5 research outputs found

    Neural Networks for Predicting Algorithm Runtime Distributions

    Full text link
    Many state-of-the-art algorithms for solving hard combinatorial problems in artificial intelligence (AI) include elements of stochasticity that lead to high variations in runtime, even for a fixed problem instance. Knowledge about the resulting runtime distributions (RTDs) of algorithms on given problem instances can be exploited in various meta-algorithmic procedures, such as algorithm selection, portfolios, and randomized restarts. Previous work has shown that machine learning can be used to individually predict mean, median and variance of RTDs. To establish a new state-of-the-art in predicting RTDs, we demonstrate that the parameters of an RTD should be learned jointly and that neural networks can do this well by directly optimizing the likelihood of an RTD given runtime observations. In an empirical study involving five algorithms for SAT solving and AI planning, we show that neural networks predict the true RTDs of unseen instances better than previous methods, and can even do so when only few runtime observations are available per training instance

    Algorithm Portfolios for Noisy Optimization

    Get PDF
    Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of solvers is a set of solvers equipped with an algorithm selection tool for distributing the computational power among them. Portfolios are widely and successfully used in combinatorial optimization. In this work, we study portfolios of noisy optimization solvers. We obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag, i.e., propose the current recommendation of best solver based on their performance earlier in the run. An additional finding is a principled method for distributing the computational power among solvers in the portfolio.Comment: in Annals of Mathematics and Artificial Intelligence, Springer Verlag, 201

    A Neural Network Model for Inter-Problem Adaptive Online Time Allocation

    No full text
    One aim of Meta-learning techniques is to minimize the time needed for problem solving, and the effort of parameter hand-tuning, by automating algorithm selection. The predictive model of algorithm performance needed for this task often requires long training times. We address the problem in an online fashion, running multiple algorithms in parallel on a sequence of tasks, continually updating their relative priorities according to a neural model that maps their current state to the expected time to the solution. The model itself is updated at the end of each task, based on the actual performance of each algorithm. Censored sampling allows us to train the model effectively, without need of additional exploration after each task's solution. We present a preliminary experiment in which this new inter-problem technique learns to outperform a previously proposed intra-problem heuristic.info:eu-repo/semantics/publishe

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus für eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird
    corecore