4 research outputs found

    Adaptive and Deadlock-Free Tree-Based Multicast Routing for Networks-on-Chip

    Get PDF
    This paper presents the first synthesizable network-on-chip (NoC) based on a mesh topology, which supports adaptive and deadlock-free tree-based multicast routing without virtual channels. The deadlock-free routing algorithms for unicast and multicast packets are the same. Therefore, the routing function\ud gate-level implementation is very efficient. Multicast packets\ud are injected to the network by sending multiple packet headers beforehand. The packet headers contain destination addresses to set up multicast trees connecting a source with multiple destination nodes. An additional locally uniform identification (ID) field is packetized together with flits belonging to the same packet. Therefore, flits of different unicast or multicast packets can be interleaved in the same queue because of the local ID-tags, which are updated and mapped dynamically to support bandwidth scalability of interconnection links. Deadlocks in tree-based multicast\ud routing are handled using a flit-by-flit round arbitration and a\ud fair hold???release tagging mechanism. The effectiveness of the novel mechanism has been experimented under multiple multicast\ud conflicts scenarios, where the experimental results show that all traffic is accepted in-order and lossless in their destination nodes even if adaptive routing functions are used and the sizes of the\ud multicast messages are very long

    New Theory for Deadlock-Free Multicast Routing in Wormhole-Switched Virtual-Channelless Networks-on-Chip

    Get PDF
    A new theory for deadlock-free multicast routing especially used for on-chip interconnection network (NoC) is presented in this paper. The NoC router hardware solution that enables the deadlock-free multicast routing without utilizing virtual channels is\ud introduced formally. The special characteristic of the NoC is that, wormhole packets can cut-through at flit-level and can be interleaved in the same channel with other flits of different packets by multiplexing it using a rotating flit-by-flit arbitration. The routing paths of each flit can be guaranteed correct because flits belonging to the same packet are labeled with the same local Id-tag on every communication channel. Hence, multicast deadlock problem can be solved at each router by further applying a hold-release tagging\ud mechanism to control and manage conflicting multicast requests

    B-RPM: An Efficient One-to-Many Communication Framework for On-Chip Networks

    Get PDF
    The prevalence of multicore architectures has accentuated the need for scalable on-chip communication media. Various parallel applications and programming paradigms use a mix of unicast (one-to-one) and multicast (one-to-many) to maintain data coherence and consistency. Providing efficient support for these communication patterns becomes a critical design point for on-chip networks (OCN). High performance on-chip networks design advocates balanced traffic across the whole network, which makes adaptive routing appealing. Adaptive routing explores the path diversity of the network, increases throughput, and reduces network latency compared with oblivious routing. In this work, we propose an adaptive multicast routing, Balanced Recursive Partitioning Multicast (B-RPM), to achieve balanced one-to-many on-chip communication. The algorithm derives its functionality from previously proposed algorithm Recursive Partitioning Multicast (RPM). Unlike RPM which uses fixed set of directional priorities and position of destination nodes, B-RPM replicates packet based on the local congestion information and position of destination nodes with respect to current node. B-RPM employs a new deadlock avoidance technique Dynamically Sized Virtual Networks (DSVN). Built upon the traditional virtual networks, DSVN dynamically allocates the network resources to different VNs according to the run-time traffic status, which delivers better resources utilization. We also propose a new scheme for representing multiple destinations in packet head. The scheme works simply by differentiating multicast and unicast packets. The algorithm combined with dynamically sized virtual networks enables us to improve network performance at high load on average by 20% (up to 50%) and saturation throughput of network on average by 10% (up to 18%) over the most recent multicast algorithm. Also the new header representation scheme enables us to save 24% of dynamic link power

    Routing and Wavelength Assignment for Multicast Communication in Optical Network-on-Chip

    Get PDF
    An Optical Network-on-Chip (ONoC) is an emerging chip-level optical interconnection technology to realise high-performance and power-efficient inter-core communication for many-core processors. Within the field, multicast communication is one of the most important inter-core communication forms. It is not only widely used in parallel computing applications in Chip Multi-Processors (CMPs), but also common in emerging areas such as neuromorphic computing. While many studies have been conducted on designing ONoC architectures and routing schemes to support multicast communication, most existing solutions adopt the methods that were initially proposed for electrical interconnects. These solutions can neither fully take advantage of optical communication nor address the special requirements of an ONoC. Moreover, most of them focus only on the optimisation of one multicast, which limits the practical applications because real systems often have to handle multiple multicasts requested from various applications. Hence, this thesis will address the design of a high-performance communication scheme for multiple multicasts by taking into account the unique characteristics and constraints of an ONoC. This thesis studies the problem from a network-level perspective. The design methodology is to optimally route all multicasts requested simultaneously from the applications in an ONoC, with the objective of efficiently utilising available wavelengths. The novelty is to adopt multicast-splitting strategies, where a multicast can be split into several sub-multicasts according to the distribution of multicast nodes, in order to reduce the conflicts of different multicasts. As routing and wavelength assignment problem is an NP-hard problem, heuristic approaches that use the multicast-splitting strategy are proposed in this thesis. Specifically, three routing and wavelength assignment schemes for multiple multicasts in an ONoC are proposed for different problem domains. Firstly, PRWAMM, a Path-based Routing and Wavelength Assignment for Multiple Multicasts in an ONoC, is proposed. Due to the low manufacture complexity requirement of an ONoC, e.g., no splitters, path-based routing is studied in PRWAMM. Two wavelength-assignment strategies for multiple multicasts under path-based routing are proposed. One is an intramulticast wavelength assignment, which assigns wavelength(s) for one multicast. The other is an inter-multicast wavelength assignment, which assigns wavelength(s) for different multicasts, according to the distributions of multicasts. Simulation results show that PRWAMM can reduce the average number of wavelengths by 15% compared to other path-based schemes. Secondly, RWADMM, a Routing and Wavelength Assignment scheme for Distribution-based Multiple Multicasts in a 2D ONoC, is proposed. Because path-based routing lacks flexibility, it cannot reduce the link conflicts effectively. Hence, RWADMM is designed, based on the distribution of different multicasts, which includes two algorithms. One is an optimal routing and wavelength assignment algorithm for special distributions of multicast nodes. The other is a heuristic routing and wavelength assignment algorithm for random distributions of multicast nodes. Simulation results show that RWADMM can reduce the number of wavelengths by 21.85% on average, compared to the state-of-the-art solutions in a 2D ONoC. Thirdly, CRRWAMM, a Cluster-based Routing and Reusable Wavelength Assignment scheme for Multiple Multicasts in a 3D ONoC, is proposed. Because of the different architectures with a 2D ONoC (e.g., the layout of nodes, optical routers), the methods designed for a 2D ONoC cannot be simply extended to a 3D ONoC. In CRRWAMM, the distribution of multicast nodes in a mesh-based 3D ONoC is analysed first. Then, routing theorems for special instances are derived. Based on the theorems, a general routing scheme, which includes a cluster-based routing method and a reusable wavelength assignment method, is proposed. Simulation results show that CRRWAMM can reduce the number of wavelengths by 33.2% on average, compared to other schemes in a 3D ONoC. Overall, the three routing and wavelength assignment schemes can achieve high-performance multicast communication for multiple multicasts of their problem domains in an ONoC. They all have the advantages of a low routing complexity, a low wavelength requirement, and good scalability, compared to their counterparts, respectively. These methods make an ONoC a flexible high-performance computing platform to execute various parallel applications with different multicast requirements. As future work, I will investigate the power consumption of various routing schemes for multicasts. Using a multicast-splitting strategy may increase power consumption since it needs different wavelengths to send packets to different destinations for one multicast, though the reduction of wavelengths used in the schemes can also potentially decrease overall power consumption. Therefore, how to achieve the best trade-off between the total number of wavelengths used and the number of sub-multicasts in order to reduce power consumption will be interesting future research
    corecore