901 research outputs found

    Using GOES-16 ABI data to detect convection, estimate latent heating, and initiate convection in a high resolution model

    Get PDF
    2021 Spring.Includes bibliographical references.Convective-scale data assimilation has received more attention in recent years as spatial resolution of forecast models has become finer and more observation data are available at such fine scale. Significant amounts of observation data are available over the globe, but only a limited number of observations are assimilated in operational forecast models in the most effective way. One of the most important observation data for predicting precipitation is radar reflectivity from ground-based radars as it provides three-dimensional structure of precipitation. Many operational models use these data to create cloud analysis and initiate convection. In High-Resolution Rapid Refresh (HRRR), the cloud permitting operational model at National Oceanic and Atmospheric Administration (NOAA) that is responsible for short term forecasts over the Contiguous United States (CONUS), latent heating is derived from ground-based radars and added in the observed convective regions to initiate convection. Even though adding heating is shown to improve forecasts of convection, this cannot be done over ocean or mountainous regions where radar data is not available. Geostationary data are available regardless of radar coverage and its data are provided in similar spatial and temporal resolution as ground-based radar. Currently, geostationary data are only used as a source of cloud top information or atmospheric motion vectors due to lack of vertical information. However, Geostationary Operational Environmental Satellites (GOES)-16 and -17 have high temporal resolution data that can compensate the lack of vertical information. From loops of one-minute visible images, convective clouds can be detected by finding a region with a constant bubbling. Therefore, this dissertation seeks a way to use these high temporal resolution GOES-16 data to mimic what radars do over land. In the first two papers presented in the dissertation, two methods are proposed to detect convection using one-minute GOES-16 Advanced Baseline Imager (ABI) data. The first method explicitly calculates Tb decrease or lumpiness of reflectance data and finds convective regions. The second paper tries to automate this process using machine learning method. Results from both methods are comparable to radar product, but the machine learning model seems to detect more convective regions than the conventional method. In the third paper, latent heating profiles for convective clouds are estimated from GOES-16. Once a convective cloud is detected, latent heating profiles corresponding to cloud top temperature of the convective cloud is searched from the lookup table created using model simulations. This technique is similar to spaceborne radar inferred latent heating developed for National Aeronautics and Space Administration (NASA)'s Global Precipitation Measurement Mission (GPM). Latent heating assigned from GOES-16 is shown to be similar to latent heating derived from Next-Generation Radar (NEXRAD) once they are summed up over each cloud. Finally in the last paper, latent heating estimated by using the method from the third paper are assimilated into the Weather Research and Forecasting (WRF) model to examine impacts of using GOES-16 derived latent heating in initiating convection in the forecast model. Two case studies are presented to compare results using GOES-16 derived heating and NEXRAD derived heating. Results show that using GOES-16 derived heating sometimes produce deeper convection than it should, but it improves overall precipitation forecasts. This appears related to the much deeper column of heating assigned by GOES than the empirical relation used by the HRRR operational scheme. In addition, in a case when storms developed over Gulf of Mexico where radar data are not available, forecasts are improved using GOES-16 latent heating

    Combining satellite observations with a virtual ground-based remote sensing network for monitoring atmospheric stability

    Get PDF
    Atmospheric stability plays an essential role in the evolution of weather events. While the upper troposphere is sampled by satellite sensors, and in-situ sensors measure the atmospheric state close to the surface, only sporadic information from radiosondes or aircraft observations is available in the planetary boundary layer. Ground-based remote sensing offers the possibility to continuously and automatically monitor the atmospheric state in the boundary layer. Microwave radiometers (MWR) provide temporally resolved temperature and humidity profiles in the boundary layer and accurate values of integrated water vapor and liquid water path, while the DIfferential Absorption Lidar (DIAL) measures humidity profiles with high vertical and temporal resolution up to 3000 m height. Both instruments have the potential to complement satellite observations by additional information from the lowest atmospheric layers, particularly under cloudy conditions. The main objective of this work is to investigate the potential of ground-based and satellite sensors, as well as their synergy, for monitoring atmospheric stability. The first part of the study represents a neural network retrieval of stability indices, integrated water vapor, and liquid water path from simulated satellite- and ground-based measurements based on the reanalysis COSMO-REA2. The satellite-based instruments considered in the study are the currently operational Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the future Infrared Sounder (IRS), both in geostationary orbit, and the Advanced Microwave Sounding Unit (AMSU-A) and Infrared Atmospheric Sounding Interferometer (IASI), both deployed on polar orbiting satellites. Compared to the retrieval based on satellite observations, the additional ground-based MWR/DIAL measurements provide valuable improvements not only in the presence of clouds, which represent a limiting factor for infrared SEVIRI, IRS, and IASI, but also under clear sky conditions. The root-mean-square error for Convective Available Potential Energy (CAPE), for instance, is reduced by 24% if IRS observations are complemented by ground-based MWR measurements. The second part represents an attempt to assess the representativeness of observations of a single ground-based MWR and the impact of a network of MWR if combined with future geostationary IRS measurements. For this purpose, the reanalysis fields (150*150 km) in the western part of Germany were used to simulate MWR and IRS observations and to develop a neural network retrieval of CAPE and Lifted Index (LI). Further analysis was performed in the space of retrieved parameters CAPE and LI. The impact of additional ground-based network observations was investigated in two ways. First, using spatial statistical interpolation method, the fields of CAPE/LI retrieved from IRS observations were merged with the CAPE/LI values from MWR network taking into account the corresponding error covariance matrices of both retrievals. Within this method, the contribution of a ground-based network consisting of a varying number of radiometers (from one to 25) was shown to be significant under cloudy conditions. The second approach mimics the assimilation of satellite and ground-based observations in the space of retrieved CAPE/LI fields. Assuming the persistence of atmospheric fields for a period of six hours, the CAPE/LI fields calculated from reanalysis were taken as a first guess in an assimilation step. Observations, represented by CAPE/LI fields obtained from satellite and ground-based measurements with +6 hours delay, were assimilated by spatial interpolation. Within this method, the added value of ground-based observations, if compared to satellite contribution, is highly dependent on the current weather situation, cloudiness, and the position of ground-based instruments. For CAPE, the synergy of ground-based MWR and satellite IRS observations is essential even under clear sky conditions, since both passive sensors can not capture atmospheric profiles, needed for calculation of CAPE, with sufficient accuracy. Whereas for LI, the assimilation of observations of 25 MWR distributed in the domain is equivalent to the assimilation of horizontally resolved IRS observations, indicating that in the presence of clouds, MWR observations could replace cloud-affected IRS measurements. Within both approaches, it could be shown that the contribution of ground-based observations is more pronounced under cloudy conditions and is most valuable for the first 25 sensors located in the domain

    Working with the enemy? Social work education and men who use intimate partner violence

    Get PDF
    This article examines service user involvement in social work education. It discusses the challenges and ethical considerations of involving populations who may previously have been excluded from user involvement initiatives, raising questions about the benefits and challenges of their involvement. The article then provides discussion of an approach to service user involvement in social work education with one of these populations, men who use violence in their intimate relationships, and concludes by considering the implications of their involvement for the social work academy

    Retrieving cloud ice masses from geostationary images with neural networks

    Get PDF
    Clouds are essential to the Earth\u27s energy budget and atmospheric circulation. Despite this, many cloud parameters are poorly known, including the mass of frozen hydrometeors. On the one hand, there will be specialized satellite missions targeting such hydrometeors. On the other hand, existing satellite data can be leveraged. There should be a particular interest in using geostationary satellite observations since they provide continuous coverage. Traditionally, retrievals of cloud ice masses from geostationary measurements require solar reflectances, ignore any spatial correlations, and solely retrieve the vertically-integrated ice mass density, known as the ice water path.This thesis challenges the traditional approach by applying supervised learning against CloudSat collocations, the only existing satellite mission targeting ice clouds. A set of neural networks is assembled to compare the performance of using different visible or infrared channels as retrieval input as well as the added value of using spatial context. The retrievals are probabilistic, in the sense that all neural networks predict quantiles to estimate the retrieval irreducible uncertainty, and thus represent the state of the art for atmospheric retrievals.With several spectral channels, infrared retrievals are found to have a similar performance compared to the peak accuracy offered by the combination of visible and infrared channels. However, the infrared-only retrievals enable a consistent diurnal performance. The use of spatial information reinforces the retrievals, which is demonstrated by the ability to provide skilful three-dimensional estimates of ice masses, known as ice water content, from only one infrared channel. The latter retrieval scheme is supported by an extensive validation with independent measurements.These neural network-based retrievals offer the possibility to derive new insights into cloud physics, reduce present ice cloud uncertainties, and validate climate models. Ideally, such retrieval schemes will complement the sparse measurements from specialized instruments. Finally, this thesis contains the groundwork for executing retrievals on multidecadal geostationary observations, offering unprecedented spatially and temporally continuous three-dimensional data for the tropics and mid-latitudes. The implementation of these ongoing retrievals is publicly released as part of the Chalmers Cloud Ice Climatology

    A review of high impact weather for aviation meteorology

    Get PDF
    This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges

    Potential of EUMETSAT MTG-IRS hyperspectral sounder for improving nowcasting and very short range forecast atmospheric models

    Get PDF
    Obiettivo delle attività di ricerca descritte in questa tesi è lo studio dell’utilizzo dei dati iperspettrali IR per la diagnosi dell’instabilità atmosferica ed il rilevamento anticipato di sistemi convettivi. Lo studio è stato condotto nell’ambito del progetto MTG-IRS Near Real Time, concepito e coordinato da EUMETSAT per potenziare la preparazione degli utenti sulle potenzialità dello strumento IRS a supporto della meteorologia ed in particolare delle attività di previsioni a brevissima scadenza. In dettaglio, i prodotti iperspettrali di levello 2 di IRS, generati a partire da dati reali di IASI e CrIS e distribuiti da EUMETSAT, sono stati processati in quasi tempo reale insieme a dati ausiliari geograficamente co-localizzati ed indipendenti al fine di valutare la correlazione tra il segnale (cioè il contenuto informativo dei prodotti di livello 2) ed il fenomeno meteorologico (l’instabilità convettiva). Lo studio comprende anche il riprocessamento di una serie di casi di studio significativi sull’Italia. I risultati della ricerca mostrano che lo sfruttamento dei dati iperspettrali nel settore delle previsioni a brevissima scadenza è in grado di potenziare la capacità e la prontezza a livello utente dei moderni Servizi Meteorologici operativi per quanto riguarda il rilevamento in anticipo dei fenomeni intensi.In this thesis the research activities aiming at the investigation on the use of hyperspectral IR data for the diagnosis of atmospheric instability and the early detection of convective systems are shown. The study was carried out in the framework of MTG-IRS Near Real Time Demonstration Project, conceived and leaded by EUMETSAT to enhance the user awareness on the potential of the IRS instrument in support to the meteorology and in particular to the nowcasting activities. In detail, the proxy IRS hyperspectral level 2 products, generated from real IASI and CrIS data and distributed by EUMETSAT, were processed in near real time together with auxiliary colocated and independent datasets to assess the correlation between the signal (i.e. the information content of level 2 products) and the weather phenomenon (convective instability). The reprocess of a set of significant case studies over Italy was also included in the study. Research results show that the exploitation of hyperspectral data in the field of nowcasting applications could enhance the capacity and user-readiness of modern, operational Meteorological Services with respect to the early detection of severe weather

    Determining ground-level composition and concentration of particulate matter across regional areas using the Himawari-8 satellite

    Get PDF
    Speciated ground-level aerosol concentrations are required to understand and mitigate health impacts from dust storms, wildfires and other aerosol emissions. Globally, surface monitoring is limited due to cost and infrastructure demands. While remote sensing can help estimate respirable (i.e. ground level) concentrations, current observations are restricted by inadequate spatiotemporal resolution, uncertainty in aerosol type, particle size, and vertical profile. One key issue with current remote sensing datasets is that they are derived from reflectances observed by polar orbiting imagers, which means that aerosol is only derived during the daytime, and only once or twice per day. Sub-hourly, infrared (IR), geostationary data, such as the ten-minute data from Himawari-8, are required to monitor these events to ensure that sporadic dust events can be continually observed and quantified. Newer quantification methods using geostationary data have focussed on detecting the presence, or absence, of a dust event. However, limited attention has been paid to the determination of composition, and particle size, using IR wavelengths exclusively. More appropriate IR methods are required to quantify and classify aerosol composition in order to improve the understanding of source impacts. The primary research objectives were investigated through a series of scientific papers centred on aspects deemed critical to successfully determining ground-level concentrations. A literature review of surface particulate monitoring of dust events using geostationary satellite remote sensing was undertaken to understand the theory and limitations in the current methodology. The review identified (amongst other findings) the reliance on visible wavelengths and the lack of temporal resolution in polar-orbiting satellite data. As a result of this, a duststorm was investigated to determine how rapidly the storm passed and what temporal data resolution is required to monitor these and other similar events. Various IR dust indices were investigated to determine which are optimum for determining spectral change. These indices were then used to qualify and quantitate dust events, and the methodology was validated against three severe air quality events of a dust storm; smoke from prescribed burns; and an ozone smog incident. The study identified that continuous geostationary temporal resolution is critical in the determination of concentration. The Himawari-8 spatial resolution of 2 km is slightly coarse and further spatial aggregation or cloud masking would be detrimental to determining concentrations. Five dual-band BTD combinations, using all IR wavelengths, maximises the identification of compositional differences, atmospheric stability, and cloud cover and this improves the estimated accuracy. Preliminary validation suggests that atmospheric stability, cloud height, relative humidity, PM2.5, PM10, NO, NO2, and O3 appear to produce plausible plumes but that aerosol speciation (soil, sea-spray, fires, vehicles, and secondary sulfates) and SO2 require further investigation. The research described in the thesis details the processes adopted for the development and implementation of an integrated approach to using geostationary remote sensing data to quantify population exposure (who), qualify the concentration and composition (what), assess the temporal (when) and spatial (where) concentration distributions, to determine the source (why) of aerosols contribution to resulting ground-level concentration

    Improving satellite measurements of clouds and precipitation using machine learning

    Get PDF
    Observing and measuring clouds and precipitation is essential for climate science, meteorology, and an increasing range of societal and economic activities. This importance is due to the role of clouds and precipitation in the hydrological cycle and the weather and climate of the Earth. Furthermore, patterns of cloudiness and precipitation interact across continental scales and are highly variable in both space and time. Therefore their study and monitoring require observations with global coverage and high temporal resolution, which currently can only be provided by satellite observations.Inferring properties of clouds or precipitation from satellite observations is a non-trivial task. Due to the limited information content of the observations and the complex physics of the atmosphere, such retrievals are endowed with significant uncertainties. Traditional methods to perform these retrievals trade-off processing speed against accuracy and the ability to characterize the uncertainties in their predictions.This thesis develops and evaluates two neural-network-based methods for performing retrievals of hydrometeors, i.e., clouds and precipitation, that are capable of providing accurate predictions of the retrieval uncertainty. The practicality and benefits of the proposed methods are demonstrated using three real-world retrieval applications of cloud properties and precipitation. The demonstrated benefits of these methods over traditional retrieval methods led to the adoption of one of the algorithms for operational use at the European Organisation for the Exploitation of Meteorological Satellites. The two other algorithms are planned to be integrated into the operational processing at the Brazilian National Institute for Space Research, as well as the processing of observations from the Global Precipitation Measurement, a joint satellite mission by NASA and the Japanese Aerospace Exploration Agency.The principal advantage of the proposed methods is their simplicity and computational efficiency. A minor modification of the architecture and training of conventional neural networks is sufficient to capture the dominant source of uncertainty for remote sensing retrievals. As shown in this thesis, deep neural networks can significantly improve the accuracy of satellite retrievals of hydrometeors. With the proposed methods, the benefits of modern neural network architectures can be combined with reliable uncertainty estimates, which are required to improve the characterization of the observed hydrometeors
    • …
    corecore