65,263 research outputs found

    Elicitation of Preference Structure in Engineering Design

    Get PDF
    Engineering design processes, which inherently involve multiple, often conflicting criteria, can be broadly classified into synthesis and analysis processes. Multiple Criteria Decision Making addresses synthesis and analysis processes through multiple objective optimisation to generate sets of efficient design solutions (i.e. on Pareto surfaces) and multiple attribute decision making to analyse and select the most preferred design solution(s). MCDM, therefore, has been widely used in all fields of engineering design; for example it has been applied to such diverse areas as naval battle ships criteria analysis/selection and product appearance design. Given a list of design alternatives with multiple conflicting criteria, preferences often determine the final selection of a particular set of design alternative(s). Preferences may also be used to drive the design/design optimisation processes. Various methods have been proposed to model preference structure, for example simple weights, multiple attribute utility theory, pairwise comparison, etc. Preference structure is often non-linear, discontinuous and complex. An Artificial Neural Network (ANN) learning-based preference elicitation method is presented in this paper. ANNs efficiently model the non-linearity, complexity and discontinuity nature of any given preference structure. A case study is presented to illustrate the learning-based approach to preference structure elicitation.

    Specification-Driven Predictive Business Process Monitoring

    Full text link
    Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach which is used to conduct experiments using real-life event logs.Comment: This article significantly extends the previous work in https://doi.org/10.1007/978-3-319-91704-7_7 which has a technical report in arXiv:1804.00617. This article and the previous work have a coauthor in commo

    Modeling batch annealing process using data mining techniques for cold rolled steel sheets

    Get PDF
    The annealing process is one of the important operations in production of cold rolled steel sheets, which significantly influences the final product quality of cold rolling mills. In this process, cold rolled coils are heated slowly to a desired temperature and then cooled. Modelling of annealing process (prediction of heating and cooling time and trend prediction of coil core temperature) is a very sophisticated and expensive work. Modelling of annealing process can be done by using of thermal models. In this paper, Modelling of steel annealing process is proposed by using data mining techniques. The main advantages of modelling with data mining techniques are: high speed in data processing, acceptable accuracy in obtained results and simplicity in using of this method. In this paper, after comparison of results of some data mining techniques, feed forward back propagation neural network is applied for annealing process modelling. A good correlation between results of this method and results of thermal models has been obtained

    BINet: Multi-perspective Business Process Anomaly Classification

    Full text link
    In this paper, we introduce BINet, a neural network architecture for real-time multi-perspective anomaly detection in business process event logs. BINet is designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a set of heuristics for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level but also on event attribute level. Finally, we demonstrate that a simple set of rules can be used to utilize the output of BINet for anomaly classification. We compare BINet to eight other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 29 synthetic and 15 real-life event logs. BINet outperforms all other methods both on the synthetic as well as on the real-life datasets

    LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances

    Full text link
    Predicting the completion time of business process instances would be a very helpful aid when managing processes under service level agreement constraints. The ability to know in advance the trend of running process instances would allow business managers to react in time, in order to prevent delays or undesirable situations. However, making such accurate forecasts is not easy: many factors may influence the required time to complete a process instance. In this paper, we propose an approach based on deep Recurrent Neural Networks (specifically LSTMs) that is able to exploit arbitrary information associated to single events, in order to produce an as-accurate-as-possible prediction of the completion time of running instances. Experiments on real-world datasets confirm the quality of our proposal.Comment: Article accepted for publication in 2017 IEEE Symposium on Deep Learning (IEEE DL'17) @ SSC

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed
    corecore