8,824 research outputs found

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Keberkesanan modul infusi kemahiran berfikir aras tinggi pembelajaran luar bilik darjah (iKBAT-PLBD) bagi bidang pembelajaran sukatan dan geometri

    Get PDF
    Kemahiran berfikir aras tinggi (KBAT) merupakan satu kemahiran berfikir yang sangat diperlukan dalam mendepani cabaran kehidupan masa kini terutama dalam bidang matematik. Oleh itu, kajian ini dijalankan untuk mengkaji sama ada KBAT matematik pelajar dapat ditingkatkan dengan menggunakan modul infusi Kemahiran Berfikir Aras Tinggi - Pembelajaran Luar Bilik Darjah (iKBAT–PLBD) atau tidak? Justeru itu, satu kerangka perancangan telah dibuat terhadap empat kemahiran tertinggi dalam Taksonomi Bloom semakan semula yang juga merupakan konstruk utama dalam KBAT. Konstruk KBAT tersebut ialah konstruk menganlisis, mengaplikasi menilai dan mencipta. Sampel kajian ini melibatkan 120 pelajar tingkatan 1 di empat buah sekolah yang berbeza di negeri Johor. Dalam menjalankan kajian kuasi eksperimental ini, data dikumpul melalui kajian keputusan ujian pra dan ujian pos sebelum dan selepas menggunakan modul bagi kumpulan rawatan. Manakala pendekatan PdP tradisional pula digunakan bagi kumpulan kawalan. Hasil daripada analisis data menunjukkan bahawa aktiviti pembelajaran dan pemudahcaraan (PdPc) yang bertunjangkan modul iKBAT–PLBD telah dapat meningkatkan penguasaan matematik pelajar dalam kempat-empat tahap KBAT serta bagi keseluruhan tahap. Dapatan kajian ini menunjukkan terdapat perbezaan yang signifikasi antara kumpulan kawalan dan kumpulan rawatan terhadap peningkatan KBAT pelajar dalam matematik dengan menggunakan pendekatan iKBAT–PLBD bagi tahap mengaplikasi, menganalisis, menilai, mencipta juga secara keseluruhan. Kesimpulannya, kajian ini dapat memberi manfaat kepada semua pihak termasuk pihak Kementerian Pendidikan Malaysia (KPM), pihak pentadbiran sekolah, ibubapa, guru matematik malah bagi pelajar itu dari segi pengubalan dasar yang berkaitan, pengaplikasian dan sebagai satu bukti keberkesanan dalam proses pemerkasaan KBAT matematik di Malaysia

    Elevating metaverse virtual reality experiences through network-integrated neuro-fuzzy emotion recognition and adaptive content generation algorithms

    Get PDF
    Interactions between individuals and digital material have completely changed with the advent of the Metaverse. Due to this, there is an immediate need to construct cutting-edge technology that can recognize the emotions of users and continuously provide material that is relevant to their psychological states, improving their overall experience. An inventive method that combines natural language processing adaptive content generation algorithms and neuro-fuzzy-based support vector machines natural language processing (SVM-NLP) is proposed by researchers to meet this demand. With this merging, the Metaverse will be able to offer highly tailored and engaging experiences. Initially, a neuro-fuzzy algorithm was developed to identify people's emotional moods from their physiological reactions and other biometric information. Fuzzy Logic and Support Vector Machine work together to manage the inherent ambiguity and unpredictability, which results in a more exact and accurate categorization of emotions. A key component of the ACGA is NLP technology, which uses real-time emotional data to dynamically modify and personalize characters, stories, and interactive features in the Metaverse. The novelty of the proposed approach lies in the innovative integration of neuro-fuzzy-based SVM-NLP algorithms to accurately recognize and adapt to users' emotional states, enhancing the Metaverse experience across various applications. The proposed method is implemented using Python software. This adaptive approach significantly enhances users' immersion, emotional involvement, and overall satisfaction within the augmented reality environment by tailoring information to their responses. The findings show that the SVM-NLP emotion identification algorithm based on neuro-fuzzy, has a high degree of accuracy in recognizing emotional states, which holds promise for creating a Metaverse that is more emotionally compelling and immersive. Stronger human–computer interactions and a wider range of applications, including virtual therapy, educational resources, entertainment, and social media networking, might be made possible by integrating SVM-NLP. These sophisticated systems are around 92% accurate in interpreting the emotions

    New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component

    Full text link
    License Plate recognition plays an important role on the traffic monitoring and parking management systems. In this paper, a fast and real time method has been proposed which has an appropriate application to find tilt and poor quality plates. In the proposed method, at the beginning, the image is converted into binary mode using adaptive threshold. Then, by using some edge detection and morphology operations, plate number location has been specified. Finally, if the plat has tilt, its tilt is removed away. This method has been tested on another paper data set that has different images of the background, considering distance, and angel of view so that the correct extraction rate of plate reached at 98.66%.Comment: 3rd IEEE International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi Universit Mashha

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations
    • …
    corecore