0

or max. . k{c . . kx .. k} l.,J, l.J l.J

for all j,

for all i,k,

for all i,j,k.

The time required to prepare the data for this transportation prob
lem is O(mn2). A careful analysis reveals that the problem can be
solved (in integers) in O(n 3) time. Since we may assume that m:,; n,
the overall running time is O(n3).

We note that the special case Plpj=1l1:Uj can be solved in
O(n log n) time [Lawler 1976A]. The problem Plrj,Pj=plLmax is
solvable in polynomial time by an extension of the corresponding
single machine algorithm (see Section 3.2) [Simons 1980].

4.2.2. Plprec,pj=11Cmax

Plprec,pj=11Cmax is known to be NP-hard [Ullman 1975; Lenstra &

Rinnooy Kan 1978]. It is an open question whether this remains
true for any constant value of m ~ 3. The problem is well solved,
however, if the precedence relation is of the tree-type or if
m = 2.

Pltree,pj=11Cmax can be solved in O(n) time by Hu's algorithm
[Hu 1961; Hsu 1966; Sethi 1976A]. The level ·of a job is defined as
the number of jobs in the unique path to the root of the precedence
tree. At the beginning of each time unit, as many available jobs
as possible are scheduled on them machines, where highest priority
is granted to the jobs with the largest levels. Thus, Hu's algo
rithm is a nonpreemptive list scheduling algorithm, whereby at
each step the available job with the highest ranking on a priority
list is assigned to the first machine that becomes available. It
can also be viewed as a critical path scheduling algorithm: the
next job chosen is the one which heads the longest current chain
of unexecuted jobs.

If the precedence constraints are in the form of an intree
(each job has at most one successor), then Hu's algorithm can be
adapted to minimize Lmaxi in the case of an outtree (each job has
at most one predecessor), the Lmax problem turns out to be NP-hard
[Brucker et al. 1977]. There are some recent algorithmic and NP
hardness results concerning·Plprec,pj=11cmax for precedence con
straints other than intrees or outtrees, such as opposing forests
(combinations of intrees and outtrees), level graphs, and so forth
[Dolev 1981; Garey et al. 1981B; Warmuth 1980].

P2lprec,pj=11Cmax can be solved by various polynomial algo-

11

rithms [Fujii et al. 1969, 1971; Coffman & Graham 1972; Gabow 1980].
In the approach due to Fujii et al., an undirected graph is

constructed with vertices corresponding to jobs and edges {j,k}
whenever Jj and Jk can be executed simultaneously, i.e., Jj f Jk
and Jk f Jj. An optimal schedule is then derived from a maximum
cardinality matching in the graph. Such a matching can be found in
O(n 3) time [Lawler 1976B].

The Coffman-Graham approach leads to an O(n2) list algorithm.
First the jobs are labelled in the following way. Suppose labels
1, .•. ,k have been applied and Sis the subset of unlabelled jobs
all 'of whose successors have been labelled. Then a job in Sis
given the label k+l if the labels of its immediate succesors are
lexicographically minimal with respect to all jobs in S. The prior
ity list is given by ordering the jobs according to decreasing la
bels. It is possible to execute this algorithm in time almost linear
inn plus the number of arcs in the precedence graph, if the graph
is given in the form of a transitive reduction [Sethi 1976B].·

Recently, Gabow developed an algorithm which has the same
running time, but which does not require such a representation of
the precedence graph.

Garey and Johnson present polynomial algorithm for this prob
lem where, in addition, each job becomes available at its release
date and has to meet a given deadline. In this approach, one proc
esses the jobs in order of increasing modified deadlines. This
modification requires O(n2) time if all rj = O [Garey & Johnson
1976] and O(n 3) time in the general case LGarey & Johnson 1977].

We note that Plprec,pj=11Ecj is NP-hard [Lenstra & Rinnooy
Kan 1978]. Hu's algorithm does not yield an optimal rcj schedule
in the case of intrees, but in the case of outtrees critical path
scheduling minimizes both cmax and rcj [Rosenfeld-]. The Coffman
Graham algorithm also minimizes rcj [Garey-].

As far as approximation algorithms for Plprec,pj=ll~ax are con
cerned, the NP-hardness proof given in [Lenstra & Rinnooy Kan 1978]
implies that, unless P = NP, the best possible worst-case bound for
a polynomial-time algorithm would be 4/3. The performance of both
Hu's algorithm and the Coffman-Graham algorithm has been analyzed.

When critical path (CP) scheduling is used, Chen and Liu
[Chen 1975; Chen & Liu 1975] and Kunde [Kunde 1976] show that

4

C (CP)/C* < { 3
max max - 2 __ 1_

m-1

form= 2,

form~ 3.
(t)

Lam and Sethi [Lam & Sethi 1977] use the Coffman-Graham {CG) algo
rithm to generate lists and show that

C (CG)/C* ~ 2 - ~ (m ~ 2).
max max m

(t)

If SS denotes the algorithm which schedules as the next job the

12

one having the greatest number of successors then it can be shown
[Ibarra & Kim 1976] that

C (SS)/C* < i form= 2.
max max - 3

(t)

Examples show that this bound does not hold form 2:': 3.

Finally, we mention some results for the more general case in which
all Pj E {1,k}. Both P2Jprec,pjE{1,2}lcmax and P2Jprec,pjE{1,2}ILCj
are NP-hard [Ullman 1975; Lenstra & Rinnooy Kan 1978]. For
P2lprec,pjE{1,k}Jcmax, Goyal [Goyal 1977] proposes a generalized
version of the Coffman-Graham algorithm (GCG) and shows that

4

C (GCG)/C* $ J333
max max L3 1

2 2k

fork= 2,

for k 2:': 3.

4.3. Nonpreemptive scheduling: general processing times

(t)

The following generalization of the SPT rule for 11 ILCj (see Sec
tion 3.3.1) solves Pl ILCj in O(n log n) time [Conway et al. 1967].
Assume n = km (dummy jobs with zero processing times can be added
if not) and suppose Pl$... $ Pn· Assign them jobs J(j-l)m+l,
J(j-l)m+2, ... ,Jjm tom different machines (j = 1, ... ,k) and exe
cute the k jobs assigned to each machine in SPT order.

With respect to Pl ILWjCj, Eastman, Even and Isaacs [Eastman
et al. 1964] show that after renumbering the jobs according to
nonincreasing ratios Wj/Pj

1 n > l n j _ 1 n LW,C.(LS) - -2 L. 1w,p, - (L, lLk 1w.pk -2 L. 1w.p.). (t)
J J J= J J m J= = J J= J J

It follows from this inequality that

m+n n j
LwjCj:::;,: m(n+l) Lj=l Lk=l wjpk.

In [Elmaghraby & Park 1974; Barnes & Brennan 1977] branch-and
bound algorithms based on this lower bound are developed.

Sahni [Sahni 1976] constructs algorithms Ak (in the same spirit as
his approach for 11 JLwjUj mentioned in Section 3.3.3) with
O(n(n2k)m-1) running time for which

LW .C. (A_) /LW .C'!'
J J k J J

Form= 2, the running time of Ak can be improved to O(n2k).

13

The algorithm for solving Pl ltcj given in the previous section can
be generali·zed to the case of uniform machines [Conway et al . 196 7].
If Jj is the k-th last job executed on Mi, a cost contribution
kPij = kpj/qi is incurred. Z:Cj is a weighted sum of the Pj and is
minimized by matching then smallest weights k/qi in nondecreasing
order with the Pj in nonincreasing order. The procedure can be im
plemented to run in O(n log n) time [Horowitz & Sahni 1976].

RI IZ:Cj can be formulated and solved as an mxn transportation prob
lem [Horn 1973; Bruno et al. 1974]. Let

{1
xijk = 0

if Jj is the k-th last job executed on Mi,
otherwise.

Then the problem is to minimize

m n n
z:i=l Z:j=l z:k=l kpijxijk

subject to

m n
1 z:. 1 Z:k=l xijk = for all j,

i=
n

~ 1 for all i,k, Z:. 1 xijk J=

xijk ~ 0 for all i,j,k.

This problem, like the similar one in Section 4.2.1, can be solved
in O(n 3) time.

4.3.4. Other cases: enumerative optimization methods

As we noted in S_ection 4. 1, P2 I I Cmax and P2 I I Z:wjCj are NP-hard.
Hence it seems fruitless to attempt to find polynomial-time opti
mization algorithms for criteria other than Z:Cj. Moreover,
P2ltreelZ:Cj is known to be NP-hard, both for intrees and outtrees
[Sethi 1977]. It follows that it is also not possible to extend
the above algorithms to problems with precedence constraints. The
only remaining possibility for optimization methods seems to be
implicit enumeration.

RI ICmax can be solved by a branch-and-bound procedure de
scribed in [Stern 1976]. The enumerative approach for identical
machines in [Bratley et al. 1975] allows inclusion of release dates
and deadlines as well.

A general dynamic programming technique [Rothkopf 1966; Lawler
& Moore 1969] is applicable to parallel machine problems with the
Cmax, Lmax, Z:wjCj and LWjUj optimality criteria, and even to

14

problems with the LWjTj criterion in the special case of a common
due date.

Let us define Fj(t1, ••• ,tm) as the minimum cost of a schedule
without idle time for J1, ••• ,Jj subject t6 the constraint that the
last job on Mi is completed at time ti, for i = 1, ••. ,m. Then, 'in
the case of fmax criteria,

F.(t1 , •• ,t) = minl<"< {max{f.(t.),F. 1 ct1 , .. ,t.-p .. , •• ,t)}},
J m -l-m J i J- i J..J m

and in the case of Lfj criteria,

F.(t1 , .. ,t) = minl<"< {f.(t.)+F. 1 (t1 , •• ,t.-p .. , •• ,t)}.
J m -l-m . J i J- i J..J m

In both cases, the initial conditions are

if ti= 0 for i = 1, •. ,m,
otherwise.

Appropriate implementation of these equations yields O(mncm-1)
computations for a variety of problems, where C is an upper bound
on the completion time of any job in an optimal schedule. Among
these problems are PI rj I Cmax, Q 11 Lmax and Q 11 LWjCj. P 11 LWjUj can
be solved in O(mn(maxj{dj})m) time.

Still other dynamic programming approaches can be used to
solve Pl ILfj and Pl lfmax in O(m•min{3n,n2nc}) time.

4.3.5. Other cases: approximation algorithms

4.3.5.1. Pl ICmax

By far the most studied scheduling model from the viewpoint of
approximation algorithms is Pl IC~ax· We refer to [Garey et al.1

1978] for an easily readable introduction into the techniques in
volved in many of the "performance guarantees" mentioned below.

Perhaps the earliest and simplest result on the worst-case
performance of l.ist scheduling is given in [Graham 1966]:

1
C (LS)/C* $ 2 - .

max max m
(t)

If the jobs are selected in LPT order, then the bound can be con
siderably improved, as is shown in [Graham 1969]:

I < i - 1 C (LPT) C* - 3 3m. max max
(t)

A somewhat better algorithm, called multi/it (MF) and based on a
completely different principle, is given in [Coffman et al. 1978].
The idea behind MF is to find (by binary search) the smallest
"capacity" a set of m "bins" can have and still accommodate all
jobs when the jobs are taken in order of nonincreasing Pj and each
job is placed into the first bin into which it will fit. The set

of jobs in the i-th bin will be processed by Mi. If k packing at
tempts are made, the algorithm (denoted by MFk) runs in time
O(n log n + knm) and satisfies

C (MFk)/C*
max max

-k
::; 1.22 + 2 .

15

We note that if the jobs are not ordered by decreasing Pj then all
that can be guaranteed by this method is

C (MF)/C*
max max

2
$ 2 - -m+l. (t)

The following algorithm Zk was introduced in [Graham 1969]: sched
ule the k largest jobs optimally, then list schedule the remaining
jobs arbitrarily. It is shown in [Graham 1969] that

c (Z) /C* $ 1 + (1 - ..!_) / (1 + rl~mlj)
max• k max m

and that when m divides k, this is best possible. Thus, we can make
the bound as close to 1 as desired by taking k sufficiently large.
Unfortunately, the best bound on the running time is O(nkm).

A very interesting algorithm for Pl !Cmax is given by Sahni
[Sahni 1976]. He presents algorithms Ak with O(n(n2k)m- 1) running
time which satisfy

C (A.) /C*
max k max

Form= 2, algorithm A2 can be improved to run in time O(n2k). As
in the cases of 11 IIwjUj (Section 3.3.3) and Pl IIwjCj (Section
4.3.1), the algorithms Ak are based on a clever combination of
dynamic programming and rounding and are beyond the scope of the
present discussion.

Several bounds are available which take into account the pro
cessing times of the jobs. In [Graham 1969] it is shown that

C (LS)/C* $ 1 + (m-1)max.{p.}/I.p ..
max max J J J J

For the case of LPT, Ibarra and Kim [Ibarra & Kim 1977] prove that

C (LPT)/C* $ 1 + 2 <m-l) for n ~ 2(m-1)max.{p.}/min.{p.}.
max max n J J J J

4 . 3 . 5 . 2 . Q I I Cmax

In the literature on approximation algorithms for scheduling prob
lems, it is usually assumed that unforced _idleness (UI) of machines
is not allowed, i.e., a machine cannot be idle when jobs are avail
able. In the case of identical machines, UI need not occur in an
optimal schedule if there are no precedence constraints or if all
Pj = 1. Allowing UI may yield better solutions, however, in the
cases which are to be discussed in Sections 4.3.5.2-5. The optimal
value of Cmax under the restriction of no UI will be denoted by

16

C~ax, the optimum if UI is allowed by C~ax(UI).
Liu and Liu [Liu & Liu 1974A, 1974B, 1974C] study numerous

questions dealing with uniform machines. They define the algorithm
Ak as follows: schedule the k longest jobs first, resulting in a
completion time of Ck(Ak), and schedule the remaining tasks for a
total completion time of Cmax(Ak). If Cmax<Ak) > Ck(Ak), then

C (A_) /C* (UI)
max k max

where all qi~ 1 and

~ 1 + 1
Q

1
QE.q.

l. l.

k+1 1 q · l 1 k 1 { {r---1 J } _+_} Q = max min . E r l •-- -
J 1. 1 q 1. qJ. r q . lq . , r . q. •

J J 1 1

This is best possible when the qi are integers and Eiqi divides k.
Gonzalez, Ibarra and Sahni [Gonzalez et al. 1977] consider

the following generalization LPT' of LPT: assign each job, in
order of nonincreasing processing time, to the machine on which it
will be completed soonest. Thus, unforced idleness may occur in
the schedule. They show

2
c (LPT') /C* ~ 2 - m+l. max max

Also, examples are given for which Cmax(LPT')/C~ax approaches 3/2
as m tends to infinity.

4.3.5.3. RI lcmax

Very little is known about approximation algorithms for this model.
Ibarra and Kim [Ibarra & Kim 1977] consider five algorithms, typi
cal of which is to schedule Jj on the machine that executes it
fastest, i.e., on an Mi with minimum Pij• For all five algorithms
A they prove

C (A)/C* ~ m
max max

with equality possible for four of the five. For the special case
R2l ICmax, they give an O(n log n) algorithm G such that

C (G) /C* ~ 1+/s_
max max 2

(t)

Potts [Potts-] proposes an RI lcmax algorithm based on linear pro
gramming (LP), the running time of which is polynomial only for
fixed m. He proves

C (LP)/C* ~ 2.
max max

(t)

4.3.5.4. PlpreclCmax

In the presence of precedence constraints it is somewhat unexpected
[Graham 1966] that the 2-(1/m) bound still holds, i.e.,

17

C (LS)/C* ~ 2 - .!.._
max max m

Now, consider executing the set of jobs twice: the first time us
ing processing times Pj, precedence constraints, m machines and an
arbitrary priority list, the second time using processing times
Pj ~ Pj, weakened precedence constraints, m' machines and a (pos
sibly different) priority list. Then [Graham 196~]

m-1
C' (LS)/C (LS) ~ 1 + , .

max max m

Even when critical path (CP) scheduling is used, examples exist
[Graham-] for which

C (CP)/C*
max max

2
1
m

(t)

It is known [Graham-] that unforced idleness (UI) has the follow
ing behavior:

C (LS)/C* (UI) ~ 2 - .!.._
max max m

(t)

Let Cfuax<pmtn) denote the optimal value of Cmax if preemption is
allowed. As in the case of UI, it is known [Graham-] that

C (LS)/C* (pmtn) ~ 2 - l.
max max m

(t)

Liu [Liu 1972] shows that

C* (UI)/C* (pmtn) ~ 2 - - 2-
max max m+l ·

(t)

4.3.5.5. QlpreclCmax

Liu and Liu [Liu & Liu 1974B] also consider the presence of prece
dence constraints in the case of uniform machines. They show that,
when unforced idleness or preemption is allowed,

C (LS)/C* (UI) ~ l+max.{q.}/min.{q,}-max.{q.}/L.q., (t)
max max 1. 1. 1. 1. 1. 1. 1. 1.

C (LS)/C* (pmtn) ~ l+max.{q.}/min.{q.}-max.{q.}/L.q .. (t)
max max 1. 1. • 1. 1. 1. 1. 1. 1.

When all qi= 1 this reduces to the earlier 2-(1/m) bounds for
these questions on identical machines.

Suppose that the jobs are executed twice: the first time us
ing m machines of speeds q 1 , •.. ,qm, the second time using m' ma
chines of speeds qi, ... ,q~•- Then

C' (LS)/C* (UI) ~max.{q.}/min.{q'.}+(L.q.-max.{q.})/L.q'..(t)
max max 1. 1. · 1. 1. 1. 1. 1. 1. 1. 1.

Jaffe [Jaffe 1979] develops an algorithm LSi, that uses list sched
uling on the fastest i machines for an appropriately chosen value
of i. It is shown that

18

C (LSi)/C* (UI) $ l"m + O(ml/4)
max max

and examples are given for which the bound lm-1 is approached
arbitrarily closely.

4.4. Preemptive scheduling

4.4.1. PlpmtnlECj

A theorem of McNaughton [McNaughton 1959] states that for
PlpmtnlEwjCj there is no schedule with a finite number of preemp
tions which yields a smaller criterion value than an optimal non
preemptive schedule. The finiteness restriction can be removed by
appropriate application of results from open shop theory. It there
fore follows that the procedure of Section 4.3.1 can be applied to
solve PlpmtnlEcj. It also follows that P2lpmtnlEwjCj is NP-hard,
since P2l IEwjCj is known to be NP-hard.

McNaughton's theorem does not apply to uniform machines, as can be
demonstrated by a simple counterexample. There is, however, a poly
nomial algorithm for QlpmtnlECj.

One can show that there exists an optimal preemptive schedule
in which Cj $ Ck if Pj < Pk [Lawler & Labetoulle 1978]. Accordingly,
first place the jobs in SPT order. Then obtain an optimal schedule
by preemptively scheduling each successive job in the available
time on them machines so as to minimize its completion time
[Gonzalez 1977]. This procedure can be implemented in O (n log n + mn)
time and yields an optimal schedule with no more than (m-1) (n-~m)
preemptions. It has been extended to cover the case in which ECj
is minimized subject to a common·deadline for all jobs [Gonzalez
1977].

4.4.3. RlpmtnlECj

Very little is known about RlpmtnlEcj. This remains one of the
more vexing questions in the area of preemptive scheduling.

4.4.4. Plpmtn,preclCmax

An obvious lower bound on the value of an optimal PlpmtnlCmax
schedule is given by

1
max{max. {p.}, - L .p.}.

J J m J J

A schedule meeting this bound can be constructed in O(n) time
[McNaughton 1959]: just fill the machines successively, scheduling
the jobs in any order and splitting a job whenever the above time
bound is met. The number of preemptions occurring in this schedule

19

is at most m-1. It is possible to design a class of problems for
which this number is minimal, but the general problem of minimiz
ing the number of preemptions is easily seen to be NP-hard.

In the case of precedence constraints, Plpmtn,prec,pj=llCmax
turns out to be NP-hard [Ullman 1976], but Plpmtn,treelCmax and
P2lpmtn,prec1Cmax can be solved by a polynomial-time algorithm due
to Muntz and Coffman [Muntz & Coffman 1969, 1970]. This is as
follows.

Define lj(t) to be the level of a Jj wholly or partly unexe
cuted at time t. Suppose that at time t m' machines are available
and that n' jobs are currently maximizing lj(t). If m' < n', we
assign m'/n' machines to each of then' jobs, which implies that
each of these jobs will be executed at speed m'/n'. If m' ~ n', we
assign one machine to each job, consider the jobs at the next
highest level, and repeat. The machines are reassigned whenever a
job is completed or threatens to be processed at a higher speed
than another one at a currently higher level. Between each pair of
successive reassignment points, jobs are finally rescheduled by
means of McNaughton's algorithm for PlpmtnlCmax- The algorithm
requires O(n2) time [Gonzalez & Johnson 1980].

Gonzalez and Johnson [Gonzalez & Johnson 1980] have developed
a totally different algorithm that solves Plpmtn,treelCmax by
starting at the roots rather than the leaves of the tree and de
termines priority by considering the total remaining processing
time in subtrees rather than by looking at critical paths. The
algorithm runs in O(n log m) time and introduces at most n-2 pre
emptions into the resulting optimal schedule.

Lam and Sethi [Lam & Sethi 1977], much in the same spirit as their
work mentioned in Section 4.2.2, analyze the· performance of the
Muntz-Coffman (MC) algorithm for Plpmtn,preclCmax· They show

C (MC)/C* ~ 2 - 2 (m ~ 2).
max max m

4.4.5. Qlpmtn,preclCmax

Horvath, Lam and Sethi [Horvath et al. 1977] adapt the Muntz
Coffman algorithm to solve QlpmtnlCmax and Q2lpmtn,prec1Cmax in
O(mn2) time. This results is an optimal schedule with no more
than (m-1)n2 preemptions.

A computationally more efficient algorithm due to Gonzalez

(t)

and Sahni [Gonzalez & Sahni 1978B] solves QlpmtnlSnax in O(n) time,
if the jobs are given in order of nonincreasing Pj and the machines
in order of nonincreasing qi. This proced~re yields an optimal
schedule with no more than 2(m-1) preemptions, which can be shown
to be a tight bound.

The optimal value of Cmax is given by

k k n m
max{maxl~k~m-l{Ej=l pj/Ei=l qi}, Ej=lpj/Ii=l qi},

20

where Pl~ ••• ~ Pn and ql ~ ••. ~~-This result generalizes the
one given in Section 4.4.4.

The Gonzalez-Johnson algorithm for Plpmtn,treelCmax mentioned
in the previous section can be adapted to the case Q2lpmtn,tree1Cmax•

Jaffe [Jaffe 1980] studies the performance of maximal usage sched
ules (MUS) for Qlpmtn,preclCmax, i.e., schedules without unforced
idleness in which at any time the jobs being processed are assigned
to the fastest machines. It is shown that

C (MUS) /C* :5 .1ro° + .!_
max max 2

and examples are given for which the bound lm-1 is approached ar
bitrarily closely.

4.4.6. RlpmtnlCmax

Many preemptive scheduling problems involving independent jobs on
unrelated machines can be formulated as linear programming problems
[Lawler & Labetoulle 1978]. For instance, solving RlpmtnlCmax is
equivalent to minimizing

C
max

subject to

m
xij/pij 1 E. 1 =

1=
(j = 1, ..• ,n),

m
E. 1 x .. :5 C
1= 1J max

(j = 1, .•• ,n),

n
E. 1 x. :5 C

J= 1j max
(i = 1, ... ,m),

X .. ~ 0
1J

(i 1, ..• ,m, j = 1, .•• ,n).

In this formulation Xij represents the total time spent by Jj on
Mi. The linear program can be solved in polynomial time [Khachiyan
1979], and a feasible schedule can be constructed in polynomial
time by applying the algorithm for olpmtnlCmax, discussed in Sec
tion 5.2.2.

This procedure can be modified to yield an optimal schedule
with no more than about 7m2/2 preemptions. It remains an open
question as to whether O(m2) preemptions are necessary for an op
timal preemptive schedule.

For fixed m, it seems to be possible to solve the linear pro
gram in linear time. Certainly, the special case R2lpmtn1Cmax can
be solved in O(n) time [Gonzalez et al. 1981].

We note that a similar linear programming formulation can be
given for Rlpmtn,rjlLmax [Lawler & Labetoulle 1978].

21

4.4 .. 7. Plpmtn,prec,rjlLmax

PlpmtnlLmax and Plpmtn,rjlCmax can be solved by a procedure due to
Horn [Horn 1974]. The O(n2) running time has been reduced to 0(mn)
[Gonzalez & Johnson 1980].

More generally, the existence of a feasible preemptive sched
ule with given release dates and deadlines can be tested by means
of a network flow model in 0(n 3) time [Horn 1974]. A binary search
can then be conducted on the optimal value of Lmax, with each
tri'.al value of Lmax inducing deadlines which are checked for fea
sibility by means of the network computation. It can be shown that
this yields an 0(n 3min{n2 ,log n + log maxj{Pj}}) algorithm
[Labetoulle et al. 1979].

In the case of precedence constraints, the algorithms of
Brucker, Garey and Johnson for Plintree,pj=llLmax, P2lprec,pj=11Lmax
and P2lprec,rj,Pj=11Lmax (see Section 4.2.2) have preemptive coun
terparts. E.g., Plpmtn,intreelLmax can be solved in O(n2) time
[Lawler 1980]; see also the next section.

4.4.8. Qlpmtn,prec,rjlLmax

In the case of uniform machines, the existence of a feasible pre
emptive schedule with given release dates and a common deadline
can be tested in O(n log n + mn) time; the algorithm generates
O(mn) preemptions in the worst case [Sahni & Cho 1980]. More gen
erally, Qlpmtn,rjlCmax and, by symmetry, QlpmtnlLmax are solvable
in O(n log n + mn) time; the number of preemptions generated is
O(mn) [Sahni & Cho 1979B; Labetoulle et al. 1979].

The first feasibility test mentioned in the previous section
has been adapted to the case of two uniform machines [Bruno &

Gonzalez 1976] and extended to a polynomial-time algorithm for
Q2lpmtn,rjlLmax [Labetoulle et al. 1979].

Most recently, Martel has found a polynomial-time algorithm
for Qlpmtn,rjlLmax [Martel 1981]. This method :Ls in fact a special
case of a more general algorithm for computing maximal poly
matroidal network flows [Lawler & Martel 1980].

In the case of precedence constraints, Q2lpmtn,prec1Lmax and
Q2lpmtn,prec,rjlLmax can be solved in O(n2) and O(n6) time, re
spectively [Lawler 1980].

Binary NP-hardness has been established for llpmtnliwjUj (see Sec
tion 3.3.3) and PlpmtnlIUj [Lawler 1981]. For any fixed number of
uniform machines, QmlpmtnliwjUj can be soived in pseudopolynomial
time: O(n2 (Iwj) 2) if m = 2 and O(n3m-5(Iwj)2) if m ~ 3 [Lawler 1981].
Hence, QmlpmtnlIUj is solvable in strictly polynomial time.

22

5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS

5.1. Introduction

We now pass on to problems in which each job requires execution on
more than one machine. Recall from Section 2.3 that in an open
shop (denoted by 0) the order in which a job passes through the
machines is immaterial, whereas in a flow shop (F) each job has
the same machine ordering (M1, ••• ,Mm) and in a job shop (J} possi
bly different machine orderings are specified for the jobs. We
survey these problem classes in Sections 5.2, 5.3 and 5.4, respec
tive.ly.

We shall be dealing exclusively with the Cmax criterion.
Other optimality criteria lead usually to NP-hard problems, such as:

021 ILmax [Lawler et al. 1981],
ol IEcj, olpmtnlECj [Gonzalez 1979B],
F21 ILmax [Lenstra et al. 1977], F2lpmtn1Lmax [Cho & Sahni
1978],
F21 IECj [Garey et al. 1976], F3lpmtnlECj, J2lpmtnlECj
[Lenstra -] •

Notable exceptions are olpmtn,rjlLmax• which is solvable in poly
nomial time by linear programming [Cho & Sahni 1978], and 021 IECj
and F2lpmtnlECj, which are open.

5.2. Open shop scheduling

5.2.1. Nonpreemptive case

The case 021 lcmax admits of an O(n) algorithm [Gonzalez & Sahni·
1976]. A simplified exposition is given below.

For convenience, let aj = Plj, bj = P2j· Let A= {Jjlaj ~ bj},
B = {Jjlaj < bj}. Now choose Jr and Jt to be any two distinct jobs
(whether in A or B) such that

ar ~ maXJjEA{bj}, bt ~· maXJjEB{aj}.

Let A' = A-{Jr,Jt}, B' = B-{Jr,Jt}. We assert that it is possible
to form feasible schedules for B'U{Ji} and for A'u{Jr} as indicated
in Figure 2(a), the jobs in A' and B' being ordered arbitrarily.
In each of these separate schedules, there is no idle time on
either machine, from the start of the first job on that machine to
the completion of the last job on that machine.

Let T1 = Lj aj, T2 = Ej bj. Suppose T1-at ~ T2-br (the case
T1-at < T2-br being symmetric). We then combine the two schedules
as shown in Figure 2(b), pushing the jobs-in B'u{Jt} on M2 to the
right. Again, there is no idle time on either machine, from the
start of the first job to the completion of the last job.

We finally propose to move the processing of Jr on M2 to the
first position on that machine. There are two cases to consider.

23

(1) ar $ T2-br· The resulting schedule is as in Figure 2(c). The
length of the schedule is max{T1,T2}.

(2) ar > T2-br. The resulting schedule is as in Figure 2(d). The
length of the schedule is max{T1,ar+br}.

For any feasible schedule we obviously have that

Since, in all cases, we have met this lower bound, it follows that
the schedules constructed are optimal.

There is little hope of finding poly!}c:>mial-time algorithms
for nonpreemptive open shop problems more complicated than
021 ICmax• 031 ICmax is binary NP-hard [Gonzalez & Sahni 1976] and
02lrjlCmax, 02ltree1Cmax and ol ICmax are unary NP-hard [Lawler et
al. 1981; Lenstra -].

The special case of 031 ICmax is which maxj{Phj} $ minj{Pij}
for some pair (Mh,Mi) (h ~ i) is likely to be solvable in polyno
mial time [Adiri & Hefetz 1980].

5.2.2. Preemptive case

The result on 021 lcmax presented in the previous section shows
that there is no advantage to preemption form= 2, and hence
02lpmtn1Cmax can be solved in O(n) time. More generally,
olpmtnlCmax is solvable in polynomial time as well [Gonzalez &

Sahni 1976; Lawler & Labetoulle 1978; Gonzalez 1979A]. We had al
ready occasion to refer to this result in Section 4.4.6.

Ml I JR.

~J
B' A' J.

(a)
r

M2 B' I A' J
r

Ml I JR. B' A' J.Jr I (b)

~~ M2 B' J
r

Ml I JR. B' A' J

I
(c)

r

I e~ M2 J B' A'
r

Ml I JR. B' A'

~J
J

(d)
r

M2 J B' A'

Figure 2

24

If release dates are introduced, o2lpmtn,rj1cmax is still
solvable in 0(n) time [Lawler et al. 1981]. As mentioned in Section
5.1, even olpmtn,rjlLmax is well solved [Cho & Sahni 1978].

5.3. Flow shop schedulino

5.3.1. F21Blcmax' F3!B!Cmax

A fundamental algorithm for solving F2! !Cmax is due to Johnson
[Johnson 1954]. He shows that there exists an optimal schedule in
which Jj precedes Jk if min{p1j,P2k} $ min{p2j,Plk}. It follows
that the problem can be solved in 0(n log n) time: arrange first
the jobs with Plj $ P2j in order of nondecreasing Plj and subse
quently the remaining jobs in order of nonincreasing P2j·

Some special cases involve start lags £1j and stop lags £2j
for ~rj, that represent minimum time intervals between starting
times on M1 and M2 and between completion times on Ml and M2,
respectively [Mitten 1958; Johnson 1958; Nabeshima 1963; Szwarc
1968]. Defining lj = min{£1j-Plj,£2j-P2j} and applying Johnson's
algorithm to processing times (Plj+£j,P2j+£j) will produce an
optimal permutation schedule, i.e., one with identical processing
orders on all machines [Rinnooy Kan 1976]. If we drop the latter
restriction, the problem is unary NP-hard [Lenstra -].

A fair amount of effort has been devoted to identifying
special flow shop problems that can still be solved in polynomial
time .. The crucial notion here is that of a nonbottleneck machine,
that can effectively be treated as though it can process any number
of jobs at the same time. For example, F3l ICmax can be solved by
applying Johnson's algorithm to processing times (P1j+P2j,P2j+P3j)
if m,:1.Xj{P2j} $ max{minj{P1jLminj{P3j}} [Johnson 1954]. Many other
special cases appearing in the literature, including some of the
work on ordered flow shops [Smith et al. 1975, 1976], can be
discussed in this framework [Monma & Rinnooy Kan 1981; Achuthan
1980].

The general F31 ICmax problem, however, is unary NP-hard, and
the same applies to F2lrjlCmax and F2ltree1Cmax [Garey et al. 1976;
Lens tr a et al. 1977].

It should be noted that an interpretation of precedence
constraints which differs from our definition is possible. If
Jj ➔• Jk only means that 0ij should precede 0ik for i = 1,2, then
F2ltree' ICmax can be solved in 0(n log n) time [Sidney 1979]. In
fact, Sidney's algorithm applies even to series-parallel precedence
constraints. The arguments used to establish this result are very
similar to those referred to in Section 3.3.1 and apply to a larger
class of scheduling problems [Monma & Sid~ey 1979]. The general
case F2lprec' !Cmax is unary NP-hard [Monma 1980].

Gonzalez, Cho and Sahni [Gonzalez & Sahni 1978A; Cho & Sahni
1978] consider the case of preemptive flow shop scheduling. Since
preemptions on Ml and Mm can be removed without increasing Cmax,
Johnson's algorithm solves F2lpmtn!Cmax as well. F3lpmtn!Cmax and
F2!pl7ltn,rjlCmax turn out to be unary NP-hard.

25

5.3.2. Fl lcmax

As a general result, we note that there exists an optimal flow
shop schedule with the same processing order on M1 and M2 and the
same processing order on Mm-1 and Mm [Conway et al. 1967]. It is,
however, not difficult to construct a 4-rnachine example in which a
job "passes" another one between M2 and M3 in the optimal schedule.
Nevertheless, it has become tradition in the literature to assume
identical processing orders on all machines, so that in effect
only the best permutation schedule has to be determined.

Most research in this area has focused on enumerative methods.
The usual enumeration scheme is to assign jobs to the t-th posi
tion in the schedule at the t-th level of the search tree. Thus, at
a node at that ~E:~e_l_~_ partial sche<'.lu_l~ (J0 (lJ,. -~----~J_0 _(..e,)_)_ h_~s _ __!?e_eI!._
formed and the jobs with index set S = {1, •.. ,n} - {a(l) , ... ,a(t)}
are candidates for the (t+l)-st position~ One then needs to find a
lower bound on the value of all possible completions of the partial
schedule. It turns out that almost all lower bounds developed so
far are generated by the following bounding scheme [Lageweg et al.
1978].

Let us relax the capacity constraint that eaGh machine can
process at most one job at a time, for all machines but at most
two, say, Mu and Mv (1 ~ u ~ v ~ m). We then obtain a problem of
scheduling {Jjlj ES} on five machines N*u,Mu,Nuv,Mv,Nv* in that
order, which is specified as follows. Let C(a,i) denote the com
pletion time of Jo(t) on Mi. N*u, Nuv and Nv* have infinite capac
ity; the processing times on these machines are defined by

max 1<.< {c(a,i)
u-1

phj}, q*Uj = + Eh . -l.-U =i
v-1

4uvj
= E phj' h=u+l

4v*j
= Em

phj" h=v+l

Mu and Mv have capacity 1 and processing times Puj and Pvj, respec
tively. Note that we can interpret N*u as yielding release dates
q*Uj on Mu and Nv* as setting due dates -qv*j on Mv, with respect
to which Lmax is to be minimized.

Any of the machines N*u,Nuv,Nv* can be removed from this
problem by underestimating its contribution to the lower bound to
be the minimum processing time on that machine. Valid lower bounds
are obtained by adding these contributions to the optimal solution
value of the remaining problem.

For the case that u = v, removing N*u and Nu* from the problem
produces the machine-based bound used in [Ignall & Schrage 1965;
McMahon 1971] :

max 1< < {min. S{q .} + E. p . + min. S{q .}}.
-U-m JE *UJ JES UJ JE i.l*J

Removing only N*u results in a 11 ILmax problem on Mu, which can be

26

solved by Jackson's rule (Section 3.2) and provides a slightly
stronger bound.

If u ~ v, removal of N*U' Nuv and Nv* yields an F21 ICmax
problem, to be solved by Johnson's algorithm (Section 5.3.1). As
pointed ciut in that section, solution in polynomial time remains
possible if Nuv is taken fully into account; the resulting bound
dominates the job-based bound proposed in [McMahon 1971] and is
the best one currently available.

All other variations on this theme (e.g., taking u = v and
considering the resulting llrjlLmax problem) would involve the
solution of NP-hard problems. The development of fast algorithms
or strong lower bounds for these problems thus emerges as a possi
bly fruitful research area.

An alternative and somewhat more efficient enumeration scheme
[Potts 1980A] builds up a schedule from the front and from the
back at the same time. The adaptation of the above bounding scheme
to this approach is straightforward.

The computational performance of branch-and-bound algorithms
for Fl ICmax might be improved by the use of elimination criteria.
Particular attention has been paid to conditions under which all
completions of (Jo(l) , ... ,Jo(£) ,Jj) can be eliminated because a
schedule at least as good exists among the completions of
(J0 (1) , ..• ,Jo(£) ,Jk,Jj). If all information obtainable from the
processing times of the other jobs is disregarded, the strongest
condition under which this is allowed is as follows. Defining ~i =
C(okj,i)-C(oj,i), we can exclude Jj for the (£+1)-st position if

(i = 2 , ••• , m)

[McMahon 1969; Szwarc 1971, 1973]. Inclusion of these and similar
dominance rules can be very helpful from a computational point of
view,. depending on the lower bound used [Lageweg et al. 1978]. It
may be worthwhile to consider further extensions that, for instance,
involve the processing times of the unscheduled jobs- (Gupta-& -Reddf
1978; Szwarc 1978].

Not much has been done in the way of worst-case analysis of approx
imation algorithms for Fl ICmax· It is not hard to see that for any
active schedule (AS)

C (AS)/C* ~ max .. {p .. }/min .. {p .. }.
max max i,J iJ i,J iJ

(t)

Gonzalez and Sahni [Gonzalez & Sahni 1978A] show that

C (AS)/C* ~ m.
max max

(t)

This bound is tight even for LPT schedules, in which the jobs are
ordered according to nonincreasing sums of processing times. They
also give an O(mn log n) algorithm H based on Johnson's algorithm
with

c (H)/C* s r~21.
max max

It thus appears that, in general, the obvious algorithms can
deviate quite substantially from the optimum.

5.3.3. No wait in process

In a variation on the flow shop problem, each job, once started,
has to be processed without interruption until it is completed.

27

This no wait constraint may arise out of certain job characteristics
(e.g., the "hot ingot" problem in which metal has to be processed
at continuously high temperature) or out of the unavailability of
intermediate storage in between machines.

The resulting Fino waitlCmax problem can be formulated as a
traveling salesman problem with cities 0,1, .•. ,n and intercity
distances

i i-1
cjk = maxlSiSm{Eh=l phj - Eh=l phk} (j,k = 0,l, ... ,n)'

where Pi0 = 0 (i = 1, .•• ,m) [Piehler 1960; Reddi & Ramamoorthy
1972; Wismer 1972].

For the case F2lno waitlCmax, the traveling salesman problem
assumes a special structure and the results from [Gilmore & Gomory
1964] can be applied to yield an O(n2) algorithm [Reddi &

Ramamoorthy 1972]. F4lno waitlCmax is unary NP-hard [Papadimitriou
& Kanellanis 1980], and the same is true for O2lno waitlCmax and
J2lno waitlCmax [Sahni & Cho 1979A]. In spite of a challenging
prize awarded for its solution [Lenstra et al. 1977],
F3lno waitlCmax is still open.

The no wait constraint may lengthen the optimal flow shop
schedule considerably. It can be shown [Lenstra -] that

C* (no wait)/C* < m form~ 2.
max max

5.4. Job shop scheduling

5.4.1. J2181Cmax, J3l81Cmax

(t)

A simple extension of Johns_on' s algorithm for F2 I I Cmax allows
solution: of J2lmjS21Cmax in O(n log ri) time [Jackson 1956].- Let
Ji be the set of jobs with operations on Mi only (i = 1,2) and Jhi
the set of jobs that go from Mh to Mi (hi= 12,21). Order the
latter two sets by means of Johnson's algorithm and the former two
sets arbitrarily. One then obtains an optimal schedule by executing
the jobs on Ml in the order cJ12,J1,J21) and on M2 in the order
{J21,J2,J12).

Another special case, J21Pij=11Cmax• is solvable in O(n log n)
time as well [Hefetz & Adiri 1979].

This, however, is probably as far as we can get. J2lmjS31Cmax
and J3lmjS21Cmax are binary NP-hard [Lenstra et al. 1977; Gonzalez

28

Job shop problem, represented
as a disjunctive graph

Figure 3

Job shop schedule, represented
as an acyclic directed graph

& Sahni 1978A], J21PijE{l,2}ICmax and J31Pij=11Cmax are unary NP
hard [Lenstra & Rinnooy Kan 1979], and these results are still
true if preemption is allowed.

5 • 4 • 2 • J I I Cmax

The general job shop problem is extremely hard to solve optimally.
An indication of this is given by the fact that a 10-job 10-machine
problem, formulated in 1963 [Muth & Thompson 1963], still has not
been solved.

A convenient problem representation is provided by the dis
junctive graph model, introduced by Roy and Sussmann [Roy &

Sussmann 1~64]. Assume each operation Oij being renumbered as Ou
with u = rk:imk + i and add two fictitious_initial and final oper
ations o0 and O* with Po= p* = 0. The -di~junctive _graph is then
defined as follows. There is a vertex u with weight Pu correspond
ing to each operation Ou. The directed conjunctive arcs link the
consecutive operations of each job, and link o0 to all first oper
ations.and all last operations to O*. A pair of directed disjunc
tive arcs connects every two operations that have to be executed
on the same mac~ine. A feasible schedule corresponds to the selec
tion of one disjunctive arc of every such pair, granting precedence
of one operation over the other on their common machine, in such a
way that the resulting directed graph is acyclic. The value of the
schedule is giyen by the weight of the maximum weight path from 0
to_ *.• We refer to Figure 3 for an example.

At a typical stage of any enumerative algorithm, a certain
subset D of disjunctive arcs will have been selected. We consider
the directed graph obtained by removing all other disjunctive arcs.
Let the maximum weights of paths from Oto u and from u to*,
excluding Pu, be denoted by ru and qu, respectively. In particular,
r* is an obvious lower bound on the value of any feasible schedule
obtainable from the current graph [Charlton & Death 1970]. We can
get a far better bound in a manner very similar to the development
of flow shop bounds in Section 5.3.2 [Lageweg et al. 1977].

29

Let us relax the capacity constraints for all machines except
Mi. We then obtain a problem of scheduling the operations Ou on Mi
with release dates ru, processing times Pu, due dates -qu and
precedence constraints defined by the directed graph, so as to
minimize maximum lateness. As pointed out in Section 3.2, this
llprec,rjlLmax problem is NP-hard, but there exist fast enumerative
methods for its solution on each Mi. Again, almost all lower bounds
proposed in the literature appear as special cases of the above
one by underestimating the contribution of ru, qu or both, by
ignoring the precedence constraints, or by restricting the set of
machines over which maximization is to take place.

The currently best job shop algorithm [McMahon & Florian 1975]
involves the llrjlLmax bound combined with the enumeration of
active schedules. Starting from Oo, we consider at each stage the
subset S of operations all of whose predecessors have been sched
uled and calculate their earliest possible compfetion times ru+Pu·
It can be shown [Giffler & Thompson 1960] that-it is sufficient to
consider only a machine on which the minimum value of ru+Pu is
achieved and to branch by successively scheduling next on that
machine all Ov for which rv < minouEs{ru+Pul- In this scheme,
several disjunctive arcs are added to D at each stage. An alterna
tive approach whereby at each stage one disjunctive arc of some
crucial pair is selected leads to a computationally inferior
approach [Lageweg et al. 1977].

Surrogate duality relaxations of the job shop problem are
investigated in [Fisher et al. 1981]. Either the precedence con
straints fixing the machine orders for the jobs or the capacity
constraints of the machines can be weighted and aggregated to a
single constraint. For fixed values of the multipliers, the result
ing problems can be solved in (pseudo)polynomial time. Although
this approach leads to stronger lower bounds, it appears to be too
time consuming to have much computational value.

As far as approximation algorithms are concerned, the performance
guarantees due to [Gonzalez & Sahni 1978A] for flow shop algorithms
AS and LPT (see Section 5.3.2) also apply to the case of a job
shop.

A considerable effort has been invested in the empirical test
ing of various priority rules [Gere 1966; Conway et al. 1967; Day
& Hottenstein 1970; Panwalkar & Iskander 1977]. No rule appears to
be consistently better than any other and in practical situations
one would be well advised to exploit any special structure that
the problem at hand has to offer.

6. CONCLUDING REMARKS

If one thing emerges from the preceding survey, it is the amazing
success of complexity theory as a means of differentiating between
easy and hard problems. Within the very detailed problem

30

classification developed especially for this purpose, surprisingly
few open problems remain. For an extensive class of scheduling
problems, a computer program has been developed that classifies
these problems according to their computational complexity
[Lageweg et al. 1981A, 1981B]. It employs elementary reductions
such as those defined in Section 2.7 in order to deduce the conse
quences of the development of a new polynomial-time algorithm or a
new NP-hardness proof.

As far as polynomial-time algorithms are concerned, the most
impn~ssive recent advances have occurred in the area of parallel
machine scheduling and are due to researchers with a computer
science background, recognizable as such by their use of terms
like tasks and processors rather than jobs and machines. Single
machine, flow shop and job shop scheduling has been traditionally
the domain of operations researchers; here, an analytical approach
to the performance of approximation algorithms is badly needed.

Several extensions of the problem class considered in this
paper appear to be worthy of further study. A quite natural one
involves the presence of additional limited resources, with the
property that each job requires the use of a part of each resource
during its execution. These problems turn out to be fairly compli
cated. We refer to. [Davis 1966, 1973] for surveys and extensive
bibliographies on resource constrained project scheduling, to
[Blazewicz et al. 1980] for a partial complexity classification of
this problem class, and to [Garey & Johnson 1981] for the famous
special case of bin packing models.

More fundamentally, the strictly deterministic character .. of
our models represents one of their major _shortcomings. ':rhe investi
gation of their stochastic counterparts is of obvious interest and
forms the subject of several contributions to this volume.

The area of deterministic sequencing and scheduling has
emerged as one of the more fruitful interfaces between computer
science and operations research. Proper consideration for the
practical relevance of further theoretical work should continue to
make it a challenging research area for many years to come.

ACKNOWLEDGMENT

The research by the first author was supported by NSF grant
MCS7B-20054.

REFERENCES

N.R. ACHUTHAN (1980) Flow-Shop Scheduling Problems, Ph.D. Thesis,
Indian Statistical Institute, Calcutta.

I. ADIRI, N. HEFETZ (1980) Subproblems of openshop - more than two
machines - schedule length problem. Operations Research,
Statistics and Economics Mimeograph Series 260, Technion, Haifa.

31

D. ADOLPHSON (1977) Single machine job sequencing with precedence
constraints. SIAM J. Comput. 6,40-54.

D. ADOLPHSON, T.C. HU (1973) Optim;l linear ordering. SIAM J. Appl.
Math. 25,403-423.

K.R. BAKER (1974) Introduction to Sequencing and Scheduling,
Wiley, New York.

K.R. BAKER, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1982)
Preemptive scheduling of a single machine to minimize maximum
cost subject to release dates and precedence constraints.
Oper. Res., to appear.

K.R. BAKER, L.E. SCHRAGE (1978) Finding an optimal sequence by
dynamic programming: an extension to precedence-related tasks.
Oper. Res. 26,111-120.

K.R. BAKER, z.-s. SU (1974) Sequencing with due-dates and early
start times to minimize maximum tardiness. Naval Res. Logist.
Quart. ~,171-176.

M.S. BAKSHI, S.R. ARORA (1969) The sequencing problem. Management
Sci . .!.§_,B247-263.

J.W. BARNES, J.J. BRENNAN (1977) An improved algorithm for sched
uling jobs on identical machines. AIIE Trans. 2_,25-31.

L. BIANCO, S. RICCIARDELLI (1981) Scheduling of a single machine
to minimize total weighted completion time subject to release
dates. Istituto di Analisi dei Sistemi ed Informatica, CNR,
Rome.

J. BLAZEWICZ, J.K. LENSTRA, A.H.G. RINNOOY KAN (1980) Scheduling
subject to resource constraints: classification and complexity.
Report BW 127, Mathematisch Centrum, Amsterdam.

P. BRATLEY, M. FLORIAN, P. ROBILLARD (1975) Scheduling with earli
est start and due date constraints on multiple machines.
Naval Res. Logist. Quart. 22,165-173.

P. BRUCKER, M.R. GAREY, D.S. JOHNSON (1977) Scheduling equal-length
tasks under tree-like precedence constraints to minimize max
imum lateness. Math. Oper. Res. ~,275-284.

J. BRUNO, E.G. COFFMAN, JR., R. SETHI (1974) Scheduling independent
tasks to reduce mean finishing time. Comm. ACM .!2_,382-387.

J. BRUNO, T. GONZALEZ (1976) Scheduling independent tasks with
release dates and due dates on parallel machines. Technical
Report 213, Computer Science Department, Pennsylvania State
University.

J. CARLIER (1980) Probleme a une machine. Manuscript, Institut de
programmation, Universite Paris VI.

J.M. CHARLTON, C.C. DEATH (1970) A generalized machine scheduling
algorithm. Oper. Res. Quart. 21,127-134.

N.-F. CHEN (1975) An analysis of scheduling algorithms in multi
processing computing systems. Technical Report UIUCDCS-R-75-724,
Department of Computer Science, University of Illinois at
Urbana-Champaign.

N.-F. CHEN, C.L. LIU (1975) On a class of scheduling algorithms for
multiprocessors computing systems. In: T.-Y. FENG (ed.) (1975)
Parallel Processing, Lecture Notes in Computer Science 24,

32

Springer, -~er lin, 1 ~ 1 f?.
Y. CHO, s. SAHNI (1978) Preemptive scheduling of independent jobs

with release and due times on open, flow and job shops. Tech
nical Report 78-5, Computer Science Department, University of
Minnesota, Minneapolis.

E.G. COFFMAN,_ JR. (ed.) (1976) Computer and Job-Shop Scheduling
Theory, Wiley, New York.

E.G. COFFMAN, JR., M.R. GAREY, D.S. JOHNSON (1978) An application
of bin-packing to multiprocessor scheduling. SIAM J. Comput.
2_,1-17.

E.G. COFFMAN, JR., R.L. GRAHAM (1972) Optimal scheduling for two
processor systems. Acta Informat. _!_,200-213.

R.W. CONWAY, W.L. MAXWELL, L.W. MILLER (1967) Theory of Scheduling,
Addison-Wesley, Reading, Mass.

S.A. COOK (1971) The complexity of theorem-proving procedures.
Proc. 3rd Annual ACM Symp. Theory of Computing, 151-158.

E.W. DAVIS (1966) Resource allocation in project network models -
a survey. J. Indust. Engrg • .!2_,177-188.

E.W. DAVIS (1973) Project scheduling under resource constraints -
historical review and categorization of procedures. AIIE
Trans. ~,297-313.

J. DAY, M.P. HOTTENSTEIN (1970) Review of scheduling research.
Naval Res. Logist. Quart • .!2_,11-39.

D. DOLEV (1981) Scheduling wide graphs. Unpublished manuscript.
W.L. EASTMAN, S. EVEN, I.M. ISAACS (1964) Bounds for the optimal

scheduling of n jobs on m processors. Management Sci • ..!.!_,
268-279.

S.E. ELMAGHRABY, S.H. PARK (1974) Scheduling jobs on a number of
identical machines. AIIE Trans. ~,1-12.

H. EMMONS (1969) One-machine sequencing to minimize certain func
tions of job tardiness. Oper. Res • .!2_,701-715.

M.L. FISHER (1976) A dual algorithm for the one-machine scheduling
problem. Math. Programming ..!.!_,229-251.

M.L. FISHER, B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1981)
Surrogate duality relaxation for job shop scheduling. Report,
Mathematisch Centrum, Amsterdam.

M. FUJII, T. KASAMI, K. NINOMIYA (1969,1971) Optimal sequencing of
two equivalent processors. SIAM J. Appl. Math • .!2_,784-789;
Erratum. 20,141.

H.N. GABOW (1980) An almost-linear algorithm for two-processor
scheduling. Technical Report CU-CS-169-80, Department of
Computer Science, University of Colorado, Boulder.

M.R. GAREY (-) Unpublished.
M.R. GAREY, R.L. GRAHAM, D.S. JOHNSON (1978) Performance guarantees

for scheduling algorithms. Oper. Res~ 26,3-21.
M.R. GAREY, D.S. JOHNSON (1976) Scheduling tasks with nonuniform

deadlines on two processors. J. Assoc. Comput. Mach.~,
461-467.

M.R. GAREY, D.S. JOHNSON (1977) Two-processor scheduling with
start-times and deadlines. SIAM J. Comput. ~,416-426.

33

M.R. GAREY, D.S. JOHNSON (1979) Computers and Intractability: a
Guide to the Theory of NP-Completeness, Freeman, San Francisco.

M.R. GAREY, D.S. JOHNSON (1981) Approximation algorithms for bin
packing problems: a survey. In: G. AUSIELLO, M. LUCERTINI
(eds.) (1981) Analysis and Design of Algorithms in Combina
torial Optimization, CISM Courses and Lectures 266, Springer,
Vienna, 147-172.

M.R. GAREY, D.S. JOHNSON, R. SETHI (1976) The complexity of flow
shop and jobshop scheduling. Math. Oper. Res. 1,117-129.

M.R. GAREY, D.S. JOHNSON, B.B. SIMONS, R.E. TARJAN (1981A) Sched
uling unit-time tasks with arbitrary release times and dead
lines. SIAM J. Comput. !Q_,256-269.

M.R. GAREY,'D.S. JOHNSON, R.E. TARJAN, M. YANNAKAKIS (1981B)
Scheduling opposing forests. Unpublished manuscript.

L. GELDERS, P.R. KLEINDORFER (1974) Coordinating aggregate and
detailed scheduling decisions in the one-machine job shop:
part I. Theory. Oper. Res. ~,46-60.

L. GELDERS, P.R. KLEINDORFER (1975) Coordinating aggregate and
detailed scheduling in the one-machine job shop: II - compu
tation and structure. Oper. Res. 23,312-324.

w.s. GERE (1966) Heuristics in job shopscheduling. Management Sci .
..!1_, 167-190.

B. GIFFLER, G.L. THOMPSON (1960) Algorithms for solving production
scheduling problems. Oper. Res. ~,487-503.

P.C. GILMORE, R.E. GOMORY (1964) Sequencing a one-state variable
machine: a solvable case of the traveling salesman problem.
Oper. Res • .!±_,655-679·.

T. GONZALEZ (1977) Optimal mean finish time preemptive schedules.
Technical Report 220, Computer Science Department, Pennsylva
nia State University.

T. GONZALEZ (1979A) A note on open shop preemptive schedules.
IEEE Trans. Computers C-28,782-786.

T. GONZALEZ (1979B) NP-Hard shop problems. Report CS-79-35, Depart
ment of Computer Science, Pennsylvania State University,
University Park.

T. GONZALEZ, .O~H. IBARRA, S. SAHNI (1977) Bounds for LPT schedules
on uniform processors. SIAM J. Comput • .§_,155-166.

T. GONZALEZ, D.B. JOHNSON (1980) A new algorithm for preemptive
scheduling of trees. J. Assoc. Comput. Mach. 27,287-312.

T. GONZALEZ, E.L. LAWLER, S. SAHNI (1981) Optimal preemptive sched
uling of a fixed number of unrelated processors in linear
time. To appear.

T. GONZALEZ, S. SAHNI (1976) Open shop scheduling to minimize
finish time. J. Assoc. Comput. Mach. ~,665-679.

T. GONZALEZ, S. SAHNI (1978A) Flowshop and jobshop schedules: com
plexity and approximation. Oper. Res. 26,36-52.

T. GONZALEZ, S. SAHNI (1978B) Preemptive scheduling of uniform
processor systems. J. Assoc. Comput. Mach. ~,92-101.

D.K. GOYAL (1977) Non-preemptive scheduling of unequal execution
time tasks on two identical processors. Technical Report

34

CS-77-039, Computer Science Department, Washington State
University, Pullman.

R.L. GRAHAM (1966) Bounds for certain multiprocessing anomalies.
Bell System Tech. J. 45,1563-1581.

R.L. GRAHAM (1969) Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math. 17,263-269.

R.L. GRAHAM (-) Unpublished.
R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)

Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann. Discrete Math. ~,287-326.

J.N.D. GUPTA, S.S. REDDI (1978) Improved dominance conditions for
the three-machine flowshop scheduling problem. Oper. Res. 26,
200-203.

A.M.A. HARIRI, C.N. POTTS (1981) An algorithm for single machine
sequencing with release dates to minimise total weighted
completion time. Report BW 143, Mathematisch Centrum, Amsterdam.

N. HEFETZ, I. ADIRI (1979) An efficient optimal algorithm for the
two-machines, unit-time, job-shop, schedule-length, problem.
Operations Research, Statistics and Economics Mimeograph
Series 237, Technion, Haifa.

W.A. HORN (1972) Single-machine job sequencing with treelike pre
cedence ordering and linear delay penalties. SIAM J. Appl.
Math. ~,189-202.

W.A. HORN (1973) Minimizing average flow time with parallel ma
chines. Oper. Res. ~, 846-84 7.

W.A. HORN (1974) Some simple scheduling algorithms. Naval Res.
Logist. Quart. ~,177-185.

E. HOROWITZ, S. SAHNI (1976) Exact and approximate algorithms for
scheduling nonidentical processors. J. Assoc. Comput. Mach.
~,317-327.

E.C. HORVATH, S. LAM, R. SETHI (1977) A level algorithm for pre
emptive scheduling. J. Assoc •. Comput. Mach. 24,32-43.

N.C. HSU (1966) Elementary proof of Hu's theorem on isotone map
pings. Proc. Amer. Math. Soc. 17,111-114.

T.C. HU (1961) Parallel sequencing and assembly line problems.
Oper. Res. ~, 841-848.

O.H. IBARRA, C.E. KIM (1976) On two-processor scheduling of one
or two-unit time tasks with precedence constraints. J. Cyber
net. ~,87-109.

o:H. IBARRA~-c:E~ -KIM (1977} · Heuristic algorithms for scheduling
independent tasks on nonidentical processors. J. Assoc. Com
pilt. Mach. 24,280-289.

O.H. IBARRA, C.E:-KIM (1978) Approximation algorithms for certain
scheduling problems. Math. Oper. Res. 2_,197-204.

E. IGNALL, L. SCHRAGE (1965) Application of the branch-and-bound
technique to some flow-shop scheduling problem. Oper. Res.
13,400-412.

J.R. JACKSON (1955) Scheduling a production line to minimize maxi
mum tardiness. Research Report 43, Management Science Research
Project, University of California, Los Angeles.

J.R. JACKSON (1956) An extension of Johnson's results on job lot
scheduling. Naval Res. Logist. Quart. l_,201-203.

35

J.M. JAFFE (1979) Efficient scheduling of tasks without full use
of processor resources. Report MIT/LCS/TM-122, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cam
bridge.

J.M. JAFFE (1980) An analysis of preemptive multiprocessor job
scheduling. Math. Oper. Res. ~,415-421.

S.M. JOHNSON (1954) Optimal two- and three-stage production sched
ules with setup times included. Naval Res. Logist. Quart . .!_,
61-68.

S.M. JOHNSON (1958) Discussion: sequencing n jobs on two machines
with arbitrary time lags. Management Sci. 5,299-303.

R.M. KARP (1972) Reducibility among combinatorial problems. In: R.
E. MILLER, J.W. THATCHER (eds.) (1972) Complexity of Computer
Computations, Plenum Press, New York, 85-103.

R.M. KARP (1975) On the computational complexity of combinatorial
problems. Networks ~,45-68.

L.G. KHACHIYAN (1979) A polynomial algorithm in linear programming.
Soviet Math. Dokl. 20,191-194.

H. KISE, T. IBARAKI, H. MINE (1978) A solvable case of the one
machine scheduling problem with ready and due times. Oper.
Res. 26, 1_21-126.

M. KUNDE (1976) Beste Schranken beim LP-Scheduling. Bericht 7603,
Institut fur Informatik und Praktische Mathematik, Universi
tat Kiel.

J. LABETOULLE, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1979)
Preemptive scheduling of uniform machines subject to release
dates. Report BW 99, Mathematisch Centrum, Amsterdam.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1981A)
Computer aided complexity classification of combinatorial
problems. Report BW 137, Mathematisch Centrum, Amsterdam.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN (1981B)
Computer aided complexity classification of deterministic
scheduling problems. Report BW 138, Mathematisch Centrum,
Amsterdam.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1976) Minimizing
maximum lateness on one machine: computational experience and
some applications. Statist. Neerlandica 30,25-41.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1977) Job-shop
scheduling by implicit enumeration. Management Sci. ~,441-450.

B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) A general
bounding scheme for the permutation flow-shop problem. Oper.
Res. 26,53-67. _

s. LAM, R. SETHI (1977) Worst case analysis of two scheduling al
gorithms. SIAM J. Comput • .§_,518-536.

E.L. LAWLER_ (1973) Optimal sequencing of a single machine subject
to precedence constraints. Management Sci. ~,544-546.

E.L. LAWLER (1976A) Sequencing to minimize the weighted number of
tardy· :jobs.-RA.I.RO Rech. Op§r~ ..!.Q_.5 Suppl.27-33.

36

E.L. LAWLER (1976B) Combinatorial Optimization: Networks and Ma
troids, Holt, Rinehart and Winston, New York.

E.L. LAWLER (1977) A "pseudopolynomial" algorithm for sequencing
jobs to minimize total tardiness. Ann. Discrete Math • .!_,
331-342.

E.L. LAWLER (1978) Sequencing jobs to minimize total weighted
completion time subject to precedence constraints. Ann. Dis
crete Math. ~,75-90.

E.L. LAWLER (1980) Preemptive scheduling of precedence-constrained
jobs on parallel machines. Report BW 132, Mathematisch Cen
trum, Amsterdam.

E.L. LAWLER (1981) Preemptive scheduling of uniform parallel ma
chines to minimize the number of late jobs. Report, Mathema
tisch Centrum, Amsterdam, to appear.

E.L. LAWLER (-) Unpublished.
E.L. LAWLER, J. LABETOULLE (1978) On preemptive scheduling of un

related parallel processors by linear programming. J. Assoc.
Comput. Mach. ~,612-619.

E.L. LAWLER, 0.K. LENSTRA, A.H.G. RINNOOY KAN (1981) Minimizing
maximum lateness in a two-machine open shop. Math. Oper. Res .
.§_,153-158.

E.L. LAWLER, C.U. MARTEL (1980) Computing "polymatroidal" network
flows. Research Memorandum ERL MB0/52, Electronics Research
Laboratory, University of California, Berkeley.

E.L. LAWLER, J.M. MOORE (1969) A functional equation and its appli
cation to resource allocation and sequencing problems. Manage
ment Sci . .!..§_,77-84.

J.K. LENSTRA (1977) Sequencing by Enumerative Methods, Mathematical
Centre Tracts 69, Mathematisch Centrum, Amsterdam.

J.K. LENSTRA (-) Unpublished.
J.K. LENSTRA, A.H.G. RINNOOY KAN (1978) Complexity of scheduling

under precedence constraints. Oper. Res. 26,22-35.
J.K. LENSTRA, A.H.G. RINNOOY KAN (1979) Computational complexity

of discrete optimization problems. Ann. Discrete Math.!,
121-140.

J .K. LENSTRA, A .. H.G. RINNOOY KAN (1980) Complexity results for
scheduling chains on a single machine. European J. Oper. Res.
4,270~275.

J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) Complexity of
machine scheduling problems. Ann. Discrete Math • .!_,343-362.

C.L. LIU (1972) Optimal scheduling on multi-processor computing
systems. Proc. 13th Annual IEEE Syrop. Switching and Automata
Theory, 155-160.

C.L. LIU (1976) Deterministic job scheduling in computing systems.
Department of Computer Science, University of Illinois at
Urbana-Champaign.

J.W.S. LIU, C.L. LIU (1974A) Bounds on schedulling algorithms for
heterogeneous computing systems. In: J.L. ROSENFELD (ed.)
(1974) Information Processing 74, North-Holland, Amsterdam,
349-353.

J.W.S. LIU, C.L. LIU (1974B) Bounds on scheduling algorithms for
heterogeneous computing systems. Technical Report UIUCDCS-R-
74-632, Department of Computer Science, University of Illi
nois at Urbana-Champaign, 68 pp.

37

J.W.S. LIU, C.L. LIU (1974C) Performance analysis of heterogeneous
multi-processor computing systems. In: E. GELENBE, R. MAHL
(eds.) (1974) Computer Architectures and Networks, North
Holland, Amsterdam, 331-343.

C. MARTEL (1981) Scheduling uniform machines with release times,
deadlines and due times. J. Assoc. Comput. Mach., to appear.

G.B. McMAHON (1969) Optimal production schedules for flow shops.
Canad. Oper. Res. Soc. J • .2_,141-151.

G.B. McMAHON (1971) A Study of Algorithms for Industrial Scheduling
Problems, Ph.D. Thesis, University of New South Wales,
Kensington.

G.B. McMAHON, M. FLORIAN (1975) On scheduling with ready times and
due dates to minimize maximum lateness. Oper. Res. ~,475-482.

R. McNAUGHTON (1959) Scheduling with deadlines and loss functions.
Management Sci. _§_,1-12.

L.G .. MITTEN (1958) Sequencing n jobs on two machines with arbitrary
time lags. Management Sci. 2_,293-298.

C.L .. MONMA (1980) Sequencing to minimize the maximum job cost.
Oper. Res . .?..Q_,942-951.

C.L. MONMA, A.H.G. RINNOOY KAN (1981) Efficiently solvable special
cases of the permutation flow-shop problem. Report 8105,
Erasmus University, Rotterdam.

C.L .. MONMA, J.B. SIDNEY (1979) Sequencing with series-parallel
precedence constraints. Math. Oper. Res. i_,215-224.

J.M. MOORE (1968) Ann job, one machine sequencing algorithm for
minimizing the number of late jobs. Management Sci. 12_,102-109.

R.R. MUNTZ, E.G. COFFMAN, JR. (1969) Optimal preemptive scheduling
on two-processor systems. IEEE Trans. Computers C-.!..§__,1014-1020.

R.R. MUNTZ, E.G. COFFMAN, JR. (1970) Preemptive scheduling of real
time tasks on multiprocessor systems. J. Assoc. Comput. Mach.
17,324-338.

J.F. MUTH, G.L •. THOMPSON (eds.) (1963) Industrial Scheduling,
Prentice-Hall, Englewood Cliffs, N.J., 236.

I. NABESHIMA (1963) Sequencing on two machines with start lag and
stop lag. J. Oper. Res. Soc. Japan 2_,97-101.

S.S .. PANWALKAR, W. ISKANDER (1977) A survey of scheduling rules.
Oper. Res. ~,45-61.

C.H. PAPADIMITRIOU, P.C. KANELLAKIS (1980) Flowshop scheduling with
limited temporary storage. J. Assoc. Comput. Mach. ~,533-549.

J. PIEHLER (1960) Ein Beitrag zum Reihenfolgeproblem. Unternehmens
forschung i_,138-142.

C.N. POI'TS (1980A) An adaptive branching rule for the permutation
flow-shop problem. European J. Oper. Res. 2_,19-25.

C.N .. POI'TS (1980B) Analysis of a heuristic for one machine se
quencing with release dates and delivery times. Oper. Res.
28,1436-1441.

38

C.N. POI'TS (-) Unpublished.
S.S. REDDI, C.V. RAMAMOORTHY (1972) On the flow-shop sequencing

problem with no wait in process. Oper. Res. Quart. ~,323-331.
G. RINALDI, A. SASSANO (1977) On a job scheduling problem with

different ready times: some properties and a new algorithm to
determine the optimal solution. Report R.77-24, Istituto di
Automatica, Universita di Roma.

A.H.G. RINNOOY KAN (1976) Machine Scheduling Problems: Classifica
tion, Complexity and Computations, Nijhoff, The Hague.

A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA (1975) Minimizing
total costs in one-machine scheduling. Oper. Res. ~,908-927.

P. ROSENFELD (-) Unpublished.
M.H. ROI'HKOPF (1966) Scheduling independent tasks on parallel

processors. Management Sci. g,437-447.
B. ROY, B. SUSSMANN (1964) Les problemes d'ordonnancement avec

contraintes disjonctives. Note DS no.9 bis, SEMA, Montrouge.
s. SAHNI (1976) Algorithms for scheduling independent tasks. J.

Assoc. Comput. Mach. ~,116-127.
S. SAHNI, Y. CHO (1979A) Complexity of scheduling jobs with no

wait in process. Math. Oper. Res. i_,448-457.
S. SAHNI, Y. CHO (1979B) Nearly on line scheduling of a uniform

processor system with release times. SIAM J. Comput. _§_,275-285.
S. SAHNI, Y. CHO (1980) Scheduling independent tasks with due

times on a uniform processor system. J. Assoc. Comput. Mach.
27,550-563.

R. SETHI (1976A) Algorithms for minimal-length schedules. In:
[Coffman 1976], 51-99.

R. SETHI (1976B) Scheduling graphs on two processors. SIAM J.
Comput. ~,73-82.

R. SETHI (1977) On the complexity of mean flow time scheduling.
Math. Oper. Res. ~,320-330.

J. SHWIMER (1972) On the N-job, one-machine, sequence-independent
scheduling problem with tardiness penalties: a branch-and
bound solution. Management Sci • .!...§_,B301-313.

J.B. SIDNEY (1973) An extension of Moore's due date algorithm. In:
S.E. ELMAGHRABY (ed.) (1973) Symposium on the Theory of Sched
uling and its Applications, Lecture Notes in Economics and
Mathematical Systems 86, Springer, Berlin, 393-398.

J.B. SIDNEY (1975) Decomposition algorithms for single-machine
sequencing with precedence relations and deferral costs.
Oper. Res. 23,283-298.

J.B. SIDNEY (1979) The two-machine maximum flow time problem with
series parallel precedence relations. Oper. Res. ~,782-791.

B. SIMONS (1978) A fast algorithm for single processor scheduling.
Proc. 19th Annual IEEE Symp. Foundations of Computer Science,
246-252.

B. SIMONS (1980) A fast algorithm for multiprocessor scheduling.
Proc. 21st Annual IEEE Symp. Foundations of Computer Science,
50-53.

M.L. SMITH, S.S. PANWALKAR, R.A. DUDEK (1975) Flow shop sequencing

with ordered processing time matrices. Management Sci.~,
544-549.

39

M.L. SMITH, S.S. PANWALKAR, R.A. DUDEK (1976) Flow shop sequencing
problem with ordered processing time matrices: a general case.
Naval Res. Logist. Quart. ~,481-486.

W.E. SMITH (1956) Various optimizers for single-stage production.
Naval Res. Logist. Quart. 3,59-66.

H.I. STERN (1976) Minimizing makespan for independent jobs on non
identical parallel machines - an optimal procedure. Working
Paper 2/75, Department of Industrial Engineering and Manage
ment, Ben-Gurion University of the Negev, Beer-Sheva.

W. SZWARC (1968) On some sequencing problems. Naval Res. Logist.
Quart • .!2_,127-155.

W. SZWARC (1971) Elimination methods in the mxn sequencing problem.
Naval Res. Logist. Quart • .!.§_,295~305.

W. SZWARC (1973) Optimal elimination methods in the mxn sequencing
problem. Oper. Res. ~,1250-1259.

w. SZWARC (1978) Dominance conditions for the three-machine flow
'shop problem. Oper. Res. 26,203-206.

J.D. ULLMAN (1975) NP-Complete scheduling problems. J. Comput.
System Sci. 10,384-393.

J.D. ULLMAN (1976)Complexity of sequencing problems. In: [Coffman
1976], 139-164.

M.K. WARMUTH (1980) M Processor unit-execution-time scheduling
reduces to M-1 weakly connected components. M.S. Thesis,
Department of Computer Science, University of Colorado, Boulder.

D.A. WISMER (1972) Solution of the flowshop-scheduling problem
with no intermediate queues. Oper. Res. ~,689-697.

