6 research outputs found

    Contents

    Get PDF

    A New Classification Method of Infrasound Events Using Hilbert-Huang Transform and Support Vector Machine

    Get PDF
    Infrasound is a type of low frequency signal that occurs in nature and results from man-made events, typically ranging in frequency from 0.01 Hz to 20 Hz. In this paper, a classification method based on Hilbert-Huang transform (HHT) and support vector machine (SVM) is proposed to discriminate between three different natural events. The frequency spectrum characteristics of infrasound signals produced by different events, such as volcanoes, are unique, which lays the foundation for infrasound signal classification. First, the HHT method was used to extract the feature vectors of several kinds of infrasound events from the Hilbert marginal spectrum. Then, the feature vectors were classified by the SVM method. Finally, the present of classification and identification accuracy are given. The simulation results show that the recognition rate is above 97.7%, and that approach is effective for classifying event types for small samples

    Comparing Igneous Geochemical Data from Hawaii and Southern California via Machine Learning

    Get PDF
    Bi-plots are commonly used in geochemical analyses. However, their use can become cumbersome in the case of multi-variate analyses. Therefore, this thesis explores the application of unsupervised machine learning techniques, specifically PCA and K-Means, to analyze large geochemical data sets from two distinct regions, Hawaii and the \acrfull{prb} in Southern California. The IBM Foundational Methodology for Data Science was utilized to ensure proper data preparation and analysis. PCA provided dimensionality reduction, revealing which features correlated most strongly with variances within the data. K-Means clustering allowed for deeper interpretation of the data. The analysis yielded valuable insights into the composition and differentiation of magma and rocks from the two regions. Future work should include a deeper analysis of the clusters and a determination of how geochemical plots relate to underlying geochemical processes. These results could be helpful in relating catastrophic magmatic processes and geochemistry with the Genesis record

    A Neurocomputing Approach for Monitoring Plinian Volcanic Eruptions Using Infrasound

    No full text
    corecore