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Abstract

Atmospheric stability plays an essential role in the evolution of weather events. While the up-
per troposphere is sampled by satellite sensors, and in-situ sensors measure the atmospheric
state close to the surface, only sporadic information from radiosondes or aircraft observations
is available in the planetary boundary layer. Ground-based remote sensing offers the possi-
bility to continuously and automatically monitor the atmospheric state in the boundary layer.
Microwave radiometers (MWR) provide temporally resolved temperature and humidity pro-
files in the boundary layer and accurate values of integrated water vapor and liquid water path,
while the DIfferential Absorption Lidar (DIAL) measures humidity profiles with high verti-
cal and temporal resolution up to 3000m height. Both instruments have the potential to com-
plement satellite observations by additional information from the lowest atmospheric layers,
particularly under cloudy conditions.
The main objective of this work is to investigate the potential of ground-based and satellite
sensors, as well as their synergy, for monitoring atmospheric stability.
The first part of the study represents a neural network retrieval of stability indices, integrated
water vapor, and liquid water path from simulated satellite- and ground-based measurements
based on the reanalysis COSMO-REA2. The satellite-based instruments considered in the study
are the currently operational Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and
the future Infrared Sounder (IRS), both in geostationary orbit, and the Advanced Microwave
Sounding Unit (AMSU-A) and Infrared Atmospheric Sounding Interferometer (IASI), both de-
ployed on polar orbiting satellites. Compared to the retrieval based on satellite observations,
the additional ground-based MWR/DIAL measurements provide valuable improvements not
only in the presence of clouds, which represent a limiting factor for infrared SEVIRI, IRS, and
IASI, but also under clear sky conditions. The root mean square error for Convective Available
Potential Energy (CAPE), for instance, is reduced by 24% if IRS observations are complemented
by ground-based MWR measurements.
The second part represents an attempt to assess the representativeness of observations of a sin-
gle ground-based MWR and the impact of a network of MWR if combined with future geosta-
tionary IRSmeasurements. For this purpose, the reanalysis fields (150×150 km) in the western
part of Germany were used to simulate MWR and IRS observations and to develop a neural
network retrieval of CAPE and Lifted Index (LI). Further analysis was performed in the space
of retrieved parameters CAPE and LI. The impact of additional ground-based network obser-
vations was investigated in two ways.
First, using spatial statistical interpolation method, the fields of CAPE/LI retrieved from IRS
observations were merged with the CAPE/LI values from MWR network taking into account
the corresponding error covariance matrices of both retrievals. Within this method, the contri-
bution of ground-based network consisting of a varying number of radiometers (from one to
25) was shown to be significant under cloudy conditions.
The second approach mimics the assimilation of satellite and ground-based observations in the
space of retrieved CAPE/LI fields. Assuming the persistence of atmospheric fields for a pe-
riod of six hours, the CAPE/LI fields calculated from reanalysis were taken as a first guess in



an assimilation step. Observations, represented by CAPE/LI fields obtained from satellite and
ground-based measurements with +6 hours delay, were assimilated by spatial interpolation.
Within this method, the added value of ground-based observations, if compared to satellite
contribution, is highly dependent on the current weather situation, cloudiness, and the posi-
tion of ground-based instruments.
For CAPE, the synergy of ground-based MWR and satellite IRS observations is essential even
under clear sky conditions, since both passive sensors can not capture atmospheric profiles,
needed for calculation CAPE, with sufficient accuracy. Whereas for LI, the assimilation of ob-
servations of 25MWRdistributed in the domain is equivalent to the assimilation of horizontally
resolved IRS observations, indicating that in the presence of clouds, MWR observations could
replace cloud-affected IRS measurements. Within both approaches it could be shown that the
contribution of ground-based observations is more pronounced under cloudy conditions and
is most valuable for the first 25 sensors located in the domain.
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Zusammenfassung
Die atmosphärische Stabilität spielt eine wesentliche Rolle bei der Entwicklung von konvek-
tiven Wetterereignisse. Der Zustand der Atmosphäre in Bodennähe (2 m) und in der oberen
Troposphäre lässt sich gut mithilfe von in-situ Stationsmessungen bzw. Satellitenbeobachtun-
gen erfassen. Informationen über den Zustand der atmosphärischen Grenzschicht sind dage-
gen räumlich und zeitlich sehr begrenzt und stammen vor allem aus Radiosondenaufstiegen
und Flugzeugmessungen. Die bodengebundene Fernerkundung bietet die Möglichkeit, den
atmosphärischen Zustand in der Grenzschicht kontinuierlich und automatisch zu vermessen.
Mikrowellenradiometer (MWR) liefern zeitlich aufgelöste Temperatur- und Feuchteprofile in
derGrenzschicht undgenaueWerte desGesamtwasserdampfs undFlüssigwasserpfades, während
das DIfferential Absorption Lidar (DIAL) Feuchteprofile mit hoher vertikaler und zeitlicher
Auflösung bis zu 3000m Höhe misst. Beide Instrumente haben das Potential, die Satelliten-
beobachtungen durch zusätzliche Informationen aus den untersten atmosphärischen Schichten
zu ergänzen, insbesondere unter bewölkten Bedingungen.
Das Hauptziel der vorliegenden Arbeit ist es, das Potential von bodengebundenen und satel-
litengestützten Sensoren sowie deren Synergie für die Messung der atmosphärischen Stabilität
zu untersuchen.
Der erste Teil der Arbeit präsentiert ein Neuronales Netzwerk Retrieval der Stabilitätsindizes,
des Gesamtwasserdampfgehaltes und des Flüssigwasserpfades aus den simulierten satelliten-
und bodengebundenen Messungen Die atmosphärischen Profile für die Simulation der Mes-
sungen liefern die regionalen hochaufgelösten Reanalysen COSMO-REA2. Die in dem Experi-
ment berücksichtigten satellitengestützten Instrumente sind der derzeit operationelle Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) und der zukünftige Infrared Sounder (IRS),
beide im geostationären Orbit, sowie der AdvancedMicrowave Sounding Unit (AMSU-A) und
das Infrared Atmospheric Sounding Interferometer (IASI), beide auf polarumlaufenden Satel-
liten. Verglichen mit dem Retrieval, das auf Satellitenbeobachtungen basiert, liefern die zusät-
zlichen bodengestützten MWR/DIAL-Messungen wertvolle Verbesserungen nicht nur unter
bewölkten Bedingungen, welche einen limitierenden Faktor für Infrarot-SEVIRI, IRS und IASI
darstellen, sondern auch bei klarem Himmel. Der quadratische Fehler (Root Mean Square Er-
ror) für CAPE ( Convective Available Potential Energy) wird beispielsweise um 24% reduziert,
wenn die IRS-Beobachtungen durch bodengebundene MWR-Messungen ergänzt werden.
Im zweiten Teil der vorliegenden Arbeit wird die Repräsentativität derMessungen eines einzel-
nenMWRund einesMWR-Netzwerks untersucht. Der Einfluss der Beobachtungen einesMWR-
Netzwerkswird in derKombinationmit zukünftigen geostationären IRS-Messungen abgeschätzt.
Die Reanalysefelder (150×150 km) im westlichen Teil Deutschlands wurden verwendet, um
MWR- und IRS-Beobachtungen zu simulieren. Ein neuronales Netzwerk-Retrieval wurde en-
twickelt umCAPE und Lifted Index (LI) von simuliertenMessungen abzuleiten. Weitere Anal-
ysen wurden im Raum der CAPE und LI durchgeführt. Der Einfluss zusätzlicher bodengebun-
denen MWR Beobachtungen wurde in zwei Ansätzen untersucht.
Zuerst wurden die aus IRS Messungen abgeleiteten Felder von CAPE/LI mit denen aus dem



MWR-Netzwerk mittels räumlicher statistischer Interpolation zusammengeführt. Dabei wur-
den die entsprechenden Fehlerkovarianzmatrizen beider Retrievals berücksichtigt. Im Rahmen
dieser Methode wurde gezeigt, dass der Beitrag des bodengebundenen Netzwerks, das aus
einer unterschiedlichen Anzahl von Radiometern (von einem bis 25) besteht, unter bewölkten
Bedingungen signifikant ist.
Der zweite Ansatz imitiert die Assimilation von satelliten- und bodengebundenen Beobachtun-
gen. Unter der Annahme der Persistenz der atmosphärischen Felder für einen Zeitraum von
sechs Stunden wurden die aus der Reanalyse berechneten CAPE/LI-Felder als first guess in
einemAssimilationsschritt angenommen. Messungen, repräsentiert durchCAPE/LI-Felder aus
den satelliten- und bodengestützten Messungen mit +6 Stunden Verzögerung, wurden mittels
statistischer Interpolation assimiliert. Bei dieserMethode ist derMehrwert der bodengestützten
Beobachtungen im Vergleich zum Satellitenbeitrag stark von der aktuellen Wettersituation, der
Bewölkung und der Position der bodengestützten Instrumente abhängig.
Für CAPE ist die Synergie von bodengebundenenMWR- und satellitengestützten IRS- Messun-
gen selbst bei klaremHimmel essentiell, da beide passiven Sensoren atmosphärische Profile, die
für die Berechnung von CAPE benötigt werden, nicht mit ausreichender Genauigkeit erfassen
können. Für LI hingegen ist die Assimilation von 25 im Feld verteilten MWR-Beobachtungen
gleichwertig mit der Assimilation von horizontal aufgelösten IRS-Messungen. Dies deutet da-
rauf hin, dass unter bewölkten Bedingungen, wenn IRS Messungen von LI unmöglich sind, ein
Netzwerk aus 25 MWR die fehlenden Satellitenmessungen ersetzen könnte.
Innerhalb beider Ansätze konnte gezeigt werden, dass der Beitrag bodengebundener Beobach-
tungen unter bewölkten Bedingungen ausgeprägter als bei klarem Himmel und für die ersten
25 Sensoren am größten ist.
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Chapter 1

Introduction

1.1 Motivation

In the last years, progress was made in developing high-resolution (∼1 km) numerical weather
prediction models (NWP). In contrast to global NWP models, which use parameterization
schemes to include small scale processes, such as convection, the high resolution of these re-
gionalmodels allows to explicitly resolve deep convection. Severalmeteorological offices started
using regional convection-resolving models for operational weather forecast. However, even
high-resolution NWP models still have difficulties forecasting the exact temporal and spatial
location of severe, locally influencedweather, such as summer-time convective storms, cool sea-
son lifted stratus or ground fog (Anquetin et al., 2005). The reasons for it reach from lack of
understanding to the limited capacity of the model to represent the underlying physical pro-
cesses. The quality of the forecast depends, among other factors, on the accurate representation
of the initial state of the atmosphere. Currently, a wide range of observations is performed and
assimilated in the operational NWP models to help define the initial atmospheric conditions
before starting a forecast.
Atmospheric state close to the surface is provided by surface sensor networks, while various
satellite instruments sample the upper atmosphere. The hyperspectral infrared (IR) and mi-
crowave observations (MW) from polar orbiting platforms are the largest contributors to the
forecast accuracy (Cotton et al., 2019, Cardinali, 2018). However, because of the attenuation by
clouds, the satellite measurements in IR provide only limited information in the lowest part of
the atmosphere, the atmospheric boundary layer (ABL). Moreover, the vertical resolution and
accuracy of atmospheric profiles based on satellite retrievals decreases close to the surface due
to limited knowledge of varying surface properties such as emissivity, albedo, skin temperature
or snow cover (Pougatchev et al., 2009). The observations in the ABL, which are currently as-
similated by the NWP models include mostly in-situ measurements by the global radiosonde
network and aircraft reports. Despite their sparse horizontal and temporal resolution compared
to satellite measurements, the radiosonde and aircraft observations contribute significantly to
the forecast skill of global NWP models (Cotton et al., 2019).
To provide high resolution regional NWPmodels with accurate assessment of initial conditions
and to improve their forecast skills, continuous, vertically and horizontally resolved observa-
tions through the lowest few kilometers of the atmosphere, including the ABL, are required
(National Research Council [NRC], 2009).
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Hyperspectral IR observations from geostationary platforms could provide atmospheric fields
with high temporal resolution and full disc coverage. The benefit of simulated geostationary
hyperspectral IR observations assimilated into a regional forecast model was shown in a num-
ber of experiments (Guedj et al., 2014). However, besides the higher temporal and horizontal
resolution of themeasurements, the hyperspectral IR observations from geostationary orbit will
be affected by the same limitations, such as cloudiness and low accuracy and resolution in the
boundary layer, as already operational hyperspectral sounders on board of polar orbiting satel-
lites.
The described limitations of current and future observing systems could be reduced by addi-
tional ground-based remote sensing observations. There is a growing number of instruments
deployed worldwide for ABL profiling (Cimini et al., 2020). The measured atmospheric vari-
ables include the vertical profiles of temperature, humidity, wind, aerosol and cloud properties.
First attempts to assimilate the ground-based remote sensing observations into high resolution
NWP models showed a positive impact and improvements in the detection of fog (Martinet
et al., 2020) and in the precipitation forecast (Caumont et al., 2016). The potential benefit of
the network of ground-based sensors in the presence and in synergy with existing and future
satellite based observations needs to be investigated.

1.2 Status of monitoring the atmospheric stability

The focus of thiswork lies on the assessment of atmospheric stability using satellite and ground-
based observations under clear sky and cloudy conditions. Atmospheric thermodynamic stabil-
ity determines the tendency of the air to rise or, in opposite, to resist vertical motion. Thus, the
atmospheric stability describes the potential of the atmosphere to develop convection and se-
vere convective storms. The knowledge of thermodynamic stability is important for nowcasting
and prediction of these weather events.
Thermodynamic stability is determined by the vertical distribution of temperature and humid-
ity. One way to assess the atmospheric stability is through forecast or stability indices (Pep-
pler, R. A., 1988). The atmospheric stability indices (STI) are derived from vertical profiles
and usually combine humidity and temperature at different pressure levels. Each index has an
empirically determined threshold. In case the index exceeds or falls below this threshold, the
potential for convection, thunderstorm, or fog, depending on the index, is given. Maps of sta-
bility indices provided by NWP models help the operational forecasters identify regions with
unstable conditions favourable to the development of deep convection and severe weather. It
should be noted, that there is no "global" index which can serve as the most reliable predictor of
convection for different regions. Most of the STI were developed for specific atmospheric phe-
nomena or for certain geographic regions. Several studies have focused on the evaluation of STI
and associated thresholds for specific geographic regions (Haklander et al., 2003; Kunz, 2007;
Manzato, 2003, 2011). The purpose of such studies is to find a STI or a set of STI along with
their thresholds, appropriate for predicting particular weather events in the region of interest.
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Traditionally, STI are calculated from radiosonde profiles of temperature and humidity. How-
ever, radiosondes are typically only available 1-2 times a day, which is not frequent enough to
capture the temporal and spatial variability of the thermodynamic state of the atmosphere.
Currently, the atmospheric stability indices are routinely calculated from geostationary satel-
lite observations (e.g. Koenig et al., 2009). The Meteosat Second Generation Global Instability
Index product (MSG-GII) is based on SEVIRI measurements and covers Africa and Europe.
It includes three stability indices, the Lifted Index (LI), KO Index, and the K-Index (KI), as
well as the total precipitable water (TPW) (EUMETSAT, 2013). The GII product is produced at
the horizontal resolution of approximately 9 km at the sub-satellite point. Although the hori-
zontal resolution of the GII products decreases with increasing latitude, the full disc coverage
and repeat cycle of 15 minutes still represent a significant improvement to the sparsely located
radiosonde sounding sites.
However, the main limitation of the MSG-GII product is that it relies on infrared observations
and is restricted to cloud-free and thus pre-convective areas. Moreover, currently operational
geostationary instruments have low spectral resolution and therefore provide less information
on the vertical structure of the atmosphere, especially of the lowest layers (Schmit et al., 2008).
Particularly, the clear sky radiances of geostationary SEVIRI on board of MSG are mainly sen-
sitive to the water vapor in the mid- and upper troposphere (Stengel et al., 2009).
The Infrared Sounder (IRS) on board of the future geostationary Meteosat Third Generation
(MTG; https://www.eumetsat.int) is expected to provide amore detailed picture of 4-dimensio-
nal water vapor and temperature structures bymeans of highly spectrally resolved observations
(F. Wang et al., 2007). The first satellite of the MTG series carrying IRS is scheduled to launch
in 2024 and will perform a full disc scan from the 0◦ nominal longitude.
Accurate retrievals of temperature and humidity profiles from hyperspectral infrared radiance
require accurate information about the surface emissivity. Land surface emissivity is highly
inhomogeneous in space and time and shows different angular dependency for different land
surface types (Li et al., 2013). Although, progress has been made in the simultaneous retrieval
of surface temperature, surface emissivity, and atmospheric profiles from hyperspectral polar
orbiting and from geostationary infrared observations (Masiello et al., 2018; Yao et al., 2011),
the surface emissivity still remains a high uncertainty for the retrieved atmospheric profiles.
Furthermore, since the IRS will measure in the Long- and Mid-Wave Infrared, optically thick
clouds will represent a limiting factor for thermodynamic profiling of the lower troposphere
(Zhou et al., 2005).
Several studies focused on the evaluation of STI calculated fromhyperspectral infrared and com-
bined infrared and microwave observations from polar orbiting platforms (Iturbide-Sanchez et
al., 2018). Gartzke et al., 2017 showed that there is a poor correlation between the surface based
Convective Available Potential Energy (SBCAPE) derived from Atmospheric Infrared Sounder
(AIRS) and from radiosonde profiles. It could be shown that the differences in SBCAPE from
satellite and radiosonde profiles are primarily explained by the error in the surface-parcel tem-
perature and humidity in the satellite soundings. Atmospheric profiles obtained from infrared
and from combined infrared and microwave satellite observations often show dry and cold
bias in the lowest levels, especially over land and under warm, moist conditions (Bloch et al.,
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2019; Tobin et al., 2006). The replacement of the surface-parcel properties in satellite soundings
with the surface or radiosonde observations leads to significant improvements in accuracy of
SBCAPE (Bloch et al., 2019; Gartzke et al., 2017).
Networks of ground-based instruments that operate on a 24/7 basis have the potential to pro-
vide information on thermodynamic conditions below and above clouds as well as close to the
surface and thus to complement satellite observations. Particularly, ground-based Microwave
Radiometers (MWR), low-cost and network suitable instruments, are well established for ob-
serving the atmospheric temperature andhumidity at high temporal resolutionduring allweather
conditions except during precipitation when water on the radome disturbs the measurement
(Crewell et al., 2007; Rose et al., 2005). Most common MWRs measure brightness temperature
at selected channels in the 20-60 GHz frequency range, where the atmospheric radiation is less
affected by clouds than in infrared. Thus the retrieval of thermodynamic profiles below, within,
and above clouds is possible, albeit with lower vertical resolution than from hyperspectral in-
frared observations (Löhnert et al., 2009).
The STI calculated from temperature and humidity profiles measured by MWR were shown to
agree well with those computed from radiosonde soundings with correlation coefficients above
0.8 (Cimini et al., 2015). The accuracy of the obtained STI depends on the approach used for
retrieval of temperature and humidity profiles from passive microwave observations. A com-
prehensive overview and evaluation of different retrieval techniques developed in the past is
given in Cimini et al., 2006. The optimal estimation theory allows for the assessment of the
information content of observations in terms of degrees of freedom for signal (DOF): the num-
ber of independent pieces of information about atmospheric state variables (e.g., temperature
profile) that can be extracted from a given set of measurements (Rodgers, 2000). It was shown
that 90% of temperature information provided by ground-basedMWR originates from the low-
est 500 hPa with the maximum information in the lowest 200 hPa. The maximum of humidity
information in terms of DOF comes from the layer between 500 and 800 hPa while 80% of hu-
midity information is from heights below 500 hPa (Ebell et al., 2013; Löhnert et al., 2012). This
explains the fact that the resolution and accuracy of thermodynamic profiles obtained from
ground-basedMWR observations degrades with increasing height. Thus, the MWR are mainly
suited for continuous observations in the boundary layer.
The latest advances in calibration techniques (Küchler et al., 2016)makeMWR suitable for long-
term, unattended operation within a ground-based network. The potential benefit of assimilat-
ing the temperature and humidity profiles retrieved from single and network MWR observa-
tions in operational convective scale NWP models in both clear sky and cloudy conditions was
demonstrated by several studies (Caumont et al., 2016; Cimini et al., 2012; Hartung et al., 2011;
Martinet et al., 2017; Otkin et al., 2011). The development of the ground-based version of the
fast radiative transfer model RTTOV (De Angelis et al., 2016) offers the possibility of direct as-
similation of brightness temperatures instead of retrievals. This should lead to a more positive
impact of MWR observations within assimilation into NWP model.
The low resolution ofMWRhumidity profiles can be compensated by co-located observations of
ground-based water vapor DIfferential Absorption Lidar (DIAL) (Spuler et al., 2015). Recently
developed water vapor DIALs perform humidity profiling up to 3km or to the cloud base with
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10% uncertainty. The capability of these compact network suitable instruments for unattended,
continuous water vapor profiling was demonstrated during several measurement campaigns
(Roininen, R., 2016; Weckwerth et al., 2016).
Considering the advantages and disadvantages of geostationary satellites (e.g. high temporal
and horizontal resolution, but low resolution and accuracy in the boundary layer and strong
dependency on surface emissivity and cloud cover) and ground-based remote sensing obser-
vations (high resolution in the boundary layer, but sparse spatial coverage) it is expected that
combination of both will improve the assessment of atmospheric state.
Although, a sufficiently dense network of ground-based MWR does not yet exist, the interna-
tional European Cooperation in Science and Technology (COST) actions such as TOPROF (To-
ward Operational ground-based Profiling with ALC (automatic lidar and ceilometer), DWLs
(Doppler wind lidar), and MWR) and PROBE (PROfiling the atmospheric boundary layer at
European scale) enable the interaction between manufactures, research community and con-
tribute to the development of profiling networks. The past COST action TOPROF significantly
contributed to the development of calibration techniques, retrieval algorithms, reliable data
quality control, and to the application of atmospheric profiling systems within European ob-
servation network. The collaboration between TOPROF and EUMETNET (European National
Meteorological Services) resulted in a network of 333 ALC across 22 countries (Kotthaus et al.,
2020). The aerosol and cloud parameters observed by this network are distributed in real time
to European weather forecast centers within E-PROFILE program of EUMETNET (Illingworth
et al., 2019). Long term measurements of aerosol, clouds and trace gases are also performed by
state-of-the-art in-situ and remote sensing sensors within ACTRIS research infrastructure (Pap-
palardo, Gelsomina, 2018). About 30 MWR stations over Europe have the potential to provide
MWR observations on a continuous basis (Cimini et al., 2020). The extension of E-PROFILE
program to DWL and MWR is expected to demonstrate the benefits of both instruments.

1.3 Contribution within this study

The aim of this study is twofold. The first part (henceforth called Study 1) represents the anal-
ysis of the the potential of several satellite sensors (AMSU-A/MHS, IASI, SEVIRI and IRS),
ground-based instruments (MWR and WV-DIAL) and their synergy for the assessment of at-
mospheric stability in both clear sky and cloudy conditions. Clear sky and cloudy cases were
treated separately to demonstrate the strength and weaknesses of each instrument. The theo-
retical study is performed for a typical mid-latitude station and is based on the high-resolution
regional reanalysis COSMO-REA2 (Bollmeyer, 2015). Reanalysis profiles were used for sim-
ulation of ground-based and satellite observations and for calculation of a set of parameters
including seven STI, integrated water vapor (IWV) and liquid water path (LWP). Simulated
observations along with STI were used to train and test the neural networks for single instru-
ments and instrument combinations. Due to the assumptions made for simulation of satellite
observations, the results of this study are only valid for the specified mid-latitude site and for
atmospheric conditions which are represented by selected reanalysis profiles. The set of STI
considered in this work includes K-index (KI), KO-index, Total Totals (TT), Lifted Index (LI),



6 Chapter 1. Introduction

Showalter index (SI), Convective Available Potential Energy (CAPE) and fog threat (FT). Ad-
ditionally, integrated water vapor (IWV) and liquid water path (LWP) are retrieved as fur-
ther useful airmass parameters. The performance of satellite STI retrievals is compared to the
retrievals from ground-based and combined ground- and satellite-based retrievals. The syn-
ergy benefit is defined here as an increase in correlation and reduction of retrieval uncertainty
achieved through additional ground-based observations compared to the retrieval from satellite
observations only.
Then, since the future hyperspectral IRS will perform observations with currently highest oper-
ational temporal resolution of 30 minutes (regarding temperature and humidity profiles), the
IRS retrieval is considered as the baseline and both ground-based sensors, MWR and DIAL,
are compared to each other in their ability to complement IRS observations for the retrieval of
STI. And finally, neural networks were trained for retrieval of temperature and humidity pro-
files from IRS and MWR observations. The potential benefit of the synergy of both sensors is
analysed. Summarized Study 1 answers following question:

• How well can the atmospheric stability indices and thermodynamic profiles be retrieved
by means of the synergy of ground-based remote sensing and satellite measurements?

The second part (henceforth called Study 2) addresses the second and third questions and rep-
resents an attempt to assess the representativeness of observations of a single ground-based
MWR and the impact of a network of MWR if combined with geostationary IRS measurements.
For it, the reanalysis fields in the western part of Germany were used to simulate MWR and
IRS observations and to develop a neural network retrieval of CAPE and LI fields. The impact
of an additional ground-based network was investigated in two ways. First, using the statisti-
cal interpolation method the CAPE/LI fields retrieved from satellite observations were merged
with the CAPE/LI values from ground-based network by taking into account the corresponding
error covariance matrices of both retrievals. This experiment shows the improvements which
could be achieved by combining of CAPE/LI fields retrieved from satellite and ground-based
network observations without involving prior knowledge about the atmospheric field. Second,
by assuming the persistence of CAPE/LI field for a time period of six hours the last was taken as
a first guess and updated with the CAPE/LI field obtained form satellite and/or ground-based
observations. This experiment mimics the simple assimilation step in the space of CAPE/LI.
Within this method, the prior information from reanalysis is involved and the added value of
ground-based and satellite observations is assessed separately and in synergy with each other.
Thus, Study 2 addresses the following questions:

• How accurate are the 2D fields of stability indices retrieved from satellite and ground-
based observations?

• How can horizontally resolved 2D fields of stability indices obtained from satellite ob-
servations be combined with observations from a ground-based network and what is the
impact of a varying network density on the uncertainty of the obtained field of instability
indices?

The thesis is organized as follows. The Chapter 2 gives a description of the reanalysis data set
and the stability indices used in the study. In Chapter 3, the radiative transfer theory and the
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fundamentals of passive remote sensing in the microwave and infrared parts of the spectrum
are explained. Subsequently, the instruments, their measurement principle, and the radiative
transfer models RTTOV and RTTOV-gb used for the simulation of satellite and ground-based
observations are introduced. The principle of the neural network retrieval is described in Chap-
ter 4. The results of Study 1 are presented Chapter 5. It starts with the explanation of statistical
metrics used for evaluation and continues with the results of a single instrument and synergis-
tic retrieval of STI and temperature and humidity profiles. The results of Study 2 are presented
in Chapter 6. It starts with the description of the accuracy of CAPE/LI retrieval from IRS and
MWR observations over the domain. Subsequently, the spatial statistical interpolation method
is introduced and the results of the interpolation between IRS andMWR retrieved fields and of
the assimilation of MWR and IRS fields are presented. Conclusions and perspectives are given
in Chapter 7.
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Chapter 2

Reanalysis data set and calculation of
stability indices

This chapter serves to introduce the reanalysis data sets used in the Study 1 and 2 and to give
the definitions of stability indices.

2.1 Reanalyses data

The assessment of capability of future, not yet existing instruments and instrument networks
can be performed by simulation of their observations. For this purpose, realistic atmospheric
profiles or preferably four-dimensional information on atmospheric state is needed. Numeri-
cal weather prediction models (NWP) run by national weather centres produce analyses of the
atmospheric state by combining forecast and observations several times a day. However, opera-
tional NWPmodels are steadily modified and improved and thus, time series of analyses show
inconsistencies due to changes in the model version. Furthermore, in the operational setting,
only observations which are available up to a certain cut-off time can be assimilated.
In contrast, atmospheric reanalyses are produced by usage of one version of state-of-the-art
NWP model with corresponding data assimilation scheme and taking into account as many
observations of the atmospheric state as possible. Consequently, the reanalyses represent the
best timely consistent estimates of the atmospheric system for the past time span.
The global reanalyses with horizontal resolutions up to about 30 km, such as European Centre
for Medium-range Weather Forecasting (ECMWF) Re-Analysis 5 data set (ERA5, Hersbach et
al., 2020) are widely used for monitoring of climate change and other research purposes. For
the studies on small scale processes like convection, the regional reanalyses with higher spatial
and temporal resolutions provide more detailed information and are more appropriate.
The two high-resolution regional reanalyses COSMO-REA2 (Wahl et al., 2017) and COSMO-
REA6 (Bollmeyer et al., 2015) have been developed within the "Hans-Ertel-Centre for Weather
Research" (HErZ, Simmer et al., 2016) and are based on the COnsortium for Small-scale Mod-
elling limited-area model (COSMO 1, Doms et al., 2018, Doms et al., 2011). The non-hydrostatic
regional COSMOmodel (Baldauf et al., 2011)was the operational regionalmodel of theDeutscher
Wetterdienst (DWD) until 2021.

1http://www.cosmo-model.org/
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(a) (b)

Figure 2.1: (A) The domain of COSMO-REA2 with experimental area used in the
Study 2 (black square). (B) Orography of the model domain used in the Study 2.
Red cross shows the position of JOYCE site. Note the different range of colorbars.

COSMO-REA6 was produced with the COSMO-EU version 4.25.2 and covers the European
CORDEX EUR-11 domain (Giorgi et al., 2009) with horizontal resolution of 0.005◦ (approx-
imately 6.2 km) and 40 vertical levels. The lowest and highest levels are placed in 10m and
22.7 km above the ground, respectively. The initial field and boundary conditions, needed for
initialisation and feeding the regional model, are provided by the global reanalysis ECMWF
Re-Analysis Interim data set (ERA-Interim, Dee et al., 2011). A continuous nudging scheme is
used to assimilate pressure, wind, temperature, and humidity values measured by SYNOP sta-
tions, aircrafts, radiosondes, ships, drifting buoys andwind profilers. In addition to continuous
assimilation of observations, snow depth analysis is performed every 6 hours, and sea surface
temperature (SST) and soil moisture (SMA) analysis are performed daily at 0000UTC.
The COSMO-REA2 is nested into COSMO-REA6 reanalysis, but has a finer horizontal resolu-
tion (0.0018◦, approximately 2 km) and 50 vertical levels. It was produced with the version
5.00.2 of COSMO-DE model and covers Germany and surrounding states (Fig.2.1a). The major
differences between these two reanalyses, besides the spatial resolution, are firstly, the explicit
resolution of deepmoist convection inCOSMO-REA2 in contrast to parametrization inCOSMO-
REA6, and secondly, the additional assimilation of radar-derived rain rates in COSMO-REA2
using latent heat nudging scheme. As a consequence, precipitation is better represented by
COSMO-REA2 compared to COSMO-REA6 (Wahl et al., 2017). In both reanalyses the shallow
convection is parameterized using Tiedtke mass flux scheme (Tiedtke, 1989).
The thermo-hydrodynamical equations describing the compressible flow in the moist atmo-
sphere are solved on an Aracawa C-grid for a set of prognostic variables including a three-
dimensionalwindvector, pressure, temperature, turbulent kinetic energy and specificmass con-
tents of water vapor, cloud water, cloud ice, rain, snow and graupel. The equations are formu-
lated in rotated geographical coordinates in the horizontal and generalized time-independent
terrain following coordinate in the vertical with layer thickness increasing with the altitude.
The output of both reanalyses is available every 15 minutes for two dimensional and hourly for
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three dimensional variables.
Currently, COSMO-REA6 is available for 23 years from 1995-2017 andCOSMO-REA2 for 7 years
from 2007-2013.
The Study 1 is based on theCOSMO-REA2 output at the JülichObservatorY for CloudEvolution
(JOYCE) in Germany (Löhnert et al., 2015), which is located at 50◦ 30"N, 6◦ 48" E, 111m MSL
(Fig. 2.1b). The atmospheric profiles for the time period from May to September in the years
2007-2013 were selected. According to the total amount of ice and liquid water in each profile,
the whole profile set was divided into clear sky (9430 profiles) and cloudy (14294 profiles) data
sets, in which the cloudy data set comprises ice, liquid and mixed phase clouds. Both data sets
were used for the simulation of ground-based and satellite remote sensing observations and for
the calculation of seven stability indices (Table 2.1 and section 2.2), IWV and LWP.
The Study 2 is performed for the area located in the western part of Germany including small
parts of Netherlands (Fig.2.1). The experimental area has heterogeneous surface properties and
covers the Lower Rhine Basin in the west, the Ruhr region, the largest urban area in Germany, in
the north-east, and the hills of the RhenishMassif in the south-east. The reanalysis profiles from
May to September in the years 2010 and 2011 were used to calculate the fields of CAPE, Lifted
Index, and IWV and to simulate the observations of IRS and MWR. To reduce the computation
time and to account for the coarser resolution of hypothetical IRS observations, the reanalysis
fields were thinned to the spatial resolution of about 4 km, which results in a field with 39×39
grid points.

2.2 Stability indices

There are many indices developed and used to identify atmospheric conditions favourable to
produce thunderstorms or fog. The aim of these indices is to simplify the complex task of
analysing the three-dimensional structure of the atmosphere by integrating the different ther-
modynamic parameters into a single value that describes atmospheric stability. According to
Peppler, R. A., 1988 these indices describe three types of instability: conditional, latent, or po-
tential instability and therefore, are designed to predict different types of weather events. Most
indices combine the temperature and moisture properties of the low- to mid-troposphere. In
context of this thesis, a crucial importance has the dependency of each index on particular at-
mospheric variables that can be better captured either by satellite or by ground-based observa-
tions. E.g., the KO index is more dependent on humidity in the mid- and low-atmosphere than
other indices, the FT is highly sensitive to the humidity lapse rate underneath the Lifted Con-
densation Level LCL, the most unstable CAPE is based on the entire temperature profile and
additionally requires humidity profile below LCL, while KI, TT and SI only involve temperature
and humidity measures above 850 hPa.
In the following, a short description of the stability indices included in the study is given. The
table 2.1 gives the overview of all STI and corresponding thresholds, which are used to identify
stable and unstable atmospheric conditions.
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Hereafter, Tp and Tdp are the temperature and the dewpoint temperature at the pressure level
p in hPa, Tp1→p2 is the temperature of an air parcel lifted from pressure level p1 to p2: dry-
adiabatically to saturation level (LiftedCondensationLevel, LCL) andmoist-adiabatically above
that; Θex is the equivalent potential temperature, Θwb is the wet bulb potential temperature, Tvp
amd Tve are the virtual temperature of adiabatically lifted parcel and the virtual temperature of
the environment at a certain pressure level. The subscript refers to the pressure level. Fog point
FP is the temperature at which the radiation fog will form.
The threshold values for all STI were taken according to Haklander et al., 2003. The probability
density functions of STI as well as IWV and LWP for clear sky and cloudy conditions are shown
in figure 2.2. Some of the indices show almost identical distributions for both data sets (KO, LI),
while other have more unstable cases under cloudy conditions (KI, SI, CAPE, TT). This must be
taken into account by evaluation of the retrieval results, since e.g., the root mean square error is
scale dependent and its values for clear sky and cloudy data sets can not be compared directly.

K-Index KI

The K index was developed by George J.J., 1960 for the forecasting of air-mass thunderstorms
and is defined as:

KI = (T850 − T500) + Td850 − (T700 − Td700).

It increases with decreasing static stability between 850 and 500 hPa (first term), increasing
moisture at 850 hPa (second term), and increasing relative humidity at 700 hPa level (third
term). KI gives the probability of thunderstorms, but does not provide the information on
its severity. The values of KI above 21K were found to represent a convective environment
(Haklander et al., 2003) capable to produce scattered thunderstorms, while values above 30K
indicate a high potential for numerous thunderstorms.

Konvektiv Index KO

The "KOnvektiv" index (KO)was developed by theGermanWeather Service (DWD) to estimate
thunderstorm potential in Europe. The KO describes the potential instability by considering the
equivalent potential temperature Θe values at low (100 to 850 hPa) and mid (700 to 500 hPa)
atmospheric levels:

KO =
1

2
((Θe500 + Θe700)− (Θe850 + Θe1000)).

The potential for deep convection and thunderstorm development increases with decreasing
KO and is very high for KO values smaller than 1.9K.

Total Totals TT

The Total Totals index (TT) is the sum of the Vertical Total (V T = T850 − T500) and the Cross
Total (CT = Td850 − T500) and accounts for both, for the vertical temperature gradient in the
layer between 805 and 500 hPa and for the low level humidity:

TT = T850 + Td850 − 2T500.
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It gives an indication of the severity of thunderstorms and is best used in cold dry environments.
The higher the value of TT, the higher the likelihood for thunderstorms, with the threshold vary-
ing between 45 and 50K depending on geographical location, season, and synoptic situation
(Marinaki et al., 2006).

Showalter Index SI

The Showalter Index, one of the first developed STI (Showalter, 1953), was originally designed
for the forecasting of thunderstorms in the southwestern United States.

SI = T500 − T850→500.

It is only the function of the conditions at 850 and 500 hPa levels and measures the buoyancy
of an air parcel lifted to the 500 hPa level. The values below +3K indicate possible thunder-
storm activity, while values below -3K are associated with strong convective activity and severe
storms.

Lifted Index LI

The Lifted Index (LI) is a modification of the Showalter Index. It assesses the degree of insta-
bility of the atmosphere between the surface and 500 hPa:

LI = T500 − Tsfc→500.

Originally, LI was developed for the forecast of latent instability and thunderstorms in the af-
ternoon by using forecast afternoon maximum temperature (Galway, 1956). Thus, in contrast
to other static indices, LI is a forecast index. Since this study focuses on the assessment of the
instability by current observations, the LI was used as the static index and actual temperature
and humidity at 2m height assigned to the surface parcel.

Convective Available Potential Energy CAPE

TheConvectiveAvailable Potential Energy (CAPE), themost known andwidely used index, de-
scribes the maximum energy available to an ascending air parcel after it has been lifted by some
mechanism, such as heating or orography, up to the Level of Free Convection (LFC). Above the
LFC the air parcel becomes warmer than the environment and rises up to the Equilibrium Level
(EL). Here, the most unstable CAPE is calculated by taking the most unstable parcel within the
lowest 300 hPa and integrating the buoyancy of this parcel from the LFC to the EL (expressed
using the virtual temperature of the parcel Tvp and that of the environment Tve):

CAPE = −Rd

el∫
mu

(Tvp − Tve)d(lnp).

where Rd=287.05 Jkg−1 is the gas constant for dry air. For the occurrence of deep convection
and thunderstorms, the positive CAPE aswell as forcing strong enough to release this CAPE are
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required. In general, CAPE values between 0 and 1000 Jkg−1 indicate weak instability, values
between 1000 and 2500 Jkg−1 and above indicate moderate and strong instability, respectively.

Fog Threat Index FT

The Fog Threat index indicates the likelihood of radiation fog and is defined as the difference
between the wet-bulb potential temperature at 850 hPa and the fog point (FP):

T = Θwb850 − FP.

The fog point gives the temperature at which the radiation fog will form. It can be determined
by following the saturation mixing ratio line from the dewpoint at the LCL to the surface tem-
perature (skew-T log-p diagram). The potential for radiation fog is low for FT>3 and becomes
high for FT<0. Since radiation fog is most common in autumn and early winter, and the data set
used in this study comprises data from May to September, only few cases with high potential
of radiation fog are available. Therefore, the threshold of 3K indicating the low fog threat was
taken.

Table 2.1: Stability indices and the corresponding thresholds used in the study. The
atmospheric instability is given when the measured index exceeds (>) or falls below

(<) the threshold. The description of stability indices is given in text

Index Threshold
KI=(T850-T500)+Td850-(T700-Td700) >21K
KO=1

2((Θe500+Θe700)-(Θe850+Θe1000)) <1.9K
TT=T850+Td850-2T500 >46.7K
LI=T500-Tsfc→500 <1.6K
SI=T500-T850→500 <4.2K

CAPE=-Rd
el∫
mu

(Tvp-Tve)d(ln p) >168 Jkg−1

FT=Θwb850-FP <3K
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Figure 2.2: Probability density functions for stability indices, IWV and LWP for clear
sky and cloudy conditions. The dotted line indicates the threshold for each stability

index. Note the logarithmic y-axis for CAPE and LWP.
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Chapter 3

Instruments and simulation of
observations

In this chapter, the radiative transfer theory (Section 3.1) and the fundamentals of passive re-
mote sensing in the microwave and infrared part of the spectrum (Section 3.2) are explained.
The radiative transfer models used for simulation of observations are introduced in section 3.3.
Afterwards, the instruments used in this thesis and their working principle are described (Sec-
tion 3.4). The principle of active remote sensing is explained in section 3.4.2.

3.1 Radiative transfer equation

The detailed information on the radiative transfer theory is given in many textbooks (e.g. Petty,
2006 and Liou, 2002) and is shortly explained in the following.
Remote sensing of the atmosphere and Earth’s surface is mostly performed by detecting electro-
magnetic radiation. The physical effects exploited by a variety of instruments involve emission,
refraction, transmittance, absorption and scattering of radiation at all wavelengths, from radio
to ultraviolet. Two concepts for remote sensing exist: passive and active. The passive instru-
ments measure radiation coming from the Earth and the atmosphere. The active instruments
emit an electromagnetic signal and register the part of the radiation reflected or backscattered
by the atmospheric constituents.
The satellite- and ground-based instruments considered in this thesis exploit the infrared (IR,
700 nm-1mmor 430THz-300GHz) andmicrowave (MW, 1mm-30 cm or 300GHz-1GHz) parts
of the electromagnetic spectrum (so called longwave or terrestrial radiation), therefore the solar
(shortwave) radiation is not considered. The source of longwave radiation is the emission from
Earth’s surface, atmospheric constituents, clouds and precipitation. The radiance, or the inten-
sity, of the signal emitted by Earth’s surface I at certain wavelength λ (hereafter, the subscript
is omitted for the clarity) depends upon the surface temperature Tsurf and the emissivity ε:

I = εB(Tsurf ), (3.1)

whereB(T ) shows the Planck function describing the electromagnetic emission of a black body
at a given temperature T in the thermal equilibrium. A black body is an idealized physical body
that absorbs all incident radiation independent on wavelength and incident angle. The Earth’s
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surface can not be considered as the black body since its emissivity is smaller than 1 and varies
over the spectral range.
On its way through the atmosphere towards the instrument, the radiation interacts with clouds,
aerosols and atmospheric gases. The intensity of radiation is changed due to extinction. Extinc-
tion includes absorption and scattering and can be described by the extinction coefficient:

βe = βa + βs, (3.2)

with βa and βs referring to absorption and scattering coefficients, respectively. Both coefficients
mainly depend on the wavelength and the atmospheric properties.
For the cloud free, non-scattering atmosphere, the total absorption is the sum of the absorption
coefficients of each gas, with the last depending on the density ρ andmass absorption coefficient
k of absorbing gases:

βa =
∑
i

βa,i =
∑
i

ρika,i (3.3)

In many radiative transfer applications, the real atmosphere is considered as a plane-parallel
atmosphere. In a plane-parallel atmosphere the atmospheric parameters are horizontally ho-
mogeneous and vary only in the vertical direction. Due to absorption, the intensity of radiation
propagating through the atmospheric layer with the thickness dz along the path ds will be re-
duced by:

dIa = βaI
dz

cosθ
= βaI

dz

µ
= −βaIds (3.4)

where θ is the zenith angle between the vertical and the s direction.
At the same time, the radiation may increase due to thermal emission from the atmospheric
constituents. According to Kirchhoff’s low, the absorption of a specific matter in the local ther-
modynamic equilibrium is equal to its emission. Thus, the total change in the radiation intensity
along the path ds can be written:

dI = dIa + dIe = −βaIds+ βaB(T )ds = βa(B(T )− I)ds (3.5)

The expression 3.5 is knownas the Schwarzschild’s equation and represents the basic formof the
radiative transfer equation (RTE). The radiance I(s2) at the point s2 can be found by integrating
the equation 3.5 along the path s1 to s2:

I(s2) = I(s1)e
−τ(s1,s2) +

∫ s2

s1

βaB(T (s))e−τ(s,s2) ds (3.6)

where τ is the optical depth between s1 and s2, defined as the integral of the absorption coeffi-
cient for a specific gas between two adjacent levels:

τ(s1, s2) =

∫ s2

s1

βa(s)ds (3.7)

Thus, assuming a non-scattering, plan-parallel atmosphere, the monochromatic intensity of ra-
diation reaching a nadir looking (cosθ = 0) satellite sensor is the sum of the radiation emitted
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by atmospheric constituents and by the surface. The last is dampened by the atmospheric ab-
sorption. However, since the Earth’s surface is a gray body (ε < 1), it also reflects radiation, and
the downwelling atmospheric radiation reflected by the surface needs to be considered. Thus:

Isat = εB(Tsurf )e−τ

+

∫ TOA

surf
βa(s)B(T (s))e−τ(s,TOA)ds

+ (1− ε)e−τ
∫ TOA

surf
βa(s)B(T (s))e−τ(surf,s)ds

(3.8)

where τ is the optical depth of the entire atmosphere and the last term corresponds to the down-
welling atmospheric radiation reflected by the surface and dampened by the atmospheric ab-
sorption.
From the ground-basedperspective, the sensor receives the cosmic background radiationB(Tcosm)

dampened by the atmospheric absorption and the radiation emitted by the atmosphere:

Igb = B(Tcosm)e−τ +

∫ surf

TOA
βa(s)B(T (s))e−τ(s,surf) ds (3.9)

where Tcosm is the cosmic background temperature.

3.2 Remote sensing in microwave and infrared

The infrared (IR) and microwave (MW) parts of the spectrum are commonly used in remote
sensing due to the variety of absorption lines. Figure 3.1 shows the microwave extinction spec-
trum for a cloudy atmosphere for frequencies between 1 and 200GHz. The main sources of
microwave emission/absorption in the atmosphere are water vapor, oxygen, and cloud liquid
water. The water vapor contributes to the spectrum with the continuum absorption, that in-
creases with the frequency and extends into infrared region, and with two absorption lines:
a weak line at 22.235GHz and a much stronger line at 183.31GHz. Oxygen has about 45 ab-
sorption lines, centered around 60GHz, and an isolated line at 118.75GHz. The shape of the
absorption lines, particularly their width, is determined by pressure broadening. Measuring
emissions at multiple frequencies along the wing of the water vapor absorption line (region A
in Figure 3.1) and in the more transparent region (atmospheric window) allows the retrieval
of humidity profiles, the integrated water vapor or the liquid water path. Due to the uniform
distribution of oxygen in the lowest 90 km of the atmosphere, the oxygen absorption is mainly
determined by its temperature. The emission measured at different frequencies along the slope
of the oxygen band originates from different altitudes and can be used for temperature profile
retrievals. Further minor contributors to the absorption in theMW are ozone and nitrogen. The
major disadvantage of passive MW remote sensing is that the radiation intensity in the MW is
lower than in IR. Consequently, the radiation must be collected over a larger region leading to
lower spatial resolution of the observation.
The particle scattering properties depend on the relationship between the particle size and the
wavelength of the incident radiation. The scattering ofMWradiation on aerosols andmolecules,



20 Chapter 3. Instruments and simulation of observations

Figure 3.1: Spectrum of extinction coefficient in the microwave range. The dashed line
shows the water vapor contribution, the dotted line the oxygen contribution, and the
dash-dotted line the theoretical contribution of the liquid cloud with 0.2 gm−3 LWC.
The solid line is the sum of all contributors and the intervals A and B correspond to
the K- and V-measurement bands of the radiometer HATPRO (Löhnert et al., 2004).

which are small compared to microwave wavelength, is negligible. The scattering on cloud
droplets at the frequencies below 100GHz can also be neglected and cloud droplets consid-
ered as absorbing particles (Petty, 2006). At higher frequencies, scattering by cloud droplets
larger than 200µmmust be accounted for in radiative transfer calculations. Therefore, the main
advantage of microwave remote sensing compared to infrared methods is that the the clouds
are semitransparent for longer microwaves, and retrieval of atmospheric properties is possible
under cloudy conditions. However, interpretation of satellite microwave observations is com-
plicated by surface emissivity effects and sensitivity to precipitation (Rao et al., 1990). The
surface emissivity in MW is very variable for different surface types and depends on many
surface parameters such as vegetation, surface roughness, snow cover, soil type and moisture.
Surface types with low liquid water content, such as dry soil or snow, have low emissivity and
the intensity of the observed signal is low. Moist soil and melting snow exhibit emissivity val-
ues approaching to unity. If the emissivity is close to 1, the measured brightness temperature
would correspond to the physical temperature. In case the emissivity is much smaller than 1,
the measured brightness temperature will be lower. This fact makes it difficult to distinguish
clouds over snow covered land surfaces with high emissivity values. On the other hand, the sea
surface reflects microwave radiation and reduces the emissivity to 0.5. Therefore, cloud water
and rain increase the brightness temperature over radiometrically cold ocean and can be easily
detected.
In contrast, the emissivity of the most of earth surfaces in the IR is very high with coefficients of
0.98 overwater and 0.95 over land, and shows low variability. In the IR, emission and absorption
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Figure 3.2: Atmospheric IR absorption by different gases as function of wavelength.
(Brasseur et al., 2017)

by gases play a much more important role than scattering. Most low and middle clouds emit
like black bodies at the temperature of water droplets or ice crystals at their tops. Thus, cloud
contaminationmakes it impossible for the satellite sensors to detect IR radiation from the surface
and the atmosphere below the cloud. High altitude, ice clouds, however, transmit IR radiation
with different variability (from 0.95 to 0). The properties of high ice clouds, such as height,
amount, and transmittance of ice crystals are difficult to estimate, which also hampers the IR
remote sensing (Rao et al., 1990).
The atmospheric absorption spectrum of IR radiation from 1 to 16µm is shown in Figure 3.2.
The spectral region exploited by the instruments included in this study extends from about 4 to
15.5µm (650-2760 cm−1). The principal absorbers in this region are carbon dioxide (CO2), wa-
ter vapor (H2O), and ozone (O2). The broad CO2 absorption bands are located around 15µm
and 4.3µm. As the oxygen, CO2 has a nearly uniform mixing ratio in the lowest atmosphere
and its absorption band is used for temperature profiling. Water vapor absorbs over the en-
tire spectrum (water vapor continuum) with the strong absorption band in 5-7µm region. The
absorption by ozone occurs mainly in the stratosphere at the wavelength around 9.6 cm−1. Un-
der clear sky conditions, the emission at the frequencies in the transparent part of the spectra
(8-9µm,10-12µm) originates from the surface and from low level water vapor. Under cloudy
conditions, this part of the spectrum can be used for retrieval of cloud properties.
Satellite sensors included in this study perform observations in bothMWand IR, at different fre-
quencies and with different observing geometry. According to their orbits, the meteorological
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satellites can be divided into two types: polar orbiting (Low Earth Orbits, LEO) and geostation-
ary (GEO) satellites. GEO satellites provide continuous full-disk view of Earth, but have coarse
horizontal resolution of the observations due to their high altitude. The LEO satellites perform
observations from lower orbits, leading to better horizontal resolution, but observations over a
certain region are mostly available only twice daily.

3.3 Simulation of satellite and ground-based observations

For simulation of ground-based and satellite observations radiation transfer models were ap-
plied. The aim of a radiative transfer model is to solve the radiative transfer equation for given
atmospheric conditions. Calculation of the radiance received by a sensor requires the knowl-
edge of the absorption and scattering properties of all radiatively active atmospheric constituents.
The line-by-line radiative transfer models (LBL) (i.e., LBLRTM (Clough et al., 2005), AMSU-
TRAN (E. Turner et al., 2019)) calculate the absorption coefficients and optical depths for each
gas and combination of gases using spectroscopic database. These simulations must be per-
formed at very high spectral resolution for hyperspectral IR sounders and are too computation-
ally expensive for operational applications. To make faster simulations possible, fast radiative
transfer models based on regression have been developed.
In this study, the simulations of satellite observations were performed with the widely used
fast radiative transfer model RTTOV v12 (Saunders et al., 2018). Continuously developed and
extensively validated since the 1990s, the RTTOVmodel now allows simulations of observations
for around 90 sensors, including retired and future instruments, measuring in the IR, MW, and
visible parts of the spectrum.
The ground-based MWR observations were simulated using the RTTOV-gb model (De Angelis
et al., 2016). RTTOV-gb is based on the original RTTOV (version 11) which was adapted to
handle ground-based MWR observations. In this section, the principle of the fast radiative
transfer models RTTOV and RTTOV-gb is described.

3.3.1 RTTOV

The core of RTTOV calculates the clear sky radiances at a desired frequency channel ν according
to Eq. 3.8.
This equation can be rewritten using atmospheric transmittance t = e−τ/cosθ for the satellite
sensor measuring at the zenith angle θ:

Iclr(θ) = ts(θ)εs(θ)B(Ts) +

∫ 1

ts

B(T )dt+ (1− εs(θ))t2s(θ)
∫ 1

ts

B(T )

t2
dt, (3.10)

where Iclr(θ) is the clear sky radiance at a satellite zenith angle θ, ts is the surface to space
transmittance, εs is the surface emissivity and B(T ) is the Planck function for the defined fre-
quency and temperature. The spectral dependency is omitted for clarity. The first term on the
right hand side of the Eq. 3.10 corresponds to the surface emission attenuated by the total atmo-
spheric transmittance from the surface to TOA. The surface emission is given as the blackbody
radiation at the surface temperature multiplied by surface emissivity. The second term is due
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to the atmospheric emission and the third temp gives the downwelling atmospheric emission
reflected by the surface.
Assuming the plane-parallel atmosphere the Eq. 3.10 is solved for N atmospheric levels. The
main unknown in Eq. 3.10 is the atmospheric transmittance t which describes the attenuation
of the incident radiation by atmospheric constituents.
The RTTOV model calculates the layer optical depth (Eq. 3.7) for a specific channel and gas as
the linear combination of so-called predictors Xj,k, with j being the level number and k the
number of predictors from 1 tom. Them predictors are derived from the input state profile and
are functions of atmospheric variables (pressure, mean layer temperature, absorber amount)
and viewing geometry of observations. The number of predictors depends on the absorber for
which the optical depth is calculated. In this work, the v7 predictors set (first implemented
in RTTOV version 7) at 54 levels is used for all satellite sensors except for IRS, for which only
v7 predictors at 101 levels are available. The resulting optical depth from TOA to level j for a
specific gas and channel is predicted as:

τj = τj−1 +

k=m∑
k=1

aj−1,kXj−1,k, (3.11)

where aj,k is a set of regression coefficients obtained by training with diverse atmospheric pro-
files and corresponding optical depths calculated with LBL model.
At last, the optical depths are converted into transmittances and, along with the input tem-
perature profile, used to calculate the output clear sky radiance and brightness temperature
according to Eq 3.10.
This parameterisation of transmittances makes the RTTOV model more computationally effi-
cient and does not increase the errors which are introduced by the line-by-line model simu-
lations (Matricardi et al., 2004). The regression coefficients utilized by RTTOV v12 have been
derived from calculations with line-by-line model LBLRTMv12.2 (Clough et al., 2005), which
uses the MT-CKD2.5.2 (Mlawer et al., 2012) continuum spectra for IR optical depth calcula-
tions. The microwave observations at frequencies below 1000GHz are simulated with AMSU-
TRAN model, which takes its spectroscopic parameters from Liebe Millimeter wave Propaga-
tion Model (MOM89) (Liebe et al., 1989).
For simulation of cloudy sky radiances in infrared domain the RTTOV offers two options: a sim-
ple uniform gray cloud assumption and scattering calculations for more complex cloudy fields.
In this work, the second option has been chosen. The parameterization of multiple scattering is
performed according to Chou scaling method (Chou et al., 1999) in which the optical depth of
a layer τ in equation 3.10 is replaced by the effective optical depth for extinction:

τe = τ + bτsc, (3.12)

where τsc is the scattering optical depth and b is the backscattering fraction. These properties
can be calculated as a function of liquid water content for 5 types of liquid clouds. The opti-
cal properties of ice clouds can be parameterized in two ways. In this study, scattering on ice
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particles was calculated using Baran ice scheme (Vidot et al., 2015), which allows a direct pa-
rameterisation of ice optical properties from the ambient temperature and the ice water content.
In the microwave domain, the radiances affected by clouds and precipitation are calculated
within the RTTOV-SCATT module (described in Bauer et al., 2006). The radiation from an
atmospheric column is divided into independent clear and cloudypartsweighted by an effective
cloud fraction:

I(θ) = (1− C)Iclr(θ) + CIcld(θ), (3.13)

where Iclr(θ) and Icld(θ) are the clear sky and cloudy radiances at a zenith angle θ and C is the
effective cloud fraction. The clear sky absorption in both clear and cloudy parts is calculated by
the core RTTOVmodule. The cloudy and rainy radiances are computed using lookup tables for
Mie scattering properties pre-calculated for required frequencies, temperatures and hydrome-
teor types. The four considered hydrometeor types, rain, snow, cloud liquid water, and cloud
ice, are represented by spheres. Despite this simplified treatment of microwave scattering, the
RTTOV-SCATT model is successfully used at several centres for all-sky assimilation of MW ra-
diances into NWP models.

3.3.2 RTTOV-gb

As the original RTTOV, theRTTOV-gbmodel is based on the radiative transfer equation (Eq. 3.9).
The RTE for an upward-looking instrument rewritten using atmospheric transmittance t =

e−τ/cosθ has the form:
I(θ) = ts(θ)B(Tcosm) +

∫ 1

ts

B(T )dt, (3.14)

where I(θ) is the radiance at the ground for the radiometer measuring at the elevation angle
θ, ts is the surface to space transmittance, Tcosm is the microwave cosmic background tempera-
ture (2.728K), and B(T ) is the Planck radiance for scene temperature T . The first term on the
right hand side is the background cosmic radiation reduced by atmospheric transmittance. The
second term represents the atmospheric contribution.
The scattering by ice, snow, and cloud droplets, as well as the emission of snow and ice particles
are negligible in the considered microwave spectral range (20-60GHz) (Kneifel et al., 2010).
Thus, liquid water is included as a non-scattering, absorbing species.
The regression coefficients of RTTOV-gb have been calculatedwith the cloud liquidwatermodel
described in Liebe, 1993 and the gas absorption model described by Rosenkranz, 1998, which
accounts for the absorption by H2O, O2, and N2 gases. RTTOV-gb uses 101 pressure levels
from 0.005 to 1050 hPa, which are selected for its ground-based perspective and are denser near
the ground than those used by RTTOV itself. The validation of the RTTOV-gb model showed
that the root mean square errors of RTTOV-gb brightness temperatures compared to the tem-
peratures simulated with the reference line-by-line model are below the typical uncertainty of
ground-based MWRs (∼0.5K, De Angelis et al., 2016; Rose et al., 2005). This is valid for all 14
frequencies and elevation angles from 10 to 90◦.
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3.4 Instruments

This section introduces the instruments included in the study and describes the geometry of
observations and sources of uncertainties.

3.4.1 MWR

The Humidity And Temperature PROfiler (HATPRO) is a passive multi-frequency MWRmea-
suring downwelling radiation emitted by the atmospheric components, mainly oxygen, water
vapor, and cloud liquid, in two bands (Rose et al., 2005). HATPRO offers a high speed simul-
taneous detection at 14 channels by utilizing two receivers. The seven K-band channels (22.24,
23.04, 23.84, 25.44, 26.24, 27.84 and 31.40GHz, region A in Fig. 3.1) are located at the right slope
of the pressure-broadened water vapor absorption line and are used to derive low resolution
humidity profiles and very accurate values of integrated water vapor and liquid water path
(Löhnert et al., 2003). The seven channels of the V-band (51.26, 52.28, 53.86, 54.94, 56.66, 57.30
and 58GHz, region B in Fig. 3.1) are located within the oxygen absorption band and contain
information about the vertical profile of temperature in the lower and middle troposphere.
Assuming a horizontally homogeneous atmosphere, elevation scanning enhances the temper-
ature profiling accuracy, especially in case of a low-level temperature inversion, but does not
improve humidity profiling. The accuracy of the retrieved temperature profiles is between 0.5
and 2K close to the surface and in the lower troposphere, respectively, whereas humidity profile
accuracies are in the range of 0.8 gm−3 for the mid-latitudes (Crewell et al., 2007) and increase
up to 1.6 gm−3 in more humid environments (Löhnert et al., 2009; Zhang et al., 2018).
The HATPRO measurement vector in this work consists of 30 brightness temperatures: zenith
observations at 14 frequencies and additional non-zenith measurements (zenith angles 60◦,
70.8◦, 75.6◦, 78.6◦) at the 4 most opaque frequencies in the V-Band. To take into account the
typical radiometric noise and calibration uncertainties of real HATPRO measurements, nor-
mally distributed random errors in the range of 0.2 to 0.5K for zenith and of 0.2K for scanning
observations were added to simulated brightness temperatures (Löhnert et al., 2009).

3.4.2 WV-DIAL

TheDifferential Absorption Lidar (DIAL) is an active remote sensing technique providing num-
ber density profiles of trace gases, and in this case, water vapor. A typical DIAL system alter-
nately emits two laser pulses and receives the attenuated back-scattered signal. The wavelength
of the first pulse, the so-called online wavelength, is centred on a water vapor absorption line.
The second, the offline wavelength, is positioned close to the first one but outside of the in-
fluence of absorption line, so that the difference between the returned signals originates only
from the absorption of the molecule of interest. The wavelength commonly used are between
700 and 950 nm. The principal disadvantage of this technique is that DIAL systems place high
demands on the properties of laser transmitter, detector system, and data-acquisition system,
making DIAL instruments large and expensive devices to develop and operate (Wulfmeyer et
al., 2001). On the other hand, theDIAL transmitter uses a ratio of the returned signals. Thus, the
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demanding calibration, which is needed for most other humidity sensors (e.g., Raman lidar),
can be avoided, and the direct retrieval of water vapor density is possible.
In recent years, progress has been made in developing relatively small, low cost and network
suitable diode-laser-based DIAL systems (Roininen, R., 2016; Spuler et al., 2015).These systems
are capable of continuous, automated water vapor profiling during day and night, as well as
cloudy conditions.
Depending on the measurement setup and the telescope design of different DIAL systems, ob-
servations in the range 0-3000m (broad band DIAL developed by Vaisala, Roininen et al., 2017)
or from 75-300m up to 6000m above ground level (micropulse DIAL developed at the National
Center for Atmospheric Research, Weckwerth et al., 2016) are possible. The DIAL observations
are hindered by optically thick liquid clouds and derived profiles extend up to the cloud base.
The accuracy and the maximum range of achieved water vapor profiles are different for day
and nighttime and clear and cloudy conditions. The mean error of less than 10%, compared to
radiosondes, can be achieved for the lowest 2-3 km (Weckwerth et al., 2016). The vertical and
temporal resolution as well as the lowest range are adjustable to specific user needs.
To create the hypothetical DIAL measurement vector, the COSMO-REA2 mixing ratio profiles
up to the height of 2000m under clear sky, or up to the cloud base under cloudy conditions were
perturbed with 10% mean error. The vertical resolution of assumed profiles varies from 90m
close to the surface to 230m above. Higher vertical resolution of 75-100m is possible for DIAL
profiles, but not available from reanalysis.

3.4.3 SEVIRI

The Spinning enhances Visible and InfraRed Imager (SEVIRI) is the main instrument on board
of four MSG satellites. The last satellite of the MSG series, Meteosat-11, has been operational
since 2018 at a position of 0◦ longitude, providing a view on Europe and Africa. SEVIRI ob-
serves the full disc of the Earth with a repeat cycle of 15 minutes in 12 spectral channels. The
horizontal resolution of the eight thermal IR, two visible (VIS) and one near-infrared (NIR)
channels is 3 × 3km at nadir enlarging to 4 × 6km at the Mid-latitudes. The broadband high-
resolution visible (HRV) channel covers half of the full disc with a 1 km spatial sampling dis-
tance at nadir (Schmetz et al., 2002).
The high temporal resolution of SEVIRI observations allows, among others, the continuous
monitoring of weather patterns and rapidly changing phenomena such as deep convection, fog
occurrence and dissipation. However, the main operational limitation in terms of vertical atmo-
spheric profiling is the broad-band, low spectral resolution (compared to the instruments on
board of polar orbiting satellites, e.g., Infrared Atmospheric Sounding Interferometer (IASI))
and the strong sensitivity to clouds. Thus, no information on stability is available for cloudy
pixels (Koenig et al., 2009).
In this study, seven IR channels were used in the statistical retrievals: two water vapor channels
(WV6.2 and WV7.3) sensitive to the water vapor distribution in the middle and upper tropo-
sphere, three window channels (IR8.7, IR10.8, IR12.0) providing information on surface and
cloud top temperature, and IR9.7 and IR13.4 channels, which are located at the ozone and CO2
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Figure 3.3: IASI brightness temperature spectrum simulated with RTTOV model for
mid-latitude standard atmospheric profile (black). Channels used in the retrieval are

shown in red. Blue line and the right axis show IASI radiometric noise.

absorption bands, respectively and provide information on atmospheric air mass and tempera-
ture. The SEVIRI noise is simulated by normal distribution with a standard deviation equal to
the noise equivalent differential temperatures between 0.1 and 0.37K for the considered chan-
nels (Schmetz et al., 2002).

3.4.4 IASI

The Infrared Atmospheric Sounder Interferometer (IASI) is part of the polar orbiting MetOp-
A, -B and -C missions launched in 2006, 2012, and 2018, respectively. MetOp satellites fly at an
altitude of around 817 km in the sun-synchronous orbit with a local equator crossing time of
09:30 in the morning and 21:00 in the evening (global coverage twice a day).
IASI is a cross-track scanner with a scan range of about 48.3◦ on either side of the satellite track
(corresponds to the swath width of 2200 km) and a total of 30 Effective Fields Of View (EFOV)
per scan (Chalon et al., 2001). The EFOV at each scan position is composed of 2×2 matrix of
circular footprints with 12 km diameter and 24 km sampling distance at nadir. Each scan takes
8 minutes and is followed by two calibration views. One view is performed by looking into cold
space and the other at an internal black body.
IASI measures radiance emitted from the Earth atmosphere and surface in the spectral range
from 645 to 2760 cm−1 (15.5µm-3.63µm) at a spectral resolution of 0.25 cm−1, resulting in 8641
channels divided in three bands (645-1210, 1210-2000, 2000-2760 cm−1). This spectral range
covers strong features from absorption bands of CO2, ozon, water vapor and methane as well
as many distinct absorption lines of trace gases e.g. nitrous oxide (N2O) and carbon monoxide
(CO).
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The main objective of IASI is providing information for high resolution atmospheric sounding
of temperature and humidity. The carbon dioxide absorption lines at 645-800 cm−1 contain in-
formation about the atmospheric temperature whereas water vapor lines in the 1200-1600 cm−1

range provide information on the vertical distribution of humidity. Thewindow region between
800-1200 cm−1 adds information on land or sea surface temperature and emissivity and near-
surface water vapor. Under cloudy conditions, the window region provides information on
cloud properties. The second objective of IASI is the monitoring of atmospheric composition.
Many distinct absorption lines within the spectrum are used for the retrieval of profiles and
column integrated amounts of trace gases (O3, CO2, CH4, CO and N2O).
As for other instruments measuring in infrared part of the spectrum, the received signal can be
significantly affected by clouds, depending on their type and the optical thickness. Therefore,
the operational temperature and humidity profile products are based on IASI measurements
together with collocated microwave AMSU-A/MHS observations. The quality of the received
products is highly dependent on the availability of microwave observations, surface emissivity
(land or sea surface) and cloud cover (EUMETSAT, 2018a). The accuracy of the temperature
profiles decreases in the boundary layer, with the errorswithin 0.6-1.5K over oceans under clear
sky conditions up to more than 2K (2.5K in the surface layer) over land and cloudy conditions.
Currently, themost operational forecast centres only assimilate a set of cloud insensitive infrared
channels into NWP models (Geer et al., 2018).
Using the full IASI spectrum is not practical whether for operational retrieval of atmospheric
properties nor for data assimilation. Most of the retrieval methods, including neural networks,
are often unable to deal with the high number of observations provided by hyperspectral instru-
ments (Aires, 2002). Different methods such as channel selection based on information content
(Collard, 2007; Rabier et al., 2002) or compression using Principal Component Analysis (PCA)
were developed to deal with these problems (Aires et al., 2016). The goal of both methods is
to extract the most complete and relevant information from the initial spectrum and to provide
this information to the retrieval.
In this study, observations were simulated for a subset of 366 channels as shown in Fig. 3.3. This
subset was suggested by Collard, 2007 and includes channels selected iteratively according to
their information content. The selection algorithm analyzes the sensitivity of each channel to
variations of a certain atmospheric property, such as temperature or humidity at different alti-
tudes, and chooses the most sensitive channel in each iteration. Thus, the final subset includes
channels sensitive to temperature, humidity, ozone and surface properties. According to IASI
design specifications the noise equivalent brightness temperatures vary between 0.28 and 0.58K
and these values were used to perturb the simulated observations (Hilton et al., 2012).

3.4.5 AMSU-A/MHS

The AdvancedMicrowave Sounding Unit-A (AMSU-A) and theMicrowave Humidity Sounder
(MHS) are both multi-channel microwave radiometers deployed together on polar orbiting
satellites, currently on boardNational Oceanic andAtmospheric Administration (NOAA) satel-
lites NOAA-18 and -19 and on board MetOp -A,-B and -C. The cross-track scanning and cali-
bration mode of AMSU-A and MHS are similar to that of IASI. AMSUA-A has a scan range of
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Figure 3.4: Atmospheric opacity in the frequency range 0-340GHz. AMSU-A channels
are shown in red and MHS channels in black (source: www.eumetsat.int/amsu-a).

±48.7◦ with 30 FOV, while MHS scans the Earth within ±49.4◦ with 90 FOVs. The scanning
pattern of AMSU-A is synchronised with the IASI, so that both instruments observe the same
scene within 8 s scan (EUMETSAT, 2019). The thirty IFOV have a diameter of approximately
48 km in nadir (with sampling interval 52km) and 140 by 80 km at the edge of the swath.
AMSU-A has in total 15 channels. The 12 channels around 50-60 GHz oxygen absorption band
are used for temperature sounding from about 2 hPa (or 42 km) to the surface. Onewater vapor
(ch. 1) and two window (ch. 2 and 15) channels are sensitive to low-level water vapor, surface
emissivity, liquid clouds and precipitation.
The spatial resolution of MHS is four times higher than that of AMSU-A. Thus, MHS window
channels 1-2 and water vapor sensitive channels 3-5 allow to capture water vapor, surface prop-
erties and ice cloud features on smaller scale (Zou et al., 2017).
Due to the highly variable land surface emissivity in the microwave, under clear sky conditions
only opaque AMSU-A channels, which are less sensitive to the surface, are assimilated into
NWP models (e.i. channels 7-14). The channels sensitive to the temperature variations in the
lowest layers, i.e. channels 4-6, are either not assimilated or assimilated only over ocean. The
same is valid for the MHS observations, where the surface sensitive channel 5 is assimilated
only over ocean.
In this study, observations were simulated for five MHS channels and 10 AMSU-A channels.
The reanalysis profiles range to 22.7 km above the ground and were extended with constant
standard atmosphere profiles. Therefore the most opaque AMSU-A channels 10-14, sensitive to
the temperature variations in the higher atmosphere, provide constant brightness temperatures
and were excluded.
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Figure 3.5: IRS brightness temperature spectrum simulated with RTTOV model for
mid-latitude standard atmospheric profile (black). Channels used in the retrieval are
shown in red. Blue line and the right axis show IRS radiometric noise according to the

Mission Requirement Document (EUMETSAT, 2018b).

3.4.6 IRS

The next generation of Meteosat satellites, Meteosat Third Generation (MTG), will comprise
four imaging (MTG-I) and two sounding satellites MTG-S. The latter will replace Meteosat-11
at 0◦ longitude and bring an operational hyperspectral instrument into geostationary orbit. The
Infrared Sounder (IRS) is a sounding Fourier transform spectrometerwhichwill performhighly
spectrally resolvedmeasurements of Earth-emitted radiation in 1738 channels. According to the
MTG Mission Requirement Document (EUMETSAT, 2018b) IRS will perform observations in
two bands, in the long-wave infrared (LWIR: 700-1210 cm−1) and in the mid-infrared (MWIR:
1600-2175 cm−1) band with a spectral resolution of 0.625 cm−1 and a spatial sampling distance
of 4 km at nadir. The basic repeat cycle of IRS will take 60min with an increased frequency of
30min over Europe.
The channels in the LWIR band are mostly sensitive to surface and cloud properties, atmo-
spheric temperature and ozone, whereas MWIR channels provide information on humidity
and temperature. The main objective of the IRS mission is the monitoring of the evolution of
vertically resolved water vapor, temperature and wind structures. Thus the IRS data will be
particularly important for nowcasting and short-term forecast of advection and convergence of
low-level moisture, which is often accompanied by severe storm development.
Since a detailed channel selection is beyond the scope of this study, a subset of IRS channels that
give information on atmospheric temperature and humidity was selected. The subset of in total
1113 channels consists of the following: 130 channels along the long-wave CO2 absorption band
between 700-780 cm−1, every second channel between 780 and 1210 cm−1 (344 in total) and 639
channels in the water vapor absorption band between 1600-2000 cm−1.
The simulated spectra were perturbed with normally distributed noise, which varies between
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0.2 and 0.9K (EUMETSAT, 2018b). Figure 3.5 shows a typical IRS brightness temperature spec-
trum for a mid-latitude standard atmosphere with corresponding radiometric noise in terms of
noise equivalent differential temperature (NEDT) at a scene temperature of 280K. The channels
used in this study include every frequency along the CO2 and water vapor absorption features
and every second channel in the window region.

Dimension reduction of IRS observations: PCA

To reduce the dimensionality and to optimally extract atmospheric profile information from
simulated IRS observations the principal component analysis (PCA) was applied to the data
set. PCA makes use of redundant information in hyperspectral observations and transforms
highly correlated observations to an uncorrelated set of principal components.
The PCA works by representing the high-dimensional data, like IASI or IRS spectra, in a lower
dimensional space. This space is spanned by a set of orthogonal eigenvectors of the covariance
matrix C of the noise normalized dataset X:

C = XTX = LΛL, (3.15)

where L its the matrix of eigenvectors (principal components) and Λ their associated eigen-
values. The noise normalization ensures that noise is not fitted selectively in the regions with
low signal-to-noise ratios. The magnitudes of the eigenvalues Λ of matrix C correspond to the
amount of variance explained in the data matrix by associated eigenvectors. Taking a set of
leading eigenvectors Ll the compressed representation of the given data set (PC scores) can be
calculated as :

p = LTl X (3.16)

The first principal components represent the most dominant atmospheric signal contained in
the original spectrum, whereas the last principal components consist mostly of random instru-
ment noise and can be discarded. Different ways to determine the optimal number of PCs are
discussed by D. D. Turner et al., 2006. Here, the factor indicator function (IND) and the percent
cumulative variance (PCV) were calculated.
For the data set used in Study 1, the first 15 principal components were found to explain more
than 99% of the variance in the data set and to lead to the minimum of the IND function.
The data set used in the Study 2 is too large to be used for direct calculation of PC. Therefore,
from the entire data set, consisting of 6 month (May to September in the years 2009 and 2010),
a subset of 100 spectra per grid point and month was selected, noise normalized, standardized
and finally used for calculation of principal components and scores. The principal components
calculated using this data subset were compared and found to be identical to PC calculated
from a smaller (50 spectra per grid point) and larger (120 spectra per grid point) data sets. In
study 2, the subset of the first 50 PC was used. The physical meaning of PCs can be interpreted
with the help of linear correlation between them and the observed spectra. Figure 3.6 shows
the correlation coefficients calculated between first 50 PC and IRS spectra. The first PC has the
highest correlation values across the entire spectra. The second PC is more sensitive to water
vapor channels in MWIR and shows negative correlations in the window region in LWIR. The
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following PCs are most sensitive to variability in CO2 absorption band and in the MWIR. The
last PCs show only low correlation values with distinct channels and thus, contribute little to
the overall variance.

Figure 3.6: Correlation coefficient calculated between first 50 principal components
of the IRS spectrum as generated from 76 × 104 noise-normalized IRS observations

simulated for 2010 to 2011 from May to September

Calculated PC’s are only representative for the atmospheric conditions typical for the consid-
ered area. The global data set, usually used operationally, covers more diverse atmospheric
(including variable trace gases) and surface conditions. Moreover, prior to the application of
PCA, the simulated IRS spectra were perturbed with not correlated error which is most likely to
be filtered out by PCA than correlated errors of real observed spectra. It can be expected that the
PC’s based on real observations would be less efficient in extracting temperature and humidity
information. In this context, the results described below may be overoptimistic. In operational
context either the PC calculated from channels sensitive to temperature and humidity or the use
of distinct reconstructed channels may be more beneficial.

3.4.7 Assumptions made by simulation of satellite and ground-based observations

Temporal and spatial matching of observations is a crucial and challenging issue in combining
and comparison of satellite and ground-based sensors. Even polar orbiting sensors AMSU-A,
MHS, and IASI measuring on the same platform with synchronised scanning patterns sample
slightly different atmospheric columns due to their different fields of view. But especially the
differences in the atmospheric column sampled by ground-based and satellite sensors can lead
to significant representativeness errors.
However, the aim of this work is to show the potential of all sensors in the best possible setting.
Therefore, the temporal aspect is not considered and all sensors are assumed to sample the same
atmospheric scene. The satellite zenith angle is the same for both geostationary instruments
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on board of geostationary satellites (MTG-IRS and MSG-SEVIRI). Polar-orbiting sensors IASI
and AMSU-A/MHS are assumed to measure in nadir. Further, the atmosphere is assumed to
be horizontally homogeneous and aerosol-free, and wavelength dependence of diffraction is
ignored so that geostationary sensors sample the same volume of air at all channels.
For the simulation of infrared observations, atmospheric profiles of temperature, humidity, and
trace gases (CO2, O3, N2O, CH4, SO2, CO) along with surface properties are required. In this
study, the profiles of trace gases are set to the RTTOV reference profiles and assumed to be con-
stant. The surface emissivity values for satellite instruments were taken from the RTTOV emis-
sivity atlas UWIREMIS that provides monthly climatological mean emissivity values (Borbas
et al., 2010) and thus, the variability of the surface emissivity is underestimated. The simulated
spectra may deviate from the real observed spectra because of the forward model error, due to
representation of the atmospheric column state by only 54 and 101 layers, due to the assumption
of constant trace gas profiles and because of the cloud variability within a satellite field of view.
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Chapter 4

Neural Network Retrieval

Neural network approaches have been widely used for the retrieval of atmospheric profiles and
cloud properties from satellite (Aires et al., 2002) and ground-based microwave observations
(Cadeddu et al., 2009; Jacob et al., 2019; Marke et al., 2016). The task of the neural network is
to find a relationship between a set of input (simulated observations) and output (calculated
STI) vector pairs. It was demonstrated that a neural network with only one hidden layer of suf-
ficient number of nodes and a nonlinear activation function is able to reproduce any nonlinear
statistical relationship (Hornik et al., 1989). A simplified structure of a multilayer feed-forward

Figure 4.1: Neural network structure. Left: interconnections of a three layer feed-
forward neural network. Right: a single node. Image adopted from Blackwell et al.,

2005

networks utilized in this study is shown in figure 4.1. The nodes in the input, hidden, and output
layers are connectedwith each other byweighted links. Each node in the hidden layer (fig.4.1b)
calculates a sum of the weighted input parameters and bias, and applies a transfer function,
which are used to introduce a non-linearity into the neural network. Here, a hyperbolic tangent
activation function was used and each hidden node performs following calculation:

z1 = tansig(W1x+ b1) (4.1)
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where z1 is the output of the hidden layer, x is the input vector,W1 is thematrix of inputweights
and b1 is called bias vector. The connection between the hidden layer and output layer is lin-
ear. After this process, called forward propagation, the output value is compared to the actual,
expected target value and the loss function is calculated (error for a single training example).
The error is back-propagated by calculation of the derivative of the error value with respect to
each weight. Subsequently, all weights are updated by subtraction of the derivative to reduce
the error. Before starting the training, the weights and biases are assigned random values. The
training of the network is performed iteratively until the desired accuracy is reached. In this
study, the backpropagation of the errors was performed according to Levenberg-Marquard al-
gorithm in the MATLAB neural network toolbox (Hagan et al., 1994).

In Study 1, for each instrument and combination of instruments one two-layer feed forward
back propagation network per STI was trained, validated, and applied to the independent set
of input parameters (test set). The size of the input layer of the networks is determined by the
number of channels of the instrument and consists of 30 nodes for MWR, 15 nodes for IRS, 7
nodes for SEVIRI and additional 10 nodes for DIAL. The output consists of only one neuron
(one STI). In the case of temperature and humidity profile retrievals, the output layer includes
51 elements according to the number of reanalysis levels.
The whole data set, consisting of brightness temperatures for satellite sensors and MWR and
of humidity profiles for DIAL, was sorted in descending order by the value of corresponding
STI and divided into a training (50% of cases), a validation (20% of cases) and a test set (30%
of cases). The division was performed using interleaved indices to guarantee that all sets have
similar statistical properties and contain adequate representation of rare events (high or low
STI values).
A good generalization of the networks is achieved by the early stopping technique. During
the iterative training process, the network is applied to the validation set and the error on the
validation set is monitored. When the validation error increases for several iteration steps, the
training is stopped and the network properties at the minimum of the validation error are re-
turned, stored, and applied to the test data set. The resulting network offers a trade-off between
learning (i.g., small error on the training data set) and generalization (i.e., smallest possible
error on the validation set). The evaluation of the retrieval performance was carried out using
only the independent test data set.
The number of neurons in the hidden layer is different for each instrument. To find the opti-
mal size of the hidden layer, each network was trained repeatedly with the number of neurons
varying between 5 and 25 with a step of 5 neurons. For too few neurons the complexity of
the network was not sufficient to represent the training data set, resulting in the large train-
ing error. On the other hand, with increasing size of the hidden layer, the generalization error
and the time needed for training increases. The criterion for the optimal network configuration
were the small final error on the training set and the small generalization error. At the end of
the calculations, networks with the 15 to 25 neurons in the hidden layer were found to be a good
compromise.
The settings of the neural networks trained in Study 2 are described in the section 6.1.1
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Chapter 5

Study 1: Retrieval of STI and
atmospheric profiles from
ground-based and satellite observations

This chapter presents the results of a comparison between STI calculated from reanalysis pro-
files ("truth") and STI as retrieved from simulated measurements. In section 5.1 of this chapter,
statistical parameter and scores used for evaluation of the results are introduced. Further, in
section 5.2 the potential of each instrument for retrieval of stability indices is shown. Section 5.3
demonstrates the improvements achieved by combining the satellite- with ground-basedMWR
observations. Section 5.4 focuses on the future geostationary IRS observations, as the most ben-
eficial in terms of temporal and horizontal resolution, and shows the potential improvements
due to additional ground-based MWR and DIAL observations. Here, the examples of the time
series of KO and CAPE are included. And the last section 5.4.1 presents the results of atmo-
spheric profile retrieval from IRS and MWR observations.

5.1 Statistical metrics used for evaluation

First, statistical scores, such as the bias (BIAS), correlation (CORR), and centered root mean
square difference (RMSE, calculated after subtracting the mean of the data) between the re-
analysis and retrieved STI values were calculated. To make the comparison easier, the statistics
for different instruments and cloud conditionswere graphically summarised bymeans of Taylor
diagrams (Fig. 5.1-5.3, and Fig. 5.5-5.7). The Taylor diagrams offer a way to quantify the degree
of similarity between multiple data sets (Taylor, 2001). On this diagram three statistical scores
(CORR, RMSE and standard deviation of each data set) are indicated by a single point on the
two-dimensional polar style plot. The black point representing the reanalysis statistics is plotted
along the x-axis. The distance from the origin to this point corresponds to the standard devi-
ation of the reanalysis data set. The colored points represent the statistics of the STI retrieved
from different observations. The radial distances from the origin to these points correspond to
the standard deviations of retrieved data sets, and the azimuthal positions give the correlation
coefficients between reanalyses and retrievals. The distance between the dashed green circles
and the reanalysis point shows the centered RMS difference between retrieved values and re-
analysis. Note, that the diagram does not provide information on the biases since the mean
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Table 5.1: Schematic forecast contingency table and statistical scores used for verifica-
tion. N represents the total number of events and non-events, h (hits) is the number
of correct event forecast, z (zeros)- the number of correct non-event forecast, f (false)-
the number of false alarms andm (misses)- the number of not predicted events. CAPE

was calculated for the most unstable air parcel.

Observed
Forecast Yes No Total

Yes h f h+f
No m z m+z
Total h+m f+z N

POD= h
h+m probability of detection

FAR= f
h+f false alarm ratio

HSS= 2(hz−fm)
(h+m)(m+z)+(h+f)(f+z) Heidke skill score

values were subtracted before calculating the RMS difference. However, in this study, the re-
trieval biases for all STI were found to be small, leading to negligible differences between RMSE
and centered RMSE. Thus, the points lying closest to the reanalysis point (black) on the x-axis
indicate a retrieval with relatively high correlation and low RMSE, and that agrees best with the
reanalysis. Points lying on the black dotted arc indicate retrieval with the correct variability of
STI.
Then, taking into account the threshold values of STI, the performance of the retrieval was ver-
ified by considering the contingency table (Tab. 5.1). In the case of event/non-event forecast
the four entries of the contingency table are the number of correct event forecast (hits, h), cor-
rect non-event forecasts (zeros, z), false alarms (false,f) and not predicted events (misses, m).
A perfect forecast system would produce only hits and zeros, and no misses or false alarms.
Observed values correspond to STI calculated from reanalysis profiles, predicted values to re-
trieved STIs. Based on these four values, different verification parameters can be derived. Here
three of them are shown, the probability of detection (POD), the false alarm ratio (FAR), and
the Heidke Skill Score (HSS) defined in Tab.5.1.
The POD gives the percentage of all events that could be forecast. This parameter is sensitive to
hits (correct predicted events) and misses (not predicted events), but ignores false alarms. So
in case the event is forecast too often (that means: no misses but great number of false alarms)
the POD will be 100% . The FAR reveals the false predicted events among all predictions.
Both scores are highly dependent on the ratio of events and non-events. Therefore, Heidke
skill score (HSS) was used as a further verification parameter. The HSS includes all elements
of the contingency table and is considered an appropriate score in case of rare events forecast,
when correct forecasts of non-events dominate the contingency table. Moreover, statistical skill
scores like HSS make it possible to compare results based on different datasets such as clear
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sky and cloudy cases in this study (Doswell et al., 1990). HSS measures the relative forecasting
skill, giving the accuracy of the forecast, relative to that of random chance. The range of HSS
is between -1 and 1 with negative values indicating that a forecast is worse than a randomly
generated forecast. Value 0 means no forecast skills and a perfect forecast results in HSS=1.

5.2 Single instrument performance under clear sky and cloudy con-
ditions

First of all, the ability of every single instrument (SEVIRI, IRSW, IASI, AMSU-A/MHS, MWR)
and of combination of ground-based instruments (MWR+DIAL) to provide STI under clear
sky and cloudy conditions was investigated. The Taylor diagrams 5.1 and 5.3 show the statistics
of the difference between STI calculated from reanalyses and NN-retrievals for clear sky and
cloudy conditions. In addition to the STI discussed above the statistics for integrated water
vapor (IWV) and liquid water path (LWP) are included.
Among all instruments, the SEVIRI provides lowest CORR and highest RMSE values for all
indices under both clear sky and cloudy conditions: the points representing SEVIRI statistics
lie apart from points representing other instruments and furthermost from the reanalysis point
on the x-axis.
The microwave AMSU-A/MHS achieves overall better results than SEVIRI, but under clear sky
conditions it is less beneficial for all retrieved parameters than both hyperspectral infrared satel-
lite instruments and ground-based sensors.
Under clear sky conditions the future IRS outperforms the SEVIRI instrument in terms of CORR
with an improvement varying between 8% for FT and 54% for CAPE. As both instruments were
assumed to have the same observation geometry, the improvements can be clearly attributed to
the increased information content of highly spectrally resolved IRS measurements.
The IRS also slightly outperforms IASI for all STI and IWV, what emphasises the importance of
channel selection for retrievals based on hyperspectral observations. Despite the larger zenith
angle of observations, under clear skies the principal components calculated from all IRS chan-
nels contain more useful information compared to principal components calculated from se-
lected IASI channels (s. section 3.4.4 and 3.4.6).
For satellite sensors, the lowest correlation values under clear sky conditions were achieved for
CAPE,which is dependent on the entire temperature profile and highly sensitive to temperature
andhumidity below the lifted condensation level, and for FT index, which is strongly dependent
on the humidity gradient and on the near-surface temperature and dewpoint. This indicates the
insufficient capability of satellite instruments to sample the lowest atmospheric layers. However,
in the case of the IRS instrument, improvements could be made by a more precise selection of
channels sensitive to surface temperature and humidity. Moreover, better results for IRS can be
expected for lower latitudes due to the smaller zenith angle.
Compared to IRS, the ground-based MWR provides slightly lower CORR values (and higher
STD values, respectively) for four of STI (KI, TT, LI, SI) and higher CORR for remaining three
STI (KO, CAPE, FT) and IWV. Note that ground-based MWR observations are most beneficial
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for CAPEwith 13% higher CORR values than IRS, pointing out the better performance of MWR
in the boundary layer.
Additional humidity information from DIAL leads to even higher CORR values, making the
combination of both ground-based instruments comparable to IRS for four of STI (KI, LI, TT,
SI) and IWV and considerably better for three STI (KO, CAPE, FT).
Note that under clear sky conditions, the points representing infrared satellite and ground-
based retrievals lie very close together for most of the STI with exception of CAPE, FT, and IWV.
The largest spread between ground-based and satellite points can be seen for CAPE and FT,
showing a strong underestimation of the variability of these parameters by all instruments with
exception of MWR+DIAL combination.
The categorical parameters POD, FAR andHSS calculated for seven STI and clear sky conditions
are shown in Figure 5.2. As with the CORR coefficient, the hyperspectral observations of IRS
lead to significant improvements in the statistics compared to SEVIRI and slightly outperform
hyperspectral IASI. The measurement skill of IRS in terms of HSS ranges between 0.62 and 0.73
for the first five STI. For CAPE and FT the measurement skill achieved by IRS is only 0.50 and
0.32, respectively. The AMSU-A/MHS achieves similar (low) scores for CAPE and FT as the
IRS, but is significantly less beneficial for other indices.
The MWR provides the values of POD, FAR and HSS comparable to those achieved by IRS
for three of STI: KI, KO and LI. For TT and SI the lower values of POD and higher number of
false alarms retrieved by MWR result in lower HSS compared to IRS retrieval. The higher HSS
values achieved by MWR for FT and CAPE in comparison to IRS (0.56 and 0.51, respectively)
are notable.
If the DIAL humidity profile is added to the MWR observations the statistics are further im-
proved for all indices with exception of TT. Particularly, the FT index benefits from additional
humidity information in the lowest atmospheric layers with POD increasing from 0.6 to 0.8 and
HSS from 0.5 to 0.77. Altogether, in terms of POD and HSS, the combination of both ground-
based instruments outperforms the IRS for five STI (KI, KO, LI, CAPE, FT).
The Taylor diagrams 5.3 and 5.4 show the statistics for single instruments and the combination
of ground-based instruments for cloudy conditions. Again, there are apparent differences in
CORR between SEVIRI and IRS, as well as the decrease of CORR up to 30% for both satellite
instruments compared to the results for clear sky. The reason for this decrease lies in the satu-
ration of infrared channels in the presence of optically thick clouds. The statistics for IASI are
close to that of IRS, but the decrease in CORR values is less pronounced.
In contrast, the CORR values achieved by sensors measuring in microwave, AMSU-A/MHS
and ground-based MWR and MWR+DIAL, remain almost the same with changes within 6%
compared to the clear sky retrieval, confirming the advantage of microwave over infrared ob-
servations under cloudy conditions. However, the AMSU-A/MHS statistics are similar or only
slightly better than those of IRS and IASI for all STI and IWV.
Under cloudy conditions the ground-based MWR outperforms the hyperspectral IRS and IASI
for all STI, IWV, and LWP, and shows significantly higher CORR coefficients with the improve-
ment between 10% for KI, 30% for CAPE and 90% for LWP.
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Overall, comparing the Taylor diagrams for clear sky and cloudy conditions, the larger vari-
ation of the results under cloudy conditions is clearly visible. The points corresponding to
the ground-based retrievals are separated from those of the satellite, show smaller RMS error,
higher CORR values, and reproduce best variability of all STI, IWV, and LWP.
The POD, FAR ad HSS values calculated for cloudy cases clearly illustrate the advantage of
ground-based microwave and combined MWR+DIAL observations in the presence of clouds
(Fig.5.4). Similar to CORR coefficient, the POD, FAR and HSS values for ground-based in-
struments remain almost the same as for clear sky conditions, whereas the POD and HSS for
satellite infrared sensors decrease significantly for six STI. Therefore, the MWR-only retrieval
as well as MWR+DIAL retrieval outperform that of satellite instruments for all STI. Additional
water vapor information from DIAL is particularly valuable for KO, LI, CAPE and FT.
Considering the integrated atmospheric parameters IWV and LWP, the best results under all
sky conditions provides the ground-based MWR. The high CORR values for the combination
MWR+DIAL result mostly from information contained in the microwave observations. NN-
retrieval applied to single DIAL observations leads to CORR values of 0.37 for LWP and of
0.91/0.88 for IWV under clear sky and cloudy conditions, respectively (not shown). Despite
the worsening due to clouds, the satellite sensors IRS, IASI and AMSU-A/MHS achieve high
CORR values of 0.9-0.95 for IWV. On the other hand, a CORR coefficient of only 0.52 is achieved
by infrared IRS and IASI for LWP. It is important to note that in the case of SEVIRI, only obser-
vations at infrared channels were used for LWP retrieval in this study. The visible (0.6 µm) and
near-infrared (1.6 µm) SEVIRI channels offer the possibility to retrieve cloud particle effective
radius and cloud optical thickness, which can be used for LWP calculation (Stengel et al., 2014).
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Figure 5.1: Taylor diagrams (details in section 5.1) showing statistics of the difference
between STI calculated from reanalysis and NN-retrievals including only one instru-
ment (or combination of ground-based instruments) for clear sky conditions. The
standard deviation of KI, KO, TT, LI, SI and FT is given in K, of CAPE in Jkg−2, of

IWV and LWP in kgm−2.

Figure 5.2: Probability of Detection of (POD), False Alarm Ratio (FAR) and Heidke
Skill Score (HSS) for seven STI retrieved from observations of each single instrument

and from combination of ground-based instruments under clear sky conditions.
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Figure 5.3: As in Figure 5.1 but for cloudy conditions.

Figure 5.4: As in Figure 5.2 but for cloudy conditions.
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5.3 Benefit from the synergy of satellite- and ground-based sensors

Next, the potential of ground-based MWR to complement geostationary and polar orbiting
satellite observations was investigated. Figures 5.5-5.8 show the statistics between STI calcu-
lated from reanalysis and STI retrieved from synergistic observations for clear sky and cloudy
conditions. The results from single MWR and MWR+DIAL are also shown for comparison.
In general, the points representing synergistic retrievals on the Taylor diagrams for both clear
sky and cloudy conditions (Fig. 5.5 and 5.7) are less scattered than in case of single instru-
ment retrievals (Fig. 5.1 and 5.3) and assemble around points representing single MWR and
MWR+DIAL, thereby outperforming the MWR-only retrievals for all STI with exception of FT.
The range of improvements varies for all retrieved parameter.
Starting the comparisonwith the single SEVIRI instrument and the combination SEVIRI+MWR
it can be seen that for both clear sky and cloudy conditions, additionalmicrowave ground-based
observations improve the statistics significantly. However, taking into account high CORR val-
ues of single MWR retrieval, it is evident that in the case of SEV+MWR retrieval the improve-
ments are mostly due to the information contained in MWR observations.
From a ground-based point of view, additional SEVIRI observation only slightly improveMWR-
only retrievals for all STI, except for FT under both clear sky and cloudy conditions. The cate-
gorical parameters POD, FAR and HSS show also minor improvements for SEV+MWR combi-
nations compared to MWR-only retrieval.
A closer look at the CORR values achieved byMWR-only, MWR+DIAL and SEV+MWR combi-
nations shows that the contribution of SEVIRI in the synergistic retrieval is smaller (KO, CAPE)
or comparable (KI, TT, SI, LI) to that of DIAL under both clear sky and cloudy conditions.
Further, the comparison of Taylor diagrams and categorical scores (POD,FAR, HSS) from single
satellite instrument and MWR retrievals with those from combined observations sat+MWR
(Fig. 5.1 vs. fig. 5.5 and 5.6) shows that under clear sky conditions satellite and ground-based
instruments complement each other, making the combination of sat+MWRmore efficient than
each sensor alone (The synergy benefit from satellite point of view is shown by the transparent
part of the bar). The best results (highest HSS, CORR around and lowest RMSE values) can be
achieved by synergy ofMWRwith hyperspectral satellite IRS and IASImeasurements, followed
byAMSU-A/MHS+MWR combination. The IRS+MWR retrieval provides HSS values between
0.7-0.8, with a corresponding POD of about 0.8 and correlations above 0.9 for the first 5 STI. The
retrievals of CAPE and FT remain less accurate even under clear sky and synergistic approach,
with HSS of 0.65 and 0.55, respectively.
The synergy is also beneficial under cloudy conditions (Fig. 5.3 and 5.4 vs fig. 5.7 and 5.8).
However, since the performance of single infrared satellite sensors has worsened due to cloudi-
ness, the synergy benefit in this case is much larger (transparent parts of the bars in figs. 5.6-
5.8). Thus, there is only light decrease in CORR and HSS values between clear sky and cloudy
IRS/IASI+MWR retrievals. The performance of AMSU-A/MHS+MWR combination remains
the same under both clear sky and cloudy conditions. The points on the Taylor diagram rep-
resenting the combined retrievals IRS/IASI/AMSU-A/MHS+MWR lie very close to each other
showing similar performance of all three combinations in the presence of clouds.
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From the ground-based point of view, the additional information from the higher atmospheric
levels contained in the satellite observations also lead to an enhancement in the statistical scores
compared toMWR-only retrieval (compare yellowwith transparent bars). This is valid for both
clear sky and cloudy conditions and all indices, except for FT and integrated values IWV and
LWP. Here, most of the information comes from the ground-basedMWR and satellite measure-
ments can hardly add to it even under clear sky. For the FT, the synergy benefit in terms of
enhanced CORR and HSS is not significant under both clear sky and cloudy conditions. Here,
only further information on low level humidity from DIAL improves the statistics increasing
the HSS from 0.55 to 0.73 and POD from 0.75 to 0.85.
All in one, it can be seen that additional MWR observations added to satellite make the retrieval
of STI independent of cloudiness. Although the statistical scores of all combinations lie close
to each other, the best results can be achieved with the combination of hyperspectral IRS and
IASI with ground-based MWR. Thus, taking into account the higher temporal resolution of
geostationary observations, the combination of IRS with ground-based MWR or MWR+DIAL
can be considered as the most promising.
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Figure 5.5: Taylor diagrams showing statistics of the difference between STI calculated
from reanalysis and NN-retrievals based on synergistic observations of ground-based
and satellite sensors for clear sky conditions. The standard deviation of KI, KO, TT, LI,

SI and FT is given inK, of CAPE in Jkg−2, of IWV and LWP in kgm−2.

Figure 5.6: Probability of Detection (POD), False Alarm Ratio (FAR) and Heidke Skill
Score (HSS) for seven STI retrieved from observations of ground-based sensors and
from combination of ground-based and satellite sensors under clear sky conditions.
The non-transparent part of the bars shows the single instrument score, whereas trans-
parent extension corresponds to improvements due to synergy with MWR. Note that
FAR for synergistic retrieval is lower than for single satellite sensor and is shown by

horizontal black dash.
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Figure 5.7: As in Figure 5.5 but for cloudy conditions.

Figure 5.8: As in Figure 5.6 but for cloudy conditions.
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5.4 Potential of ground-based MWR and DIAL in the synergy with
future geostationary IRS observations

The aim of this section is to show how both ground-based sensors MWR and DIAL can com-
plement geostationary hyperspectral IRS measurements and how their contribution changes
depending on cloudiness.
Under clear sky conditions the contribution of both ground-based sensors MWR and DIAL to
synergistic retrieval IRS+MWR or IRS+DIAL is comparable, leading to almost the same CORR
and HSS values for IRS+MWR and IRS+DIAL combinations (Fig. 5.9 and fig. 5.11 (transparent
bars)). This is valid for all retrieved parameter excepting FT and IWV.
The FT is dependent, besides the temperature, on the humidity values at the surface, at 850 hPa
and at the lifted condensation level (LCL). Under clear sky conditions, 85% of all profiles have
their LCL below 2km and thus in the measurement range of DIAL. The humidity values at
850 hPa (about 1500m ASL) under clear sky conditions can also be captured by DIAL. Thus,
for the FT index, the IRS+DIAL combinations achieves better results than IRS+MWR andDIAL
contributes significantly to the IRS+MWR+DIAL retrieval under clear sky conditions. This
confirms the results of D. D. Turner et al., 2021, who have shown that the active DIAL, if added
to ground-based infrared AERI (Atmospheric Emitted Radiance Interferometer) observations,
provides in general more supplemental information on the vertical distribution of humidity
than passiveMWR.However, it should be noted that the transmitter/receiver overlap of the pro-
totype Vaisala DIAL considered in this study is not sufficient to obtain accurate humidity values
at the altitudes below 50m and typically additional surface humidity measurements are used
to constrain DIAL observations (Newsom et al., 2020). Thus, on the one hand, using the surface
humidity directly would also improve all other synergistic retrievals (e.g. IRS+MWR), and on
the other hand, employing other type of compact DIAL (e.g. NCAR Weckwerth et al., 2016)
with different vertical measurement range would probably lead to less accurate IRS+DIAL re-
trieval.
In contrast to FT, the total amount ofwater vapor (IWV) is better captured by passiveMWR than
by DIAL, and MWR dominates the synergistic retrieval IRS+MWR+DIAL under all weather
conditions (in the figures 5.9 and 5.10 the yellow circle corresponding to IRS+MWR retrieval is
not visible under the red IRS+MWR+DIAL circle).
In the IRS+MWR+DIAL retrieval all three sensors complement each other to obtain the best so-
lutionwith CORR values from 0.83 (CAPE) to 0.97 (KO,LI and SI), HSS values from 0.7 (CAPE)
to 0.82 (LI,SI), POD between 0.7 and 0.86 and false alarms in 10-25% of the cases. Compared
with IRS only retrieval the CORR coefficient of IRS+MWR+DIAL retrieval increases by values
between 2.5%(KI and IWV) and 23%(FT). At the same time, the RMSE decreases by 9 to 49%
for STI and by 88% (from 1.25 kg m−2 to 0.14 kg m−2) for IWV.
Under cloudy conditions, both ground-based sensors are able to significantly improve the low
accuracy of IRS-only retrieval, whereas the combination of IRS+MWR shows slightly better
results than IRS+DIAL for all STI except for FT. The IRS+DIAL retrieval is more affected by
clouds and shows stronger decrease in CORR and HSS than IRS+MWR (compared to clear sky
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values), probably because the 850 hPa level, important for calculation of most STI, is obscured
by clouds.
Nevertheless, including the DIAL humidity profiles into IRS+MWR retrieval leads to a further
increase in CORR and HSS values for all STI except KI, with maximum improvements for FT.
Thus, in the presence of clouds, the HSS achieved by IRS+MWR+DIAL combination vary be-
tween 0.7 and 0.8 with corresponding POD in the range between 0.7 and 0.9 and false alarms
appearing in 10-25% of predicted cases. The CORR values differ only slightly from that of clear
sky values and lie between 0.86 (CAPE) and 0.97 (LI).The increase in CORR varies between 10
and 53% for STI and IWV and about 90% for LWP compared to IRS-only retrieval. The RMSE
reduction lies in the range from 33 (KI) to 58% (KO, SI).
If employing only one ground-based sensor, theMWRappears to provide similar improvements
under clear sky conditions as the DIAL, but is more beneficial under cloudy conditions. This
is valid for IWV, LWP, and all STI excepting FT. For calculation of the FT index, more vertically
resolved information on humidity from DIAL is needed.
The combination of all three instruments IRS+MWR+DIAL has distinguishably the best perfor-
mance, indicating that all instruments are contributing to the sensor synergy. However, for the
assessment of potential for radiation fog (FT), the hyperspectral infrared satellite observations
cannot add complementary information in a synergistic retrieval and thus can neither replace
nor complement the ground-based observation, even under clear sky conditions.
The lowest CORR andHSS values are achieved by IRS for CAPE and FT independent on cloudi-
ness. Hence, for these two indices the additional ground-based have the largest impact and are
essential.
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Figure 5.9: Taylor diagrams showing statistics of the difference between STI calculated
from reanalysis and NN-retrievals based on synergistic observations of IRS and two
ground-based sensors MWR and DIAL for clear sky conditions. The standard devia-
tion of KI, KO, TT, LI, SI and FT is given inK, of CAPE in Jkg−2, of IWV and LWP in

kgm−2.
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Figure 5.10: As in Figure 5.9 but for cloudy conditions.

Figure 5.11: Probability ofDetection (POD), FalseAlarmRatio (FAR) andHeidke Skill
Score (HSS) for seven STI retrieved from observations of ground-based sensors and
from combination of ground-based and IRS. The transparent and the non-transparent
bars show the score under clear sky and cloudy conditions, respectively. Note that FAR
for clear sky conditions is lower than for cloudy conditions and is shown by horizontal

black dash.
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5.4.1 Time series of STI

This section demonstrates the application of developed NN-retrieval to a time series of bright-
ness temperatures simulated for single instruments and synergy of instruments. Figure 5.12
shows the time series of KO index for August 2012. The KO index describes the potential in-
stability between lower and higher atmospheric levels by comparing the equivalent potential
temperatures at low (1000 and 850 hPa) and mid (700 and 500 hPa) levels. Designed for esti-
mating thunderstorm potential in Europe (Andersson et al., 1989), KO index is smallest if cold,
dry air lies above warm and humid air. Values below 1.9K indicate strong thunderstorm po-
tential. The KO values computed from reanalysis show alternating stable and unstable periods
with very unstable conditions in the time from August 18-22. The unstable periods are mostly
accompanied by clouds. Thus, the observations under cloudy conditions are crucial for assess-
ment of atmospheric stability. Generally, the KO values retrieved from observations of MWR,

Figure 5.12: Time series of KO index retrieved from simulated MWR, IRS, MWR+IRS
and MWR+DIAL observations for August 2012. Black line shows the KO index com-
puted from reanalysis ("truth"). Blue and red dots on the x-axis indicate cloudy and
rainy cases, respectively. Dotted line shows the threshold value for KO index according

to Haklander et al., 2003.

Figure 5.13: Time series of CAPE index retrieved from simulated MWR, IRS,
MWR+IRS and MWR+DIAL observations for the period from August 2012 18-20.
Black line shows CAPE computed from reanalysis ("truth"). Blue dots on the x-axis
indicate cloudy cases (no rainy cases during this time period). Dotted line shows the

threshold value for CAPE index according to Haklander et al., 2003.
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IRS, and combinations IRS+DIAL andMWR+DIAL follow the trend given by reanalysis. How-
ever the lowest KO values during unstable periods on August 2, 5, 9, 14, and 21 could not be
captured well by all instruments. The IRS-only and MWR-only retrievals provide CORR values
of 0.76 and 0.87, respectively, for the whole period, whereas both combinations IRS+MWR and
MWR+DIAL achieve CORR values of 0.93.

Figure 5.14: RGB SEVIRI image, 18 (left) and 19 (right) August 2012, 16:00UTC. Red
cross shows the position of JOYCE site.

The time series of CAPE for the unstable period fromAugust 18-20 and the corresponding satel-
lite images are shown in Figure 5.13 and Figure 5.14. The period starts with stable cloud free
conditions where the trend is best captured by the IRS+MWR combination.The instability in-
creases starting from 11:00 UTC on August 19 and leads to cloud formation. In the presence of
clouds the CAPE values retrieved from IRS observations differ significantly from the reanaly-
sis. The ground-based MWR as well as MWR+DIAL combination underestimate the highest
CAPE values in the night of 19th and 20th of August in cloudy as well as in clear sky cases. The
CAPE calculated from synergistic IRS+MWR observations follows the trend well and captures
the maximum CAPE values in the night of 19th and 20th and in the morning of August 20.
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5.5 Retrieval of atmospheric temperature and humidity profiles from
MWR and IRS observations

This section demonstrates the ability of IRS andMWRand their synergy to provide temperature
and humidity profiles. The same clear sky and cloudy data sets were used to train and test the
neural networks with temperature and humidity profiles as the targets. To demonstrate the
added value of ground-based remote sensing observations, an additional retrieval based on
IRS and temperature and humidity at 2m height was performed. The input layers of neural
networks consist again of 30, 15/17 or 45 elements corresponding to the observation vector of
MWR, IRS/IRS+2m, and MWR+IRS. The hidden layer consisting of 15 neurons was found to
be sufficient. The output layer has 51 elements according to the number of reanalysis levels.
Both, clear sky and cloudy data sets were divided into training, validation, and test sets using
interleaved indices so that atmospheric conditions of each month are equally represented in all
three data sets. In the following, only results of application of neural network retrieval to the
test data set are demonstrated.
Figures 5.15a and 5.15b show the standard deviation (STD) and mean difference (BIAS) be-
tween reanalysis and retrieved temperature profiles for clear sky and cloudy conditions. The
uncertainty of IRS retrieval is almost constant in the region from 4 to 22 km and lies close to
1K under both clear sky and cloudy conditions. In the lowest layers it increases slightly under
clear skies and up to more than 2K in the presence of clouds. The error of MWR retrieval is
smallest close to the surface(≈ 0.3K) and increases rapidly with the height and gets larger than
IRS error at 2/3.5 km for clear sky and cloudy conditions, respectively. The large error in the
layer around 12 km is caused by the large variability of reanalysis temperature profiles at these
heights.
When combining the MWR and IRS in a synergistic retrieval, the uncertainty in the lowest 2 km
is the same as for MWR-only retrieval, showing that from ground-based point of view the IRS
observations do not add temperature information to MWR-only retrieval. The same applies to
the layers above 12 km,where the temperature profile is driven by IRS observations. However, in
the layers from 2 to 12 km the error of combined retrieval is smaller than the error of both single
sensor retrievals, demonstrating that for these layers the synergistic retrieval would be more
beneficial than combination of profiles retrieved from IRS and MWR observations separately.
This synergy benefit is even more pronounced in the presence of clouds, where constraining of
IRS measurement with information from the layers below cloud leads to improved accuracy of
the entire profile.
The relative error reduction of the IRS+MWR retrieval in comparison with IRS-only andMWR-
only retrievals can be quantified according to equation:

errred =
err − errIRS+MWR

err
∗ 100, (5.1)

where err represents the error profiles of MWR-only or IRS-only retrievals.
In general, if compared to IRS-only retrieval, the improvements due to additional MWR obser-
vations vary between 0.3-86% under clear sky and 10-90% under cloudy conditions (from 12 km
height to the surface).



5.5. Retrieval of temperature and humidity profiles from MWR and IRS observations 55

The statistics for absolute humidity retrieval are shown in figures 5.15c and 5.15d. Similar to
temperature profile retrieval, the humidity profiles fromMWR-only retrieval are more accurate
than IRS-only retrieval in the lowest layers close to the surface, while the IRS retrieval uncer-
tainty is smaller in the upper layers. However, the information content of MWR observations
for humidity is smaller than that for temperature (Hewison, 2007; Löhnert et al., 2009) and
thus, from the ground-based point of view the synergy benefit for the humidity profile is evi-
dent from the surface to 8 km even under clear sky conditions. From the satellite point of view,
the IRS benefits from synergy with MWR in the layers below about 3.5/8 km under clear and
cloudy conditions, respectively.
The error of IRS-only retrieval in the lowest 2 km can be reduced by up to 40% under clear sky
and up to 45% under cloudy conditions if MWR observations are added. In general, the clear
improvement in the error due to the synergy of the two instruments relative to the error of single
instrument retrievals can be seen. Thus, the MWR-only retrieval can be improved by about 30%
in the lowest 7 km
The comparison of synergistic retrieval IRS+MWR and the combination of IRS observations
with 2m temperature andhumidity (red line vs black line) illustrates the better ability of ground-
based remote sensing MWR to complement satellite IRS observations than surface temperature
and humidity measurements. Notably is however, the higher accuracy of the IRS+2m humid-
ity retrieval in the lowest layer close to the surface. Thus, it can be expected that inclusion of
2m temperature and humidity values intoMWR+IRS retrievals would lead to further improve-
ments in the retrieval accuracy.

(a) (b) (c) (d)

Figure 5.15: Standard deviation (solid) and BIAS (dashed) of the temperature (left)
and humidity (right) profile retrievals from ground-based MWR and satellite IRS ob-

servations for clear sky and cloudy conditions.

The dependency of the accuracy of IRS retrieval upon the amount of water in the column, both
cloud and ice water, is shown in figure 5.16. The increase of the error with increasing water
content can be seen for both temperature and humidity retrievals. Further division between
ice and liquid cloud cases has shown, that IRS temperature retrieval in the presence of thin ice
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(a) (b)

Figure 5.16: Dependency of the temperature (A) and humidity (B) IRS retrieval accu-
racy on the cloud ice and liquid water content.

clouds is nearly as accurate as the retrieval under clear sky conditions, while the optically thick
liquid clouds hinder the IRS observations in the lowest layers leading to errors up to 3K.
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5.6 Study1: Summary and conclusions

In this chapter, atmospheric stability indices (STI), integrated water path (IWV), liquid water
path (LWP), and temperature and humidity profiles are retrieved from simulated satellite and
ground-based observations. The experiment is based on reanalysis profiles as truth and ap-
plies a neural network technique as described in chapter 2. The considered instruments are the
ground-based microwave radiometer (MWR) and Dual Frequency Lidar (DIAL) and sensors
measuring on polar orbiting (IASI, AMSU-A/MHS) and geostationary satellites (SEVIRI, fu-
ture IRS). To better demonstrate the advantages and disadvantages of each sensor, the analysis
was performed for clear sky and cloudy cases separately. The results are statistically evalu-
ated in terms of several parameters, namely correlation, root-mean-squared error, probability
of detection, false alarm ratio, and Heidke skill score.
The chapter starts analyzing the performance of each instrument alone and proceeds with the
synergy of satellite sensors with ground-based MWR.
In agreement with expectations, the hyperspectral geostationary IRS observations provide sig-
nificantlymore information on vertical humidity and temperature than broadband SEVIRImea-
surements and can improve the monitoring of atmospheric stability, especially in the clear sky,
pre-convective environment. The POD values achieved by SEVIRI lie below 0.4, while the POD
values of IRS range between 0.65 and 0.76 for the first five STI.
Despite the larger (and therefore more advantageous) zenith angle of observations, the per-
formance of polar-orbiting hyperspectral IASI is slightly worse than that of IRS under clear
sky conditions, but less affected by clouds. The differences are mainly due to the different ap-
proaches used for dimension reduction of hyperspectral observations of both sensors. This in-
dicates further need for careful selection of channels and principal components more sensitive
to temperature and humidity at different levels and less sensitive to clouds, whichmay improve
the retrieval accuracy for both hyperspectral instruments.
Under clear sky conditions, the performance of ground-basedMWR for the first five STI is com-
parable or slightly worse than that of IRS and IASI, but can be further improved by the inclusion
of humidity profiles fromDIAL into the retrieval. The remaining two indices, CAPE and FT, are
highly dependent on the near-surface temperature and humidity that can not be accuratelymea-
sured by satellite observations.The best results among all satellite sensors for these two indices
achieves the IRS with POD of 0.53 for CAPE and only 0.34 for FT. Therefore, for the assessment
of the CAPE and FT the ground-based observations are essential even under clear sky condi-
tions. The combinedmeasurementsMWR+DIAL results in POD values of 0.6 and 0.8 for CAPE
and FT, respectively. For the FT, the additional humidity information from DIAL is especially
beneficial.
If combined in the synergistic retrieval, the ground-basedMWR and satellite observations com-
plement each other in an optimal way and provide more accurate retrievals of STI than each
individual sensor. The best results with POD values around 0.8 for the first 5 STI and around
0.65 for CAPE and FT could be achieved by combination of MWR with hyperspectral satellite
sensors (IRS+MWR, IASI+MWR). The benefit is evident for all STI with exception of FT, where
entire information comes fromMWR and can only be complemented by humidity profiles from
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DIAL.
If the clouds appear, the satellite andground-based sensorsmeasuring in themicrowave (AMSU-
A/MHS, MWR, MWR+DIAL) are able to provide STI and IWV with almost the same accuracy
as under clear sky conditions, while the accuracy of STI retrievals based on infrared satellite
observations drops. Thus, under cloudy conditions, the additional ground-based observations
provide crucial information and contribute significantly to the synergistic retrieval sat+MWR,
making the cloudy sat+MWR retrieval almost as efficient as the clear sky sat+MWR retrieval.
The POD values of IRS+MWR and IASI+MWR vary between 0.7 and 0.8 for the first 5 STI and
lie by 0.64 for CAPE. In case of FT, the contribution of satellite sensors to the accuracy is negli-
gible and useful information comes mostly from MWR and DIAL.
Taking into account the high temporal and horizontal resolution of geostationary IRS and good
performance of the IRS retrieval, the next step was to analyse which sensor can better com-
plement its observations from the ground. The comparison of IRS+MWR and IRS+DIAL re-
trievals shows that the contribution of MWR, which includes both, temperature and humidity
information, is slightly larger then that of DIAL for IWV, LWP and all STI with exception of FT.
Nevertheless, the synergy of IRS with DIAL is beneficial, improving the IRS-only retrieval un-
der all weather conditions. As expected, the combination of both ground-based sensors MWR
and DIAL with IRS leads to the best results for all STI.
The results show that, while the synergy of satellite and ground-based sensors is important for
retrieval of STI, the satellite sensors do not provide additional information on the integratedwa-
ter vapor and liquid water (IWV and LWP), which are already accurately measured by MWR.

The chapter proceedswith the retrievals of temperature (T) and humidity (q) profiles from IRS,
MWR and synergistic IRS+MWR measurements. The results confirm the well-known fact that
atmospheric profiles retrieved from satellite observations are less accurate in the boundary
layer. The root-mean-square error of IRS T- and q-retrievals in the lowest layer lies by 1/2K
and 0.9/1.25 kgm−3 for clear sky and cloudy cases, respectively. TheMWR is mostly accurate in
the lowest 3 kmwith accuracies of 0.3K and 0.75 kgm−3 for T and q, respectively. From satellite
point of view the synergistic IRS+MWRprofile retrieval is beneficial in the lowest 2/12 km for T
and clear sky/cloudy conditions. The IRS humidity retrieval can be improved by adding MWR
observations in the lowest 3.5/8 km. Further, it could be shown, that surface temperature and
humidity can constrain and improve the satellite based retrievals in the lowest layers, but are
less beneficial than remote sensing observations.
The synergistic approach, i.e. training a network with the input vector consisting of both, satel-
lite and ground-based observations, is more beneficial than the merging of separately obtained
profiles of temperature and humidity. The evaluation of IRS profiling potential was amended
by the attempt to quantify the dependency of accuracy of IRS retrieval on the cloud ice and
water content.
In summary, the results supplement the outcomes of the previous study by Ebell et al., 2013,
who demonstrated the synergy benefit in terms of degrees of freedom within a physical re-
trieval. Moreover, it can be expected that constraining the observationswith a priori information
within a physical retrieval would lead to more accurate results (Cimini et al., 2015). However,
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the neural network approach is reliable and in some cases is preferable to computationally de-
manding physical retrievals. The learning algorithm (the most expensive computational part)
is performed offline only once. Further application of neural network provides real-time re-
trievals: no information on initial conditions, no forward model simulations, and no Jacobian
computations are required. If calculated with statistical methods from satellite observations
and hence independent of NWP models, the stability indices and integrated water vapor pro-
vide forecasters with additional information on location of unstable air masses and convection
potential, which may differ from forecast.
It is important to note that, as for each statistical retrieval, the results are entirely dependent
on the complexity and the range of the data set used for the training. Since the satellite mea-
surements are highly dependent on the viewing angle, the results are only valid for a specified
station (JOYCE, Jülich). To make the retrieval applicable at other geographical positions, a cor-
rection of all simulated radiances to one particular viewing angle and also consideration of
different altitudes would be necessary. Additionally, it is important to ensure that the data set
used for neural network training covers all kinds of possible atmospheric situations including
rare events.
Moreover, the results are sensitive to assumptions made concerningmeasurements error. In the
case ofMWR, the error added to simulated brightness temperatures includesmeasurement and
calibration. On the other hand, in the case of satellite instruments, only instrument error (or
theoretical error requirement for IRS) was added to the simulated measurements. In this theo-
retical study, the diffraction issues in the atmosphere are not taken into account. Further, surface
emissivity and vertical distribution of trace gases used for simulation of satellite measurements
are more variable in reality and would introduce more uncertainty into the retrieval. For satel-
lite instruments, this study shows rather the best possible results, which would most likely not
be achieved by real observations. The application to real observations of MWR-HATPRO col-
lecting measurements at the JOYCE station is possible.
Although the ground-based observations and their synergy with future satellite observations
were shown to be very beneficial for the assessment of instability, IWV and LWP, the horizontal
resolution of currently available instrument networks is not sufficient andmuch lower than that
of geostationary instruments. Further analysis of spatial representativeness of single ground-
based observation is essential and will be performed to determine the optimal density of future
network of ground-based instruments.
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Chapter 6

Study 2: Impact of a network of
ground-based MWR on the assessment
of CAPE and Lifted Index

In Study 1, observations from a single MWR were shown to have a large potential to comple-
ment satellite observations by providing thermodynamic information from the lowest atmo-
spheric layers. An individual ground-based profiling site captures the temporal changes in the
atmosphere but is not able to capture the spatial variability of atmospheric fields. Therefore, the
question arises, how can the information from a single ground-based observing sensor spread
in the horizontal direction andwhat would be the impact of a network of ground-based sensors
on the assessment of instability over the domain.
The second part of this work (Study 2) is an attempt to evaluate the impact of IRS and MWR
observations on the assessment of instability over an area. For this propose, firstly, MWR and
IRS observations were simulated for the domain in the west of Germany (Fig. 2.1b) as described
in section 3.3. The simulated radiances were used to train and test neural networks for the re-
trieval of CAPE and LI. The retrieval performance is described in section 6.1. The impact of
adding ground-based network observations to geostationary satellite observations was investi-
gated in two ways:
1) The first approach represents the linear spatial interpolation between CAPE/LI fields re-
trieved from the satellite anddistinct CAPE/LI values retrieved formanetwork of ground-based
sensors (section 6.3).
2) The second approach mimics the assimilation of satellite and ground-based observations
in the space of retrieved CAPE/LI fields. Assuming the persistence of atmospheric fields, the
CAPE/LI fields calculated from the reanalysis profileswere used as the background in an assim-
ilation step. The assimilated observations were represented by CAPE/LI fields retrieved from
satellite and ground-based measurements with +6 hours delay (section 6.4). The assimilation
step was also performed by means of linear spatial interpolation.
In both approaches, the horizontal resolution of reanalysis and of CAPE/LI fields retrieved
from IRS measurements is 4 km, and those retrieved from ground-based MWR measurements
varies according to the density of the MWR network (from 1 to 1521 MWR distributed over the
domain, Figure 6.13).
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6.1 Retrieval of CAPE and Lifted Index fields

The data set used in Study 2 is based on the reanalysis profiles from the years 2010-2011 (May-
September), and comprises the fields of CAPE/LI and the corresponding simulated satellite
(IRS) and ground-based (MWR) observations. The temporal and horizontal resolutions of the
fields are 1 h and 4 km, respectively, which results in a field with 39×39 grid points and about
7300 observations per grid point. The details on the geographic position of the considered do-
main and on the simulation of observations were described in sections 2.1 and 3.3.

6.1.1 Neural network configuration

The simulated observations of IRS, MWR, and combination IRS+MWR, along with the corre-
sponding values of CAPE and LI were used for the training of neural networks. In addition to
observations, the height over sea level in considered grid points was included as further input
parameter (s. Figure 2.1b). Training and validation of neural networks with the original data
set, which contains about 11.2×106 observations and corresponding CAPE/LI values, would be
computationally expensive. Therefore, from the whole data set a subset of 15 observations per
month and a grid point was randomly selected, resulting in a set of about 22.8×104 observa-
tions (including both clear sky and cloudy cases). This subset of observations was divided into
training (75%) and validation (25%) data sets. The probability density functions of training,
validation, and of the entire data sets are shown in figure 6.1. While the training and validation
data sets of LI show similar distributions and cover the entire range, the training set of CAPE
does not include values over 3500 Jkg−1. However, the original data set includes only 40 cases,
occurring mostly during one unstable period in July 2010 and, as it will be shown below (Fig-
ure 6.6), the neural networks applied to the time series in this period are able to retrieve values
above 3500 Jkg−1.

Figure 6.1: Probability density functions of training, validation and the entire data
sets. Note the logarithmic y-axis for CAPE.

Neural networkswere trainedusing IRS,MWR, and combining IRS+MWRobservations. Thereby,
theMWRobservation vector consists of zenithmeasurements at 14 channels and 4 channels×4 scanning
measurements. For IRS, the first 50 principal components were used in contrast to 15 included
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in the Study 1. To find the optimal network configuration for each parameter and sensor, the
training needs to be performed for varying number and size of hidden layers. Due to the large
size of the used dataset and thus the longer computation time, four network configurationswere
considered: with one or two hidden layers, each containing 10 or 20 neurons. All trained net-
works were applied to the original data sets. The performance of all networks was compared
in terms of correlation and root-mean-square errors of the retrieved parameters with respect
to reanalysis ("truth"). The comparisons show that the network with one hidden layer of 20
neurons is sufficient for the retrieval of LI. The CAPE retrieval was found to be slightly more
accurate using the network with two hidden layers with 20 neurons.
In contrast to LI, the retrieval of CAPE shows different accuracy if applied to the observations
in different months. The extension of the training data set with 10 additional observations per
grid point and month (at which the retrieval is not working well) did not result in significant
improvements.

6.1.2 Retrieval performance for clear sky and cloudy conditions

This section demonstrates the performance of the CAPE and LI retrievals. The neural networks
were applied to the entire set of simulated observations in each grid point of the domain to show
the dependency of the retrieval accuracy on the location (This corresponds to the unrealistic as-
sumption of 1521 ground-basedMWRdistributed over the field). The results are separated into
clear sky and cloudy cases (after applying the retrieval). In the following, the fields of CORR,
RMSE, POD of unstable events, and HSS are shown. It should be noted that only CORR and
HSS metrics can be used to compare clear sky and cloudy retrievals and to discuss the spatial
differences in the retrieval accuracy. Other statistical metrics, POD and RMSE, are dependent
on the number of unstable/stable cases, on the range of CAPE/LI values, and on the number
of clear sky and cloudy cases in each grid point, and can be used for comparison of IRS, MWR,
and MWR+IRS retrievals applied to the the same data set (clear sky or cloudy).

CAPE

Statistical metrics CORR, RMSE, POD and HSS (s. table 5.1) calculated for CAPE retrieval are
shown in figures 6.2-6.5. Under clear sky conditions, MWR and IRS achieve similar accuracy
with CORR value of 0.79 and RMSE value of 100 J/kg. The POD and HSS reach the values of
0.53 and 0.56 for IRS and 0.56 and 0.57 for MWR. Under cloudy conditions, MWR shows sim-
ilar performance as under clear sky conditions, whereas the CORR and HSS of IRS retrievals
degrade by about 13 and 25% respectively. Combining MWR and IRS observations in the syn-
ergistic retrieval leads to a more accurate assessment of CAPE. E.g., the RMSE decreases by
23/33% under clear sky and cloudy conditions respectively, while HSS increases by 26/59%
compared to IRS-only retrieval.
Looking at the spatial variability of the statistical scores CORR, POD, and HSS under clear sky
conditions, it can be seen that all three retrievals perform slightly better in the south-east part of
the domain. Here, the number of unstable events is larger due to the orographic lifting over the
hilly area. The POD itself could be overestimated if the retrieval predicted unstable events too
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often, which is not the case here, since the FAR pattern exhibits smaller values over the south-
east part of the domain (not shown). This results in higher HSS values (that is less dependent
on the ratio of events and non-events). The likewise larger RMSE (under both clear sky and
cloudy conditions) probably reflects in general higher CAPE values in this part of the domain.
Under cloudy conditions, all three retrievals show almost uniformly pattern of HSS and only
slightly better PODover the south part of the domain (without corresponding decrease in FAR).
Despite the improvements due to the synergistic approach, the accuracy of CAPE retrieval based
on MWR+IRS observations is still unsatisfying and varies depending on the month in which
the retrieval is applied. Figure 6.6 shows the CAPE calculated from reanalysis profiles plot-
ted against CAPE values retrieved from simulated observations in July 2010. The synergistic
retrieval leads to improvements in terms of CORR and RMSE compared to single instrument
retrievals. Particularly, very unstable eventswithCAPEup to 3500 J/kg under cloudy conditions
that can not be captured by IRS retrieval (blue dots in the bottom part of the scatterplot), are
better represented by synergistic MWR+IRS retrieval. However, the distribution of the points
around themidline remains broadwith a large number of caseswithmoderate and strong insta-
bility below 2000 J/kg not captured by MWR+IRS retrieval (even under clear sky conditions).
Therefore, the information contained in the IRS and MWR observations seems to be still insuf-
ficient to capture the entire temperature and especially the low tropospheric temperature and
humidity profiles, which are crucial for CAPE calculation.
Two options could be further investigated to improve the assessment of stability in terms of
CAPE. Firstly, adding surface temperature and humidity measurements to remote sensing ob-
servations as it has been done by Bloch et al., 2019. Secondly, it can be speculated that the
retrieval would perform better for the mixed layer CAPE (MLCAPE) instead of the most unsta-
ble CAPE (MUCAPE) used in this study. For the calculation of MLCAPE, the mean conditions
in the lowest 100 hPa layer are required. These could be better captured by both passive sensors
MWR and IRS.

Figure 6.2: Correlation between CAPE values calculated from reanalysis ("truth") and
retrieved from simulated IRS, MWR and MWR+IRS observations. Results are sepa-
rated into clear sky and cloudy cases. The value in the lower right corner corresponds

to the correlation calculated for the entire clear/cloudy sky data sets.
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Figure 6.3: Same as 6.2 but illustrating the Root Mean Square Error of CAPE.

Figure 6.4: Same as 6.2 but illustrating the Probability Of Detection of CAPE values
exceeding the threshold of 168 J/kg (unstable events).

Figure 6.5: Same as 6.2 but illustrating the Heidke Skill Score of CAPE.

The accuracy of the retrievals developed in the Study 1 (chapter 5) differs slightly from the de-
scribed results. The retrieval based on IRS observations over the entire domain shows higher
CORR (0.79 vs 0.68 under clear sky and 0.68 vs 0.57 under cloudy conditions) and HSS (0.56 vs
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Figure 6.6: Scatterplots for CAPE calculated form reanalysis and retrieved from IRS,
MWR and MWR+IRS observations for July, 2010. Blue and red dots indicate cloudy
and clear sky cases, respectively. The correlation and RMSE values for cloudy (top

row) and clear sky (bottom row) cases are shown in the upper left corner.

0.5 and 0.42 vs 0.35 under clear sky and cloudy conditions, respectively). The MWR retrieval
shows similar performance and MWR+IRS retrievals achieve only slightly higher CORR and
HSS values as in the Study 1. The most probable causes for this difference are firstly, the use of
only two years of reanalysis data in the Study 2 compared to the seven years of data in Study
1, which limits the number of included synoptic conditions, and secondly, the use of height
over sea level as additional input parameter that helped to detect the large number of unstable
events over the hilly area in the south-east part of the domain. The better performance of the
IRS retrieval could be also the result of including more principal components as the input for
training of neural networks.
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Lifted Index

Under clear sky conditions, IRS provides slightly more accurate LI values thanMWR. However,
both retrievals, IRS and MWR, achieve CORR values above 0.9, high POD of about 0.8 and HSS
of 0.69 and 0.64, respectively (Figures 6.7-6.10). Under cloudy conditions the accuracy of MWR
retrieval remains unchanged, while that of IRS retrieval degrades. The synergistic approach
leads to the CORR values by 4/21% higher than for IRS retrieval under clear sky/cloudy condi-
tions. The HSS increases by 18/64% and the RMSE is reduced by 38/56% under clear sky and
cloudy conditions, respectively. Thus, the relatively accurate clear sky single sensor retrievals
can be further improved by the synergistic approach and the degraded accuracy of IRS retrievals
under cloudy conditions can be compensated by additional MWR observations.
The spatial variability of statistical scores is less pronounced than in case of CAPE.Nevertheless,
under clear sky conditions, all three retrievals tend to provide slightly higher HSS values over
the south-east part of the domain where the unstable events happen more often. The lower
RMSE values over this domain part can be again attributed to the lower (unstable) LI values.
Figure 6.12 shows an example of LI values retrieved from IRS, MWR and MWR+IRS observa-
tions in July 2010 plotted against "true" reanalysis LI values. Clearly to see are the better ability
of MWR to capture small (unstable) LI values under cloudy conditions (blue dots) and the
improvements which can be achieved with a synergistic approach not only in the presence of
clouds, but also under clear sky conditions (red dots). The probability density function of LI re-
trieved form MWR+IRS (Fig.6.11) reproduces the reanalysis LI much better than both sensors
IRS and MWR.
Compared to the statistics from Study 1 (chapter 5), the retrieval developed for the domain is
slightly more accurate under cloudy conditions for both sensors and their combination. The
reasons for this difference were discussed in previous section.

Figure 6.7: Correlation between LI values calculated from reanalysis ("truth") and re-
trieved from simulated IRS, MWR andMWR+IRS observations. Results are separated
into clear sky and cloudy cases. The value in the lower right corner corresponds to the

correlation calculated for all grid points.

Since single instrument retrievals MWR and IRS achieve similar results under clear sky condi-
tions for both indices CAPE and LI, it can not be expected that combining the fields retrieved
from IRS and from MWR observations would lead to improved assessment of stability indices.
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Figure 6.8: Same as in 6.7 but illustrating the Root Mean Square Error of LI.

Figure 6.9: Same as in 6.7 but illustrating the Probability Of Detection of LI values
falling below the threshold of 1.9K (unstable events).

Figure 6.10: Same as in 6.7 but illustrating the Heidke Skill Score of LI.

Thus, combining of IRS andMWR retrievals would be beneficial only in the presence of clouds.
In contrast, combining of CAPE/LI fields based on IRS and on synergistic observations could
be beneficial under both clear sky and cloudy conditions.
The comparison of CAPE and LI retrieval performance (in terms of CORR and HSS) shows,
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Figure 6.11: Probability density function of LI calculated from reanalysis and retrieved
from IRS, MWR and combined MWR+IRS observations.

Figure 6.12: Scatterplots of LI calculated form reanalysis and retrieved from IRS,MWR
and MWR+IRS observations for July, 2010. Blue and red dots indicate cloudy and
clear sky cases, respectively. The correlation and RMSE values for cloudy (top row)

and clear sky (bottom row) cases are shown in the upper left corner.

that in general, LI can be better captured by both sensors and their synergy than CAPE. Due
to the strong dependency of CAPE on highly variable surface temperature and humidity, the
retrieval of surface based CAPE is more challenging and needs further investigation.
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6.2 Spatial statistical interpolation with least-squares estimation

In this section, the equation for the least-squares estimation, also called Best Linear Unbiased estima-
tor (BLUE) is introduced. This equation builds a basis for the most common data assimilation
algorithms such as Optimal Interpolation (OI), Kalman Filter, 1D-, 3D-, and 4D-Var, which dif-
fer in the approach and simplifications used to solve it. A primary goal of data assimilation is
to find an optimal "analysis" through the statistical combination of observations and some prior
knowledge about the model state, called background or first guess. Depending on the avail-
able information, climatology or forecast can be used as the background in operational data
assimilation.
In this study, the statistical interpolation approach is used:
1) to merge the fields of CAPE/LI obtained from IRS and MWR observations, and
2) to combine the background, represented by persistence (6h), with current CAPE/LI fields
observed by IRS and MWR.
Assume themodel state to be a two-dimensional field ordered by the grid point forming a single
vector of the length n = 39 ∗ 39:

xT = (x1, x2, ..., xn)T . (6.1)

Both, the backgroundxb and the analysisxa are on the samegrid and following aren-dimensional
vectors. The observation vector consists of m measurements corresponding to the number of
MWR distributed in the domain:

yT = (y1, y2, ..., ym)T . (6.2)

The difference between observation and background values (ym − H(xbm)) is called observa-
tional increment or innovation. H is an operator, which maps the model variables to observed
variables and performs a spatial interpolation from model grid to the observation locations. In
general,H can be nonlinear (e.g., radiative transfer calculations that provide satellite observed
radiances from temperature and humidity profiles). In this study, the unit of background is the
same as that of observations (J/kg2 for CAPE orK for LI), and the grid points of observations
coincide with the grid points of background. Therefore, the operator H performs a simple se-
lection of background values at grid points with available MWR observation (and no forward
model error needs to be considered). The least-squares estimator, or BLUE analysis xa is defined
by the following linear interpolation equation:

xa = xb + K(y −H(xb)). (6.3)

where K is a matrix of dimension (n ×m) that determines the relative weight of observations
and of background in the analysis. The matrix K can be determined from the minimization of
the analysis errors at each grid point.
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Defining the unknown true state as xt, the background, analysis, and observation errors are
defined as:

ea = xa − xt

eb = xb − xt

eo = y −H(xt).

(6.4)

And the analysis equation 6.3 can be rewritten in terms of errors as:

ea = eb + K(y −H(xt) +H(xt)−H(xb))

= eb + K(eo +H(xb − xb + xt)−H(xb))

= eb + K(eo −H(xb − xt))

= eb + K(eo −H(eb)).

(6.5)

where the nonlinear observation operator H , that transforms model variables into observed
variables, is linearized as:

H(xb + eb) = H(xb) +

(
∂H

∂x

)
xb

eb = H(xb) + Heb. (6.6)

The H matrix is the derivative of the forward model operatorH with respect to the model state
evaluated at the model background state xb. Thus, the linearization is performed around the
background state assuming that the truth is not too far from the background. In this studyH is
equal to H .
To solve equation 6.5 for the weight matrix K, statistical information about observation and
background errors is needed. First, observations and background are assumed to be unbiased.
Thus, the expected values (or the average over many cases) of observation and background
errors are equal to zero:

〈eo〉 = 〈eb〉 = 0. (6.7)

If the background and observations are biased and the biases are known, they should be sub-
tracted from the background and observation values. If this correction is not performed in
advance and biases are left in, the analysis will be not optimal. The covariance matrices of the
background, observations, and analysis are obtained bymultiplying a vector error e by its trans-
pose eT and averaging over many cases to obtain the expected value:

Pb = 〈(eb)(eb)T 〉 R = 〈(eo)(eo)T 〉 Pa = 〈(ea)(ea)T 〉. (6.8)

The diagonal elements of the covariance matrices correspond to the variances of the error at
each grid point 〈eieTi 〉 = σ2i .
Thus, using equation 6.5 and assuming the background and observations to be uncorrelated
(〈(eo)(eb)T 〉 = 0), the analysis error covariance matrix can be written:

Pa = 〈(eb + K(eo −H(eb)))(eb + K(eo −H(eb)))T 〉

= Pb + K(R + HPbHT )KT −KHPb −PbHTKT .
(6.9)
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Minimizing the analysis error variance, or trace of Pa, with respect to the weight K 1:

dTr(Pa)

dK
= 2K(R + HPbHT )− 2PbHT = 0, (6.10)

and solving for K gives the optimal weight matrix that minimizes the analysis error variance:

K = PbHT (HPbHT + R)−1. (6.11)

The analysis error covariance can be obtained by substituting 6.11 into 6.5 :

Pa = (I−KH)Pb. (6.12)

The sensitivity of the analysis in each observation location with respect to all observations can
be obtained from 6.3 and 6.11:

S =
∂Hxa

∂y
= KTHT. (6.13)

Matrix S is called the influence (or sensitivity) matrix since its elements indicate the influence
of the observations on the analysis. The diagonal elements of this matrix, the "self-sensitivities",
give the rate of changes in the analysis in a certain grid point with respect to variation in the ob-
servation performed in this point (Cardinali et al., 2004). The off-diagonal elements correspond
to the "cross-sensitivity" between two grid points and represent the influence of an observation
in neighbour locations. The observation influence is complementary to the background influ-
ence, so that the sum of background and observation sensitivities in each observation point
gives 1. The analysing of the observations influence matrix can help to understand the relative
impact of assimilated observations and of the background in the analysis.
In summary, the BLUE approach combines two sources of information, a background vector
and an observation vector, according to their accuracies. The weight given to the observation
innovation is optimally determined based on background and observation uncertainty to min-
imize the analysis error variance. The resulting analysis covers areas where no observations
are available, and is more accurate than background and observation data in terms of RMSE
(Kalnay, 2002).
A correct assessment of observation and background errors is crucial to the quality analysis,
since they determine to what extent the analysis will be "pulled" towards the observations or
the background. Thereby, the variances determine the correction of the background in the grid
points in which observation is available. And the background covariances (or correlations)
between different grid points specify how the observed information will be spread in model
space from observation points to the grid points without observation. While the estimation of
the error covariance is a difficult problem in "real" data assimilation, in this study, the error
covariance matrices can be computed directly from the differences between the retrieved values
of CAPE/LI and reanalysis ("truth").
The least-squares method requires the accurate specification of covariance matrices R and Pb,
which respectively contain p2/2 and n2/2 coefficients. The calculation of the K matrix includes

1Here following rules of matrix algebra were used:(AB)T = BTAT , d(Tr(AB))/dA =
BT , d(Tr(BA)T )/dK = B
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the inversion of p×pmatrix, which can be computationally expensive depending on the number
of available observations. Therefore, due to the large number of grid points and available obser-
vations, it is impossible to apply exactly the least-squares analysis in operational data assimila-
tion. The common data assimilation techniques introduce approximations and simplifications
to reduce the computational costs and to optimally merge observations with the background.
However, the dimensions of the field used in this study allow the direct use of the least-squares
method. The assumptions such as uncorrelated background and observation errors, lineariza-
tion of observation operator, unbiased observations and backgroundmust be fulfilled to ensure
the optimal analysis. This aspect will be discussed in corresponding sections 6.3 and 6.4.

6.3 Spatial interpolation between CAPE and LI fields retrieved from
satellite IRS and fromground-basedMWR-network observations

6.3.1 Modelling of errors and calculation of weight matrixK

In this experiment, CAPE/LI fields retrieved from IRS observations serve as the background
data, and CAPE/LI values obtained from a networkwith various number ofMWR (Figure 6.13)
serve as observations. Thereby, the CAPE/LI values in MWR points were calculated with syn-
ergistic retrieval MWR+IRS. This could make the assumption of uncorrelated background and
observation error not valid, since IRS observations are included in both, background and obser-
vation fields. However, the synergistic neural network retrieval utilizes IRS and MWR bright-
ness temperature vectors as one single observation vector and gives each element of this vector
a certain weight. It can be speculated that elements of IRS measurement vectors are weighted
differently in both retrievals, IRS and MWR+IRS, making their errors independent from each
other. This could be partly confirmed by the fact that correlations between errors of IRS re-
trieval in adjacent grid points lie around 0.75/0.78 for CAPE/LI (Figures 6.14c and 6.14f). On
the other hand, replacing CAPE/LI values in one grid point of the IRS retrieved field through
the MWR+IRS retrieved values results in reduction of error correlation in adjacent points up to
0.56/0.37 for CAPE and LI, respectively (not shown).
The statistical interpolation was performed twice: combining IRS retrieved fields with distinct
values (network) retrieved from MWR only and from MWR+IRS observations. It could be
shown that the second approach, namely the interpolation between IRS retrieved fields and
synergisticMWR+IRS network values, leads tomore accurate results than usingMWR-network
values. In the following, only interpolation of IRS with MWR+IRS retrievals will be demon-
strated.
The impact of a single MWR observation on the analysis in the same grid point depends on
relation between the accuracies of MWR+IRS and IRS retrievals in this grid point. The smaller
the error variance of MWR+IRS retrieval in comparison to IRS retrieval in considered points,
the higher is the weight given to the observation. The square root of the variance of IRS and
MWR+IRS retrieval errors in each point of the domain is shown in figures 6.14a-6.14d. These
values correspond to the diagonal elements of Pb and R matrices, and show the accuracy of
IRS and MWR+IRS retrievals for the entire data set consisting of clear sky and cloudy profiles.
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Figure 6.13: Configurations of the network of ground-based MWR.

(Thereby, the R matrix was calculated for a MWR in each point of the domain that results in a
1521×1521 matrix. For a network of e.g. three MWR, only three diagonal elements, variances,
and three corresponding non-diagonal elements, covariances, of this matrix are used).
Since observations in each point were performed with the same instruments, the observation
error covariance matrix has non-zero off-diagonal components.To make the covariance values
in different grid points comparable, the R matrix was transformed into a correlation matrix.
Each row of this matrix consists of correlations between one grid point (diagonal) and the rest
1520 points of the field. Taking each row of the R matrix, the decrease of correlation with
increasing distance from the considered grid point can be calculated. The averaged decrease
of the observation error correlation with increasing distance between considered grid points is
demonstrated in figures 6.14e and 6.14f for CAPE and LI, respectively (red line, error correlation
matrix of MWR+IRS retrieval). However, even for a 25 MWR-network the distance between
two instruments would be around 9 grid points (∼ 36 km) with a corresponding correlation
of only 0.35/0.48 for CAPE/LI. Consequently, the mutual influence of two distantly separated
observations within the statistical interpolation is weak.
The radius of influence of each MWR observation on the analysis in surrounding grid points
is determined by the error covariance matrix of the IRS retrieval (background). The averaged
dependency of the background error correlation on the distance to the observation point is
shown in figure 6.14e and 6.14f for CAPE and LI, respectively (blue line, error correlationmatrix
of IRS retrieval).
The covariance matrices of IRS (Pb) and MWR+IRS (R) retrievals can be combined within
equation 6.11 to calculate the weight matrix K. The size of the K matrix depends on the num-
ber of MWR (1521×number of MWR). Assuming only one MWR placed in the field, the cor-
responding K matrix (1521×1) represents the impact of this single observation on the analysis
in all points. Varying the location of this single MWR in the domain, the average of this impact
was calculated in dependency on the distance from the observation point. The averaged impact
of a single MWR is shown in figures 6.14g and6.14h. Depending on the position of MWR in the
domain the weight given to the observation innovation in the observation point varies around
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0.66/0.82 for CAPE/LI. This value describes the sensitivity of the analysis to the observation
in considered grid point and gives the information content (in degrees of freedom for signal)
of this single observation. Thus, a single MWR observation can be expected to have stronger
impact on the analysis in the observation location for LI than for CAPE.
The impact (weight) of this observation innovation on the analysis in surrounding grid points
decreases with the distance. In the distance of, for example, 10 grid points (40 km) from the
observation location, the impact of a singleMWRobservation on CAPE analysis (K=0.3) would
be weaker than on LI analysis (K=0.6). Moreover,for LI, the standard deviation of the weights
is smaller than for CAPE, indicating that the choice of the location of MWR is less important for
LI than for CAPE.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.14: The square root of the error variance of IRS and MWR+IRS retrievals in
each grid point of the domain for CAPE (left column, A,C) andLI (right column, B, D).
E and F: dependence of the error correlation between two grid points on the distance
for IRS (background) and MWR+IRS (observations) retrieved fields of CAPE and LI.
Shown is the averaged value of correlation coefficient with standard deviation bars. G
andH: dependence of theweight given to the observation innovation on the distance to
the observation point assuming only one MWR located in the domain. The resolution

of the fields is 4 km.
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6.3.2 Results

The time series of analysis were calculated applying equation 6.3 to the time series of CAPE/LI
fields retrieved from IRS measurements and CAPE/LI values from MWR-network. The accu-
racy of the analysis was calculated relative to the "truth" represented by reanalysis. In the fol-
lowing, statistics for CAPE/LI are shown for clear sky and cloudy cases separately.

Impact of additional ground-based observations on the analysis of CAPE

Figures 6.15 and 6.16 demonstrate the impact of a network consisting of different numbers of
MWR (1, 5, and 25) on the analysis of CAPE in terms of RMSE and HSS. The RMSE and HSS
improve steadily with the growing number of additional MWR observation sites. For a network
of 25 MWR the relative improvement in terms of RMSE compared to IRS retrieved fields lies
by 11/18% for clear sky and cloudy conditions, respectively. Whereas HSS values increase by
maximum 16/44%. Thus, more impact can be seen under cloudy conditions and localized in the
observation points and around them. The POD increases from 0.52/0.41 to 0.65/0.61 by 24/49%

for clear sky and cloudy conditions, respectively (not shown).
Figure 6.17 shows the RMSE and HSS values calculated for the entire domain (corresponding
to the values in the right bottom corner of the images in figures 6.15 and 6.16) for the network
with up to 200 MWR for clear sky and cloudy conditions separately (red lines). The RMSE
decreases steadily with the growing number of MWR, while HSS, which gives the efficiency of
event /non-event forecast, improves strongly for the first one to 25 MWR (especially for cloudy
conditions) and reaches saturation when more sensors are included. Additionally, the statistics
for the analysis based on interpolation of IRS fields with values calculated with MWR-only re-
trieval are included to emphasise the need for the synergistic approach (green lines). E.g under
cloud-free conditions, the added value due to additional ground-based observations is negligi-
ble if the MWR-only retrieval is applied (solid green line). For cloudy cases, the improvements
are also stronger for the synergistic approach (red dashed line compared to the green dashed
line).
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Figure 6.15: Left column: RMSE of CAPE derived from IRS observations for clear sky
and cloudy conditions. From left to right: the RMSE of the analysis based on inter-
polation between IRS retrieved CAPE fields and CAPE values from a MWR-network
with increasing number of instruments. The number in the right lower corner gives

the RMSE value for the entire data set (clear sky or cloudy).

Figure 6.16: The same as in fig.6.15 but illustrating the HSS of CAPE.
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(a) (b)

Figure 6.17: Dependency of RMSE (left) and HSS (right) of the CAPE analysis (en-
tire data set separated into clear sky and cloudy cases) on the number of MWR dis-
tributed in the field. The blue dots indicate the statistics for the IRS retrievedCAPEval-
ues. Green and red lines correspond to the analysis based on IRS retrieved fields and
MWR-network values of CAPE obtained using MWR-only and synergistic MWR+IRS

retrieval, respectively.
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Impact of additional ground-based observations on the analysis of LI

The RMSE and HSS of the analysis in dependency on the number of MWR and cloud presence
are shown in figures 6.18 and 6.19. As for the CAPE, the additional MWR-network observations
lead to improvements of statistics, which are more pronounced under cloudy conditions and
in the area surrounding the observation point. The RMSE decreases for a network of 25 instru-
ments by 20/31%, while the HSS values increase by 10/36% for clear sky and cloudy conditions,
respectively. The POD for a network of 25 MWR lies by 0.8 for both clear sky and cloudy con-
ditions and thus, the improvements in the POD can be only achieved in the presence of clouds
(s. fig. 6.9).
The RMSE and HSS for the entire analysis data set in dependency on the density of the network
(Figure 6.20) show stronger improvements under cloudy conditions than under clear skies for
the number ofMWR from 1 to about 25. No impact can be achieved under clear sky conditions if
MWR-only instead of synergisticMWR+IRS retrieval is applied in pointswith available ground-
based measurements. Under clear sky conditions, the synergistic approach has also significant
stronger impact (red dashed line compared to green dash line).

Figure 6.18: Left column: RMSE of LI derived from IRS observations for clear sky and
cloudy conditions. From left to right: the RMSE of the analysis based on interpolation
between IRS retrieved LI fields and LI values from a MWR-network with increasing
number of instruments. The number in the right lower corner gives the RMSE value

for the entire data set (clear sky or cloudy).

For the network of 25 MWR the absolute values of HSS (0.75/0.65) for LI are noticeably higher
than those for CAPE (0.65/0.6), which ismostly due to the higher accuracy of the retrievals itself
(both, IRS and MWR+IRS). The same is valid for the POD values (not shown) that achieve
0.8 for LI for both conditions (in contrast to a POD of about 0.65/0.61 for CAPE under clear
sky/cloudy conditions).
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Figure 6.19: The same as in figure 6.18 but illustrating the HSS of LI.

(a) (b)

Figure 6.20: Dependency of RMSE (left) andHSS (right) of the LI analysis (entire data
set separated into clear sky and cloudy cases) on the number of MWR distributed in
the field. The blue dots indicate the statistics for the IRS retrieved LI values. Green and
red lines correspond to the analysis based on IRS retrieved fields and MWR-network
values of LI obtained using MWR-only and synergistic MWR+IRS retrieval, respec-

tively.
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Example application of the statistical interpolation method to time series of CAPE/LI

CAPE

The time series in figure 6.21 show the development of CAPE in the period from 17 to 22 UTC
on 24 August 2011. During the entire period the domain is partially covered by liquid clouds
and almost fully covered by thin ice clouds (not shown). The time series starts with a strong
instability with CAPE values up to 1500J/kg in the eastern part of the domain that slightly
extends to the west and weakens during the night. The IRS (middle column) can capture only
a part of the unstable region but underestimates the CAPE even in the absence of liquid clouds
(e.g., south-east part of the domain in figures 6.21c-6.21f).
One MWR placed in the center of the domain does not bring significant improvements. More-
over, in case a single MWR is located in the area with a strong gradient of CAPE as it is the
case at 18 UTC (second row, fig. 6.21b), the merging of IRS fields with a single MWR observa-
tion leads to the increase of CAPE around the considered grid point and consequently to the
overestimation of CAPE to the west of MWR.
The interpolation of IRS retrieved CAPE fields with observations of 25 MWR leads to signifi-
cantly better spatial representation of CAPE at 17, 18, and 19UTC, although the absolute values
remain underestimated. At 20-22 UTC the performance of the IRS retrieval is very poor and
can be only slightly improved by merging with 25 MWR observations. In general, the analysis
is very sensitive to the accuracy of both IRS and MWR+IRS retrievals. In some grid points, the
MWR+IRS retrieval is less accurate than IRS retrieval. For example, the overestimation of CAPE
by MWR+IRS retrieval in the north-east corner of the domain at 17 and 18 UTC results in too
high CAPE values in the IRS+25MWR analysis, although the IRS alone provides correct results
in this part of the field. It should be noted, that shown time series example represents one of the
best cases of statistical interpolation between IRS and MWR retrieved CAPE fields. Therefore,
to obtain a more accurate analysis, both retrievals need to be improved by, e.g., including the
surface temperature and humidity as input for neural network algorithm.



6.3. Statistical interpolation between fields retrieved from IRS and from MWR-network observations83

(a) 17 UTC

(b) 18 UTC

(c) 19 UTC

(d) 20 UTC

(e) 21 UTC

(f) 22 UTC

Figure 6.21: Timeseries of CAPE on 24. August 2011 from 17 to 22 UTC. First column:
liquid water path in kgm−2. Second column: CAPE field calculated from reanalysis
profiles ("Truth"). Third column: CAPE field retrieved from IRS observations. Fourth
and fifth column: CAPE fields obtained by statistical interpolation of IRS retrieved
CAPE field with CAPE values from 1 and 25 MWR, respectively (location of MWR as

shown in fig. 6.13).
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LI

Figure 6.22 shows timeseries of LI on 24 August 2011 between 8 and 16 UTC with 2h times
interval. It can be seen, that in the grid points without liquid clouds, the IRS retrieval is mostly
capable to capture stable (green and yellow) and unstable (blue, below the threshold of 1.9K)
values of LI. In the cloudy grid points, however, the impact of clouds is very strong and leads to
an overestimation of LI values (yellow areas in figs. 6.22a-6.22b and green areas in figs. 6.22d-
6.22e). Here the retrieval seems to be very sensitive to cloud top temperature. The impact of a
single MWR placed in the center of the domain is different for different time points. At 8 and 10
UTC (figs. 6.22a and6.22b)no impact can be seen because of the small difference between IRS
and MWR+IRS retrieval in this grid point. At 12 UTC (6.22c), the IRS underestimates LI value
in the center of the domain. Consequently, the observation innovation is large and positive,
and "pulls" the analysis to higher values. As a result, the LI is overestimated and lies above the
threshold (1.9K) in the northern part of the domain. To avoid this effect, the radius of influence
of a single MWR could be limited by the construction of a background error covariance matrix
with smaller covariances for large distances ("localization").
At 14 and 16 UTC (figs. 6.22d and6.22e) clouds strongly influence the IRS retrieval and addi-
tional MWR observations lead to a significantly better representation of LI field (considering
event/nonevent scores). However, it can be seen that the interpolation with a single MWR ob-
servation leads to the simple reduction of LI in the entire domain and an underestimation of LI
in the west. A possible solution of this problem could be firstly, the limitation of radius of influ-
ence of a single MWR as mentioned above. And secondly, some cloud clearing method could
be applied to LI field retrieved from IRS observations. For example, the LI values in the grid
points with LWP exceeding an empirical threshold, which needs to be determined according to
the retrieval accuracy, could be replaced by the LI values in nearest clear sky grid point.
The observations of 25 MWR distributed in the domain lead to improvements in representation
of LI in the cloudy grid points (figs. 6.22d and6.22e). However, the pattern of LI analysis is still
strongly influenced by the background (IRS retrieved field). Thus, using the IRS retrieved LI
values in the grid points with liquid clouds without correction is not reasonable, since clouds
introduce too high LI (for current situation) values and gradients in the LI field. Assigning
higher variances in the background covariancematrix to the IRS observations affected by clouds
may mitigate this effect.
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(a) 8 UTC

(b) 10 UTC

(c) 12 UTC

(d) 14 UTC

(e) 16 UTC

Figure 6.22: Timeseries of LI on 24. August 2011 from 8 to 16 UTC with 2h temporal
resolution. First column: liquid water path in kgm−2. Second column: LI field cal-
culated from reanalysis profiles ("Truth"). Third column: LI field retrieved from IRS
observations. Fourth and fifth column: LI fields obtained by statistical interpolation
of IRS retrieved LI field with LI values from 1 and 25 MWR, respectively (location of

MWR as shown in fig. 6.13).
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6.4 Assumption of persistence and improvements due to satellite and
ground-based observations

The aimof this section is to show the impact of ground-based observations (in space ofCAPE/LI)
in a simplified assimilation step. Data assimilation combines observations with a priori infor-
mation (background) to obtain a consistent analysis, which should bemore accurate than either
individual source of information. Usually, in operational data assimilation the background in-
formation is represented by climatology or by the forecast started from the previous analysis. In
this experiment, the atmospheric state is assumed to persist for 6 hours and CAPE/LI fields cal-
culated for this state are used as the background. The observation vector is represented by three
types of fields: CAPE/LI fields retrieved from satellite IRS observations, the CAPE/LI values
observed by a network of MWR (figure 6.13), and the CAPE/LI fields of combined IRS+MWR
observations. The last are composed of the IRS retrieved fields, in which some of the values are
replaced by CAPE/LI values obtained from MWR+IRS retrieval (IRS+nMWR). Spacial statis-
tical interpolation is performed between the background and observations fields of CAPE/LI
using equation 6.3.
The observation and the background error covariance matrices are key components in the data
assimilation process. Both together determine the weight of an observation in the assimilation
process. Here, two statistical interpolation experiments were performed using the same ob-
servations and background, but one experiment used a diagonal observation error covariance
matrix R and one used a full (correlated) matrix R. Taking the diagonal observation error co-
variancematrix, which is inexpensive to invert, "pulls" the analysis too close to the observations.
This effect could bemitigated by inflating the observation error variances as it is commonly done
in assimilation of satellite radiances (Weston et al., 2014) (where it is difficult to assess the error
correlations). However, in this study the error covariances can be easily calculated using the
"true" CAPE/LI values calculated from reanalysis. Accounting for correlations in the observa-
tion errors results in the down-weighting of each individual observation and gives more weight
to the background. This effect is largest for IRS observations that have higher horizontal reso-
lution but can also be seen for the networks of MWR larger than 25. For both parameters CAPE
and LI, the statistics of the analysis improve if full error covariance matrix is used. Therefore in
the following only the results of the statistical interpolation using full observation covariance
matrices will be shown.

6.4.1 Modelling of errors and calculation of error covariance matrices

The background error covariancematrix is represented by the autocovariancematrix ofCAPE/LI
fields calculated from reanalysis with the lag time of 6 hours. The error covariance matrices of
MWR and IRS retrievals remain the same as in the previous experiment (section 6.3.1). The er-
ror covariance matrix for the combined IRS+nMWR fields is calculated for the varying density
of the MWR networks (from 1 to 1521 as shown in fig. 6.13).
The square root of the variance of persistence fields, IRS, MWR and MWR+IRS retrieval errors
are shown in figures 6.25 and 6.28. These values correspond to the diagonal elements of Pb
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and R matrices and show the accuracy of the persistence and of three retrievals IRS, MWR and
MWR+IRS.
The corresponding averaged decrease of the error correlation with the distance from observa-
tion location for all considered matrices is shown in figures 6.23a and 6.23b. The higher corre-
lations in covariance matrices, background (persistence) and observations (IRS, MWR), of LI
indicate that a single observation performed at a certain grid point will influence the analysis at
larger distance from the observation location than in case of CAPE. This is the consequence of
the lower temporal (within 6h) and spacial variability of LI values, since LI is less dependent on
variable surface temperature and humidity. However, for spatially dense IRS observations, the
analysis in each grid point is additionally influenced by the observations in surrounding grid
points ("cross-sensitivity"). Therefore, the overall impact of IRS observations on the analysis
is determined by the ratio of the background error covariance matrix and the error covariance
matrix of IRS retrievals.

(a) CAPE (b) LI

Figure 6.23: Dependence of the error correlation between two grid points on the dis-
tance for persistence fields (background) and for IRS, MWR and MWR+IRS (obser-
vations) retrieved fields of CAPE (A) and LI (B). Shown is the averaged value of cor-
relation coefficient with standard deviation bars. The grid point size of the fields is

4 km.

The impact of a single MWR in the observation point depends on the ratio of the background
error and the MWR retrieval error in the considered point. The impact of a single MWR ob-
servation on the analysis in the adjacent grid points is determined by the covariances in the
background. With increasing density of the MWR network, the error covariances of the MWR
retrieval gain more influence, but for a network of e.g., 25 MWR with the distance of about
36 km, the influence of each MWR observation on the analysis in other observation locations
remains negligible (with correlation coefficient of about 0.5/0.6 for CAPE/LI).The influence
matrices (eq. 6.13) calculated for the network of 25 MWR are shown in the figures 6.24a and
6.24b. The diagonal elements correspond to the influence ("self-influence") of a single MWR
observation on the analysis in the observation location, while the off-diagonal elements give the
impact of a certain observation on the analysis in other observation points ("cross-influence").
The off-diagonal elements of the influence matrices remain relatively small for the network of
25 MWR for both CAPE and LI. The analysis in the grid points between two MWR locations is
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determined by both the error in the background and the error covariances of MWR observa-
tions. Since the background errors of LI show higher correlations than the errors of CAPE, the
impact of MWR observations on CAPE analysis will be more localized around the observation
location.

(a) (b)

(c) (d)

Figure 6.24: Influence matrices for a network of 25MWR and for the combined
IRS+1MWR fields of CAPE (left) and LI (right). (Note that only a part of the influ-
ence matrix IRS+1MWR is shown for the grid points 700 to 800. The MWR is placed

in the grid point 761 marked by black circle)

The influence matrix calculated for combined fields (IRS+1MWR) of CAPE/LI relative to the
persistence can be seen in figures 6.24c and 6.24d (in this case the influence matrix S in equiv-
alent to the weight matrix K since the observations are available in each point of the domain).
Shown are only parts of the influencematrices for grid points from 700 to 800. TheMWRplaced
in the center of the domain (grid point 761) receives a higher weight not only in the observa-
tion location but has significant influence on the analysis in the other grid points of the domain
through the off-diagonal elements of the influence matrix. The negative off-diagonal values
indicate that even when the sensitivity to the observation in a certain grid point is high, the
observations in the neighbour grid points with negative "cross-sensitivities" would reduce the
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impact of considered observation (each row of the weight matrix is multiplied with a vector
of innovations and the resulting value is added to the background in considered grid point).
Therefore, if diagonal observation error covariance matrix is used their variances should be
inflated to prevent the overestimation of observation impact.
Because of the lag time of 6 hours, and consequently the large error variance of the background,
it can be expected that assimilation of IRS and alsoMWR observations would lead to significant
improvements in the representation of CAPE/LI. Thus, the focus of this experiment is rather to
show the impact of ground-basedmeasurements added to satellite observations and the depen-
dency of this impact on the density of MWR network.

6.4.2 Results of interpolationbetween thebackgroundCAPE/LI fields (persistence)
and the CAPE/LI fields observed by IRS and a network of MWR

In this section the statistical scores of the analysis fields derived with statistical interpolation
between the background CAPE/LI fields, represented by persistence (-6h) and CAPE/LI fields
retrieved from observations are shown. For the sake of clarity, the statistics in this section are
calculated for the entire data set, without separation into clear sky and cloudy cases.

CAPE

Figures 6.25 and 6.26 show the RMSE andHSS calculated for CAPE. The image on the left shows
the field of RMSE/HSS calculated assuming the persistence of CAPE fields (6h). The second
column demonstrates the RMSE of three retrievals applied in each point of the domain (as-
suming MWR in each grid point in case of MWR and MWR+IRS retrievals). These four fields
correspond to the square root of the error variance in each grid point and thus show the diag-
onal values of the background and observation error matrices. To the right of the colorbar, the
statistics for analysis derived by assimilation of IRS retrieved CAPE (top), of CAPE retrieved
from observations of 1-25 MWR (middle), and of the combined CAPE fields IRS+nMWR (bot-
tom) are shown.
The high error and lowHSS of the persistence aremainly caused by the long lag time of 6 hours.
As it could be expected, the assimilation of IRS observations leads to a significant decrease of
RMSE. On the other side, blending the IRS retrieved fields with background leads to a more
accurate analysis of CAPE with RMSE decreasing by 38% and HSS increasing by 36% relative
to IRS retrieval.
A singleMWRhas the largest impact in the observation point and around it, decreasingwith the
distance (middle row to the right of the colorbar). If the observations of 25 MWR are merged
with the prior information, the resulting CAPE analysis is slightlymore accurate than the CAPE
fields retrieved from IRS (RMSE of 123 J/kg for Pers+25MWR vs. 132 J/kg for IRS retrieval).
Since the MWR retrieval is less affected by clouds (s. figs. 6.2-6.5), it can be expected that under
cloudy conditions, a network of 25 MWR would compensate the missing satellite observations
only if combined with prior information. The impact of MWR observation is larger close the
observations locations.
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The assimilation of combined IRS+nMWRfields (bottom row) results inmore accurate analysis
compared to assimilation of IRS observations. A local increase in HS, for example can be seen
even if only one MWR is placed in the center of the domain. Assimilation of IRS+25MWR
leads to an RMSE decrease by 16% and HSS increase by 14% relative to the assimilation of IRS
observations. The corresponding POD values increase from 0.66 for pers+IRS analysis to 0.77
for the pers+IRS+25MWR (not shown).
Figure 6.27 shows the RMSE and HSS values calculated for the entire domain (corresponding
to the values in the right bottom corner of the images in figures 6.25 and 6.26) for the network
with up to 200 MWR. The assimilation of IRS observations leads to the decrease/increase in the
RMSE and HSS, respectively (compare the dark-blue dot of persistence and light-blue dot of
IRS analysis). If the observations of MWR network (green line) are assimilated the statistics
improve strongly for the first one to 25 MWR. However, even for a network of 200 MWR the
analysis is less accurate than the analysis based on assimilation of IRS measurements.
If the combined IRS+nMWR(usingMWR+IRS retrieval inMWR locations, red solid line) fields
are assimilated, the modest impact of additional MWR can be seen in the slowly decreasing
RMSE and increasing HSS. The most improvements are achieved by the first one to about 25
sensors.

Figure 6.25: RMSE of CAPE fields (entire data set including both clear sky and cloudy
cases). To the left of the colorbar: RMSE fields of persistence and of three retrievals
IRS, MWR and MWR+IRS (applied in each grid point of the domain). To the right of
the colorbar: RMSE of the analysis fields of CAPE derived by interpolation between
persistence and observations. The observations are represented by CAPE retrieved
from IRS (top), network of 1-25MWR (middle) and combined IRS+nMWRmeasure-

ments (bottom).
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Figure 6.26: The same as in fig. 6.26 but illustrating the HSS of CAPE

(a) (b)

Figure 6.27: Dependency of RMSE (left) and HSS (right) of the CAPE analysis on
the number of MWR distributed in the field. The dark-blue dot gives the statistics
for the background CAPE values.The light-blue dot corresponds to the assimilation of
IRS observations. Green line shows the dependency on the number of MWR if only
MWR observations are assimilated. Red lines correspond to the analysis based on

assimilation of IRS+nMWR fields using synergistic MWR+IRS retrieval.
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LI

Figures 6.28 and 6.29 show theRMSEandHSS calculated for LI. Similar to theCAPE, theRMSE/HSS
of the persistence is the largest/smallest because of the long time lag of 6h.
The accuracy of the persistence can be improved by assimilation of IRS observations, and the
resulting analysis is more accurate than the IRS retrieval itself. The RMSE of the analysis is
reduced by 29% and the HSS increased by 21% compared to the IRS retrieval.
In contrast to the results for CAPE, if the observations of a singleMWRplaced in the center of the
domain are assimilated, the resulting analysis is slightly more accurate than the IRS retrieval.
And assimilation of observations of a network of 25 MWR is as beneficial as the assimilation of
IRSmeasurements (despite the smaller number of observations). The reasons for this difference
to CAPE are probably the lower variability of LI within the domain and the higher correlations
in the background errors that spread the information from a MWR location to the neighbour
grid points more effectively. As it can be seen in figure 6.30, addingmore ground-based sensors
does not provide further improvements and both curves, HSS and RMSE, reach saturation.
When merging the persistence with combined IRS+nMWR fields, the impact of a single MWR
is more pronounced than in case of CAPE. The HSS increases from 0.66 for pers+IRS analysis
to 0.75 for pers+IRS+nMWR analysis (in contrast to the corresponding HSS of 0.64 and 0.67
for CAPE). Assimilation of IRS+25MWR leads to the RMSE by 36% lower and HSS by 22%

higher relative to the assimilation of IRS observations. The corresponding POD values increase
only slightly from 0.85 for pers+IRS to 0.87 for pers+IRS+25MWR (not shown). Therefore,
the increase in the HSS is caused mostly by more accurate prediction of non-events (improved
FAR).

Example of applying the statistical interpolation to the timeseries of LI

An example of blending the persistence field of LI with observations at two time points at 14
and at 16 UTC on 24 August 2011 is shown in the figure 6.31. Since the IRS observations in
this particular case are strongly influenced by clouds (LI fields observed by IRS are shown in
fig. 6.22d-6.22e), the analysis resulting from the assimilation of IRS retrieved LI fields shows
a pattern similar to the IRS observed LI field. On the other hand, the IRS observed LI field at
16UTC could be slightly improved by smoothing effect of the assimilation. This examples reveal
again the necessity for either cloud clearing of IRS retrieved fields before applying interpolation
or assigning higher variances to the cloud affected observations.
Assimilation of a single MWR observation improves the event/non-event forecast but results
in a reduction of LI over the entire domain, leading to the underestimation of LI values in the
south-east part of the domain at both time points.
With 25 MWR distributed over the domain, the unstable LI values can be captured over the
entire domain but the pattern of the LI field is still very close to the persistence. For example
the low LI values in the northern part of the domain remain overestimated. Nevertheless, the
unstable event would be forecast correctly in this particular case.
If combined LI fields are assimilated (IRS+nMWR), a single MWR in the center of the domain
is sufficient to improve the LI field, even though the location of MWR in this particular cases
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Figure 6.28: RMSE of LI fields (entire data set including both clear sky and cloudy
cases). To the left of the colorbar: RMSE fields of persistence and of three retrievals
IRS, MWR and MWR+IRS (applied in each grid point of the domain). To the right
of the colorbar: RMSE of the analysis fields of LI derived by interpolation between
persistence and observations. The observations are represented by LI retrieved from
IRS (top), network of 1-25MWR (middle) and combined IRS+nMWRmeasurements

(bottom).

Figure 6.29: The same as in fig. 6.28 but illustrating the HSS of LI

seems to be beneficial. An observation in the south east part of the domain would not pro-
vide large innovation relative to the persistence and consequently the improvements would be
less pronounced. The LI values from a network of 25 MWR assimilated together with IRS re-
trieved field produce the analysis fields similar to the analysis based on assimilation of 25MWR
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(a) (b)

Figure 6.30: Dependency of RMSE (left) and HSS (right) of the CAPE analysis on
the number of MWR distributed in the field. The dark-blue dot gives the statistics
for the background CAPE values.The light-blue dot corresponds to the assimilation of
IRS observations. Green line shows the dependency on the number of MWR if only
MWR observations are assimilated. Red lines correspond to the analysis based on

assimilation of IRS+nMWR fields using synergistic MWR+IRS retrieval.

(without IRS). This shows that a ground-based observations can replace the IRS observations
in cloudy cases.
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(a) 14 UTC

(b) 16 UTC

Figure 6.31: Example of assimilation of MWR and IRS observations for LI on 24. Au-
gust 2011 at 14 (A) and 16 (B) UTC with 2h temporal resolution. First column: LI
field calculated from reanalysis profiles ("Truth") and liquid water path in kgm−2.
Second column: field of LI. Third column: LI field retrieved from IRS observations.
Fourth and fifth column: LI fields obtained by statistical interpolation of IRS retrieved
LI field with LI values from 1 and 25 MWR, respectively (location of MWR as shown

in fig. 6.13).
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6.5 Study 2: Summary and conclusions

The Study 2 represents an attempt to evaluate the impact of ground-based and satellite obser-
vations on the assessment of atmospheric stability over an area in the west of Germany.
Firstly, the neural network retrievals of LI andCAPEwere extended to allow for their application
to the observations at different locations. The single instrument retrievals (MWR or IRS) for
both stability indices, CAPE and LI, show similar accuracy under clear sky conditions. In the
presence of clouds, the accuracy of IRS observations decrease, while the MWR provides almost
the same statistics as under clear sky conditions.
In case of CAPE, the POD and HSS of both sensors remain low with values around 0.55 under
clear sky conditions (and lower in the presence of clouds). Therefore, for the assessment of
CAPE, the synergy of both instruments is essential, leading to the POD and HSS around 0.7 for
both clear sky and cloudy cases.
In contrast to CAPE, the LI retrievals from single sensor observations are more accurate with
POD of around 0.8 and HSS around 0.65 under clear sky conditions. The synergy results in a
POD of 0.86 (under both clear sky and cloudy) and is especially beneficial in the presence of
clouds, when the accuracy of IRS retrieval degrades.
The impact of adding ground-basedMWRobservations to the geostationary IRSmeasurements
was investigated in twoways. Firstly, using statistical interpolation, theCAPE/LI fields obtained
from IRS observationsweremergedwith the CAPE/LI values retrieved from a network ofMWR
with varying number of sensors. Secondly, CAPE/LI fields retrieved from IRS, MWR, and com-
bined MWR+IRS observations were merged with prior information in a simple assimilation
step. Both experiments were performed utilizing the method of linear statistical interpolation.
The required background- and observation error covariance matrices were calculated by com-
parison of retrieved CAPE/LI fields and "true" CAPE/LI fields calculated from reanalysis.
Because of the similar accuracy of IRS and MWR retrievals, the statistical interpolation of IRS
retrieved CAPE/LI fields with CAPE/LI values from a network of MWR results in only minor
improvements of the CAPE/LI field under cloudy conditions. Therefore, to show themaximum
possible impact by combining ground-based and satellite sensors, the synergistic retrieval was
applied in the points with available MWR observations.
The analysis based on statistical interpolation between CAPE/LI fields from IRS and CAPE/LI
values from a network of MWR is dependent on the accuracy of the background (IRS retrieved
fields) and of the observations (MWR+IRS retrieval). This is a limiting factor for the CAPE
analysis, since the accuracy of IRS retrieval of CAPE is low even under clear sky conditions.
Combining of IRS retrieved fields with MWR observed values is beneficial even if only one
ground-based sensor is placed in the center of the domain. If measurements of 25 MWR were
included, the POD value of CAPE for the entire domain increases from 0.53/0.41 for IRS to
0.65/0.62 under clear/cloudy conditions, respectively. As expected, the improvements are stronger
pronounced in the presence of clouds and around the observation locations. For LI, the POD
value for the entire domain grows from0.8/0.75 for IRS retrievedLI field to 0.8/0.8 for IRS+25MWR.
It can be seen that under clear sky conditions, the added value of a MWR-network is small in
terms of POD. However, at the same time, the false alarm ratio decreases from 0.3 (IRS retrieved
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LI field) to 0.2 (IRS+25MWR) under clear sky conditions. Thereby, for CAPE, the improve-
ments are more localized around the observation point and the selection of the location for the
ground-based observations seems to be more important because of the different performance
of the IRS and MWR+IRS retrieval in different parts of the domain. With growing number of
MWR in the network, an increase in POD and HSS and a decrease in the RMSE are noticeable
only for the first MWR placed in the domain, and reach saturation for about 25 MWR.

Combining of prior information, in form of the persistence fields of CAPE/LI, with current ob-
servations was performed for different sets of observations. Assimilated were firstly the IRS
observations, secondly the observations of a network of MWR, and thirdly the fields combined
from IRS and 1 to 1521 MWR observations. Because of the long time lag of 6h, it was expected
that updating the persistence fields with IRS or MWR observations would result in more accu-
rate assessment of CAPE/LI. However, if considering the persistence fields as complementary
information, one can see that merging the persistence fields with observations is very benefi-
cial for both CAPE and LI. The pers+IRS analysis (with POD/HSS of 0.66/0.64 for CAPE and
HSS/POD of 0.85/0.66 for LI) is more accurate than IRS retrieval (with POD/HSS 0.47/0.47
for CAPE and POD/HSS of 0.77/0.55 for LI). The same is valid for the analysis based on the
combined IRS+nMWR fields: the pers+IRS+25MWR analysis (with POD/HSS of 0.77/0.73 for
CAPEandPOD/HSSof 0.87/0.81 for LI) ismore accurate than the analysis based on IRS+25MWR
observations only (with POD/HSS of 0.63/0.62 for CAPE and POD/HSS of 0.8/0.69 for LI)
Focusing on the impact of ground-based observations, it can be seen that that assimilation
of a single MWR observation (pers+1MWR) or the MWR observation inserted in IRS field
(pers+IRS+1MWR) leads to noticeable improvements in the location ofMWR compared to per-
sistence fields (pers) or to assimilation of IRS fields (pers+IRS). Similar to the first approach,
the benefit of increasing size of MWR network can be seen up to about 25 sensors distributed
in the domain. The results for the LI are especially encouraging, showing that assimilation of
observations of a network of 25 MWR (pers+25MWR) is equivalent to the assimilation of high
spatially resolved IRS observations (pers+IRS) with POD values of 0.85. In case of fully cov-
ered sky and not available IRS observations, a network of 25 MWR would provide sufficient
information to complement the persistence field.
The analysis of the time series of CAPE and LI analysis fields reveals the weak points of both
methods. Themain problem for both approaches applied toCAPEfields pose the lowaccuracies
of the CAPE retrievals itself. Further research is needed to improve the retrievals by inclusion
of the surface temperature and humidity as additional input parameter. Observations from a
collocated DIAL could also provide valuable humidity information.
In case of LI, inclusion of surface measurements would be also beneficial. However, more atten-
tion should be given to the observation error covariance matrix used in statistical interpolation.
The cloud affected IRS observations could be assigned larger variances (in the first approach) or
excluded from the analysis givingmoreweight to themore accurate ground-based observations
(in the second approach).
The actual background errors in the atmosphere depend on the currentweather situation. Thus,
ideally the background error covariance matrix should be flow-dependent for both CAPE and
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LI. Thereby, depending on the weather situation, more weight could be given to the observa-
tions or to the background. In conjunction with MWR and cloud cleared IRS observations, this
approach could result in more accurate assessment of stability fields.
The application of both methods to synoptic situations with strong horizontal CAPE/LI gra-
dients leads sometimes to smoothing of the gradient. This could be mitigated by limiting the
radius of influence of ground-based sensors ("localization"). This also needs to be performed
if the method would be applied to a large area, since using a full correlated matrix is associated
with significant computational demand.
It is important to note„ that the retrievals developed in Study 2 have the same limitations as
those developed in Study 1. Namely, the results are sensitive to assumptions made concern-
ing observation errors (in space of brightness temperature). For IRS observations, diffraction
is not taken into account, and the horizontal inhomogeneity of the atmosphere and the issues
with the slant path crossing more than one grid box were neglected. The results of statistical
interpolation are entirely dependent on the statistical properties of atmospheric fields. Here,
only an area of 150×150 km is used and the "true" state is known, making the calculation of
covariance matrices possible. The accurate definition of "real" error covariance matrices of ob-
servations and background is a challenging task, especially for satellite observations. Another
assumption that would not be fulfilled in the real atmosphere are the sensors that firstly, mea-
sure the same air column and secondly, have no representation errors because of the mismatch
between observation locations and model grid points. Therefore, the results of this study rep-
resent the theoretical evaluation of the synergy of satellite and ground-based sensors under the
best possible conditions.
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Chapter 7

General summary, conclusions and
outlook

High resolution convection resolving NWP models produce forecasts of meteorological events
with 1-5 km horizontal resolution that aremore detailed than those produced by global models.
The data assimilation schemes of thesemodels requiremore frequent analysis (every 1-6 h) and
ideally, denser and more frequent observations to define detailed initial conditions. Because of
the higher temporal, horizontal and vertical resolution in the boundary layer, high resolution
models are more dependent on geostationary satellite- and on surface in-situ and boundary
layer observations and benefit less from the polar orbiting satellites. The key variables needed
for high-resolution data assimilation are, among others, the 3-dimensional fields of tempera-
ture (T) and humidity (q). Both parameters are not adequately (vertically, horizontally and
temporally) measured by current observing systems, which mostly comprise the radiosondes
(T,q), aircraft observations (ascent/descent, T), and polar orbiting satellite sensors (T,q). The
satellite observations are difficult to assimilate over land. Moreover, the vertical resolution of at-
mospheric profiles provided by satellite sensors is poor with respect to the requirements of the
high-resolution NWPmodels, which have more layers close to the surface in order to better de-
scribe boundary layer processes. The future geostationary InfraRed Sounder (IRS) is expected
to improve the horizontal coverage but its observations will be affected by cloudiness and low
vertical resolution close to the surface (as it is the case for operational hyperspectral sounders
on board polar orbiting satellites). Thus, to provide a high-resolution NWPmodels with neces-
sary information, a new generation of of observations through the lowest few kilometers of the
atmosphere is required. A network of ground-based remote sensing sensors has the potential
to provide real time observations to forecasting centers. Maintaining an operational observing
network is a difficult and expensive task. Therefore, it is essential to evaluate the impact of dif-
ferent components of current observing system and to assess the potential contribution of a new
observing system to the analysis of the atmospheric state.
The present study investigates the potential of two ground-based sensors, Microwave Radiome-
ter (MWR) and DIfferential Absorption Lidar (DIAL), and their synergy with satellite obser-
vations for monitoring atmospheric stability. The stability is described in terms of following
stability indices: Convective index, K-Index, Total Totals, Lifted Index, Showalter Index, Con-
vective Available Potential Energy and Fog Threat (KO, KI, TT, LI, SI, CAPE, FT). While the
first five are calculated from temperature and humidity measures at distinct pressure layers,
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the CAPE calculation requires the humidity and temperature profiles and the FT is highly de-
pendent on humidity gradient in the lowest atmospheric layer. The analysis is performed with
simulated observations on the basis of the regional high-resolution reanalysis COSMO-REA2.
In the first part of the study, Study 1, the capability of both ground-based instruments to pro-
vide STI is compared to that of currently operational and the future satellite sensors and the
benefit of a possible synergy is assessed. For thispurpose, a neural network retrieval of seven
STI, Integrated Water Vapor (IWV) and Liquid Water Path (LWP) from simulated satellite-
and ground-based observations is developed. The satellite-based instruments considered in
the study are the currently operational Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) and the future Infrared Sounder (IRS), both in geostationary orbit, and the AdvancedMi-
crowave Sounding Unit (AMSU-A) and Infrared Atmospheric Sounding Interferometer (IASI),
both deployed on polar orbiting satellites.
Under clear sky conditions, among all satellite sensors, the high spectrally resolved observations
from IASI and IRS achieve the best results for the first 5 STI. The differences in the accuracy of
IRS and IASI retrievals underline the importance of careful channel selection. For the first 5 STI,
the performance of ground-basedMWR is comparable or slightlyworse than that of IRS or IASI,
but can be further improved by the inclusion of humidity profiles fromDIAL. For thementioned
5 STI the synergy of satellite and ground-based observations is beneficial even under clear sky
conditions, leading to a more accurate assessment of these STI than each individual sensor.
The remaining indices CAPE and FT are highly dependent on the near surface temperature and
humidity and can not be accuratelymeasured by satellite sensors. Therefore, for the assessment
of CAPE and FT, the ground-based observations are crucial even under clear sky conditions.
If the clouds appear, the satellite and ground-based sensors measuring in microwave (AMSU-
A/MHS, MWR, MWR+DIAL) are able to provide STI and IWV with almost the same accuracy
as under clear sky conditions, while the accuracy of STI retrievals based on infrared satellite
observations drops. Thus, under cloudy conditions, the additional ground-based observations
provide crucial information and contribute significantly to synergistic retrieval sat+MWR,mak-
ing the cloudy sat+MWR retrieval almost as efficient as the clear sky sat+MWR retrieval.
The retrievals of temperature and humidity profiles from IRS and MWR observations illustrate
the advantages and limitations of both sensors. While the MWR retrievals are most accurate
in the boundary layer (the error of the temperature retrieval is below 1K and that of humidity
profile is around 0.5/0.7 kgm−3 for clear sky/cloudy cases in the lowest layer up to ∼2.5 km),
the error of IRS retrievals increases with decreasing height (with the errors of 1/2K in tem-
perature profile and 0.9/1,2 kgm−3 in humidity profile). Thus, the synergistic retrieval draws
benefit from both, satellite and ground-based information, resulting in higher accuracy of T
and q profiles than that achieved by single sensor retrievals. From the satellite point of view,
the temperature uncertainty can be reduced by up to 90% under cloudy conditions, whereas
the humidity error is by about 40% lower than the error of IRS-only retrieval. The synergy ben-
efit, defined as the decrease in the error relative to the single sensor retrieval, is apparent for
temperature in the layers between 2 and 12 km and for humidity up to the height of 8 km.
The second part of the study, Study 2, represents the evaluation of the impact of a network of
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ground-based sensors on the assessment of instability, in terms of CAPE and LI, over the 2-
dimensional domain (150×150 km). This was performed in two ways:
First, by merging of CAPE/LI fields retrieved from IRS observations and CAPE/LI values ob-
tained from a single/network of ground-based MWR distributed over the domain. This exper-
iment shows the potential of a CAPE/LI product based on satellite and ground-based observa-
tions.
Second, by assuming the persistence of atmospheric fields for the time period of 6 h and using
the CAPE/LI fields calculated from reanalysis profiles as the background in a simple assimila-
tion step. The assimilated observations are represented by CAPE/LI fields retrieved from IRS
observations, CAPE/LI values obtained from theMWRnetwork, and by combined IRS+nMWR
field. The last are represented by a CAPE/LI fields retrieved from IRS observations with some
of the values replaced by values obtained from synergistic MWR+IRS retrieval.
In both approaches, the spatial statistical interpolation based on least-squares method is used.
The resolution of reanalysis- and IRS retrieved fields of CAPE/LI is 4 km. The density of the
MWR network varies between 1 and 1521 MWR distributed over the domain.
In both experiments, the benefit of additional ground-based observations is evident even if one
sensor is placed in the center of the domain. In this case, the increase in accuracy of CAPE/LI
analysis in the location of observation and around it can be seen. The improvements are more
localized around the observation location for CAPE than for LI, because of its larger spatial and
temporal variability, and stronger pronounced in the presence of clouds.
Merging the persistence fields of CAPE/LI with combined observations IRS+nMWR results,
despite the long time lag of 6 h, in themost accurate analysis of CAPE/LI. The obtained analyses
achieve the probability of detection values of 0.77 for LI and 0.87 for CAPE and the lowest root-
mean-square error values for both indices.
In both approaches, themost accurate fields of CAPE/LI can be obtained ifmaximal 25MWRare
placed in the field. Adding moreMWR in the domain is not reasonable and does not noticeably
improve the resulting fields.
The limiting factor for the analysis of CAPE fields remains the low accuracy of the retrievals.
Thus, further research is needed to improve the accuracy of CAPE retrieval by including surface
parameters in the retrieval or adding the humidity profiles from a DIAL.
The assimilation of LI values from a 25MWR network show promising results with the analysis
as accurate as the analysis based on assimilation of high spatially resolved IRS measurements.
Thus, in the presence of clouds the missing satellite observations could be replaced by ground-
based measurements (if sufficient dense network is would be available).

Lacking of real geostationary hyperspectral observations (at the date of publication of this the-
sis), the application of developed retrievals to the IRS observation is not possible. Therefore,
further studies will be focused firstly on the application of the developed retrievals to the real
MWR observations. A long time series of MWR observations are available at the Lindenberg
Meteorological Observatorywith collocated radiosonde observations and at the JülichObserva-
torY for Cloud Evolution (JOYCE) (Löhnert et al., 2015). The atmospheric profiles of COSMO-
REA2 reanalysis are also available at both sites.
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The assimilation of the real observations of single MWR within a 1Dvar retrieval was shown
to improve the analysis of temperature and humidity in the lowest 2 km under very stable con-
ditions (Martinet et al., 2017). Similar assimilation experiments with a single MWR could be
performed to show the potential of MWR to capture unstable convective conditions. The stan-
dardway to show the impact of not yet existing observations is to carry out anObserving System
Simulation Experiment (OSSE). In an OSSE, the "true" atmosphere, usually represented either
by a high resolution reanalysis or a forecast model run, is used to simulate synthetic obser-
vations of existing and future observing systems. Several data assimilation runs can be then
performed with and without assimilation of new observations into NWP model to determine
whether a new observing system can add value and improve the analysis and forecast. OSSEs
performed for the future IRS observations have demonstrated the positive impact and improved
forecast skills for temperature, humidity, and wind up to 12 hours (Guedj et al., 2014, H. Wang
et al., 2013). However, an full OSSE including all currently available and future measurements
is computationally and cost expensive. Therefore, a simplified version of OSSE could be per-
formed with only assimilation of observations of a MWR network. This experiment would be
useful to adjust the data assimilation algorithms to the new observing system. The decision
for network configuration and for location of individual instruments should be based, among
others, on the analysis of representativeness of the location.
One important conclusion of this study is that the best results in the assessment of stability
can be achieved if satellite and ground-based observations were combined in the synergistic
retrieval. This is valid for stability indices as well as for temperature and humidity profiles. The
temperature, humidity, and stability indices fields are particularly important in nowcasting and
very short-term forecast, where they are used for the prediction of fog, convection initiation and
subsequent convective storms. To be used in nowcasting and short range forecast, observational
data must be transmitted and processed very quickly and with high frequency. Therefore, for
ground-based sensors to be used in assimilation and in synergy with satellite measurements,
the technical requirements concerning infrastructure, data quality, and data availabilitymust be
fulfilled. The development of standardized software and retrieval algorithms, common quality
control techniques and calibration procedures was addressed in the past TOPROF COST ac-
tion (Illingworth et al., 2019). The observation minus background statistics, which are used for
monitoring biases and errors of the observations, were already gathered as outcomes of pre-
vious COST Actions, paving the way for further data assimilation experiments (De Angelis et
al., 2017). The current PROBE COST Action aims the enhancement of collaboration between
researchers, engineers, instrument manufactures, and users, which is crucial for knowledge ex-
change and improving of capabilities of existing networks. The extension of the EUMETNET E-
PROFILE program toMWRand the "Pilot" station byGermanWeather Service (DWD),which is
planned as long-term observations by a set of collocated remote sensing sensors, are important
steps that will enhance knowledge about the performance, stability, the cost efficiency and the
maintenance effort of the instruments and foster the development of the ground-based MWR
networks.
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