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Abstract 11 
The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is 12 
important in managing both environmental and health risks; however, limited monitoring in regional 13 
areas hinders accurate quantification. This article provides an overview of the ability of recently 14 
launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI 15 
(Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review 16 
examines the literature relating to the spatial and temporal resolution required by air quality studies, 17 
the removal of cloud and surface effects, the aerosol inversion problem, and the computation of 18 
ground-level concentrations rather than columnar aerosol optical depth (AOD). 19 
Determining surface PM concentrations using remote sensing is complicated by differentiating 20 
intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, 21 
particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic 22 
measurements. The review confirms that development of GEO satellite products has led to 23 
improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated 24 
on model species rather than prior descriptive classifications, and forward radiative transfer models 25 
have led to a better understanding of predictive spectra interdependencies across different aerosol 26 
types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem 27 
remains challenging because there are limited wavelength bands for characterising localised 28 
mineralogy. 29 
The review finds that the frequency of GEO satellite data exceeds the temporal resolution required 30 
for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual 31 
monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface 32 
absorption effects. However, given the challenges of the aerosol inversion problem and difficulties in 33 
converting columnar AOD to surface concentrations, the review identifies coupled GEO-neural 34 
networks as potentially the most viable option for improving quantification. 35 
 36 
 37 
Keywords: Geostationary Earth Orbiting satellites; Aerosol Optical Depth; Particulate Matter; Thermal 38 
infra-red; spatiotemporal resolution. 39 
  40 
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Abbreviations: 41 
Note in the interests of brevity, and apart from MODIS, this list of abbreviations specifically excludes 42 
the full dispersion model and satellite names for which the commonly used abbreviation has been 43 
used. 44 
 45 
AOD: Aerosol Optical Depth 46 
BT: Brightness temperature 47 
BTR: Brightness temperature reduction, i.e. BT1 – BT2 where the suffix could be time or wavelength 48 
IDDI: Infrared Differential Dust Index, BTR but restricted to time-based differences 49 
GEO: geostationary earth orbit satellites 50 
GLCs: ground level concentrations 51 
LEO: low earth orbit satellites 52 
MODIS: MODerate-resolution Imaging Spectro-radiometer instrument 53 
NIR: Near infra-red portion of the electromagnetic spectrum 54 
PM: particulate matter 55 
TIR: Thermal infra-red portion of the electromagnetic spectrum 56 
UV: Ultra-violet portion of the electromagnetic spectrum 57 
Vis: Visible portion of the electromagnetic spectrum 58 

Highlights: 59 
• Excellent temporal resolution (10 minutes) but coarse spatial resolution (2 km); 60 
• Continuous infrared instead of visible bands are required; 61 
• Challenging aerosol inversion compounded by fewer and less sensitive infrared bands; 62 
• Vertical profile required for extrapolating AOD to ground-level concentration;  63 
• Uncertainty analysis of speciated ground-level concentration needs to be improved; 64 

  65 
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1. Introduction 66 
Elevated concentrations of airborne particulate matter (PM) are a cause of global concern given the 67 
associated environmental (Leibensperger et al., 2012) and human health risks to both cardiovascular 68 
and respiratory systems (Li et al., 2016c; Weng et al., 2014). High concentrations can cause haze (or 69 
smog) to form, which may affect visibility, and soiling via deposition of fine material can lead to 70 
amenity degradation (Brunner et al., 2016; Lin and Li, 2016). Airborne PM concentrations are 71 
dependent on the magnitude of source emission rates (Ge et al., 2016; Streets et al., 2013) whilst the 72 
type of emission affects the spatial concentration distribution as a large area source typically results 73 
in lower concentrations (mass/volume) but may impact a wider region (i.e. larger initial volume) that 74 
would be the case if it were a coherent plume from a point source. Similarly, sources such as industrial 75 
stacks or hot gas from fires can inject material at a high elevation but with minimal initial horizontal 76 
variance, and the plume may then be dispersed over large distances before being diluted (Li et al., 77 
2015; Ma and Yu, 2015; Wainwright et al., 2012). During the plume dispersion, the compounds in the 78 
air may undergo chemical (Athanasopoulou et al., 2016; Philip et al., 2016) (such as photochemical 79 
reactions) and physical (such as deposition) transformations which alter the amount and composition 80 
carried in the plume (Aquila et al., 2012; Ridley et al., 2012; Solomos et al., 2015; Tu et al., 2015). 81 
Unlike industrial emissions from point sources, which are highly regulated and monitored with in-line 82 
stack analysers and/or fence-line monitoring, diffuse PM area sources present unique challenges in 83 
that fugitive emissions and events are usually unquantified. A large fire may be monitored due to its 84 
potential danger and damage to life and property, but the secondary effects of smoke from fires are 85 
seldom documented regarding magnitude, frequency, and spatial extent. Similarly, significant fugitive 86 
emissions of PM arise from the movement of people (Kishcha et al., 2014), biomass burning (Chan and 87 
Chan, 2017; D'Andrea et al., 2016; Li et al., 2016a), wind erosion (Basha et al., 2015; El-Askary et al., 88 
2015; Wong et al., 2015), and volcanic events (Ge et al., 2016; Ortore et al., 2014). Whilst modern 89 
technology and regulations can force reductions of industrial emissions, fugitive emissions are difficult 90 
to monitor and manage. As such, fugitive emissions require indirect mitigation strategies to reduce 91 
impacts such as the use of controlled burning to reduce fuel loads (Lasslop and Kloster, 2015) and 92 
creating windbreaks to reduce wind speed dependent dust erosion (Tao, 2014). 93 
Elevated concentrations coupled with the difficulty in managing these emissions have led to a need to 94 
understand the impacts and consequences of these emissions. PM health studies (Weber et al., 2016; 95 
Weng et al., 2014) predominantly characterised health impacts in terms of particle size (Brindley and 96 
Ignatov, 2006; Colarco et al., 2014; D'Andrea et al., 2016; Zhao et al., 2015), but more recent studies 97 
document the role of PM composition on health impacts (Philip et al., 2014; Trivitayanurak et al., 98 
2012). Contemporary research is unanimous that these health effects are critically dependent on both 99 
particle size and composition (Čupr et al., 2013; Li et al., 2016c; Poschl, 2005). It is therefore imperative 100 
not only to determine total PM concentration or apportion to size fractions (i.e. PM10 and PM2.5), but 101 
to quantify and fully classify the source by particle size, composition and/or source type (i.e. biomass 102 
burning, wind erosion, sea -salt, volcanic, urban etc.) (Philip et al., 2014) so that the full impact of 103 
elevated concentrations can be determined. 104 
These impacts need to be quantified using monitoring, modelling and/or estimation techniques (Wong 105 
et al., 2015; You et al., 2016a). Dedicated surface-based monitors are preferred for their accuracy and 106 
temporal resolution (Holben et al., 1998), but cost and infrastructure requirements limit the number 107 
and distribution of surface monitors. It is impractical and costly to continually monitor for all pollutants 108 
across large regions at the fine monitoring scale needed by air quality studies. Most monitoring is 109 
performed in populated urban areas as this maximises cover per capita and urban areas have the 110 
necessary infrastructure to support the monitoring. However, fugitive dust sources such as wildfires 111 
and dust storms regularly occur in regional areas as these areas have the necessary biomass or bare 112 
exposed soil to support emissions from large area sources and these sources, therefore, have the 113 
potential to influence air quality on local regional populations and impact regional air quality. 114 
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Quantification at a local level will minimise confounding chemical and physical plume dispersion 115 
effects in determining source emissions which make it difficult to quantify emissions further 116 
downwind from the sources. These dispersion effects arise from changes in wind direction and wind 117 
speed along the plume’s path, which result in the monitored concentration depending on plume age 118 
and path. Regional scale quantification considers the cumulative frequency and spatial extent of long-119 
range transported events, particularly where this impacts populated urban areas (Lin et al., 2015), and 120 
global scale quantification determines the impact an event has on background concentration levels. 121 
Where monitors are not available, mathematical tools such as dispersion modelling (Li et al., 2016b; 122 
Lin and Li, 2016; Philip et al., 2016; Yasunari et al., 2016), neural networks (Taylor et al., 2016; Wong 123 
et al., 2015; Xiao et al., 2015) and statistical procedures such as source apportionment (Belis et al., 124 
2013) methods can model impacts. However, these calculation methods have higher uncertainties 125 
than direct monitoring due to approximations and input assumptions inherent to the chosen model 126 
(Solomos et al., 2015). Increasingly, remote sensing has been used as a surrogate method to determine 127 
aerosol concentrations (Li et al., 2015; van Donkelaar et al., 2015; Wu et al., 2016; You et al., 2016a). 128 
The advantages of remote sensing are that it can monitor a wide area simultaneously, does not require 129 
an emissions inventory (Athanasopoulou et al., 2015), and does not need a dense monitoring network 130 
to determine concentrations. Indeed, in many areas of the world, including regional Australia, remote 131 
sensing offers the only potential alternative to understanding and estimating the surface 132 
concentration of PM2.5 and PM10 where direct monitoring is not available (Li et al., 2016b; Lin et al., 133 
2015; Tsay et al., 2016). Where direct monitoring or emission inventories are available, remote sensing 134 
using the latest geostationary satellites can augment these data, improving the temporal resolution 135 
to ten minutes, and emission factors can be constrained based on aerosol optical density (Stafoggia 136 
et al., 2017). This was demonstrated in an Italian study which used 686 surface PM10 monitors to refine 137 
the spatial concentration estimates (Stafoggia et al., 2017). 138 
Launching and placing heavy equipment in space is both difficult and costly. As a result, polar orbiting, 139 
low earth orbit (LEO) satellites were initially favoured for remote sensing (Chance et al., 2013; Ruddick 140 
et al., 2014; Vanhellemont et al., 2014). The MODerate-resolution Imaging Spectro-radiometer 141 
(MODIS) instrument is an example of a LEO satellite that has supplied daily data for two decades, 142 
utilising extensively peer-reviewed algorithms (Levy et al., 2013). Older LEO satellites (Carn et al., 143 
2016) are now being decommissioned, whilst “second generation” new satellites at higher 144 
geostationary earth orbits (GEO) are being deployed in greater numbers. A list of currently orbiting 145 
GEO satellites is provided in Table 1. GEO satellites rotate at the speed of the earth and thereby 146 
generate a continuous view of one hemisphere of the earth (Carrer et al., 2014; Naeger and 147 
Christopher, 2014; Romano et al., 2013), in contrast to LEO satellites which return overhead once per 148 
orbit cycle. Because these GEO satellites stay over a fixed point and the temporal resolution is 149 
dependent on sensor technology rather than orbit periodicity this results in continuous data 150 
acquisition rates for all locations. However, the enhanced temporal resolution comes at the cost of 151 
reduced spatial resolution, because of the higher orbit. Furthermore, the curvature of the earth 152 
restricts useful retrievals to a 120-degree arc, making GEO data unsuitable for polar and other high 153 
latitude studies. GEO satellites such as Himawari-8 (Asia and Oceania) (Sekiyama et al., 2016; 154 
Wickramasinghe et al., 2016; Yumimoto et al., 2016) and GOES-R (North America) (Greenwald et al., 155 
2016), typify the sub-hourly data with half the spatial resolution of MODIS. 156 
  157 
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Table 1: Current Earth Observational GEO satellites (excluding military, communications, and GPS 158 
satellites). Source: Union of Concerned Scientists Satellite Database https://www.ucsusa.org/nuclear-159 
weapons/space-weapons/satellite-database  160 

Name of Satellite, Alternate Names Longitude 
(degrees) 

Launched 
(year) 

GOCI/COMS-1 (Communication, Ocean, and Meteorological Satellite; 
Cheollian) 

128 2010 

Electro-L1 (GOMS 2 [Geostationary Operational Meteorological Satellite 2] 76 2011 

Electro-L2  77.8 2015 

Fengyun 2D (FY-2D) 86.51 2006 

Fengyun 2E (FY-2E) 123.59 2008 

Fengyun 2F (FY-2F) 105 2012 

Fengyun 2G (FY 2G) 0 2014 

Gaofen 4 105.5 2015 

GOES 13 (Geostationary Operational Environmental Satellite, GOES-N) -75 2006 

GOES 14 (Geostationary Operational Environmental Satellite, GOES-O) -104.41 2009 

GOES 15 (Geostationary Operational Environmental Satellite, GOES-P) -135 2010 

GOES 16 (Geostationary Operational Environmental Satellite GOES-R) -75 2016 

Himawari 8 140 2014 

Himawari 9 140 2016 

INSAT 3A (Indian National Satellite) 93.53 2003 

INSAT 3D (Indian National Satellite) 82 2013 

INSAT 3DR (Indian National Satellite) 74 2016 

Kalpana-1 (Metsat-1) 74.07 2002 

SEVIRI/Meteosat 10 (MSGalaxy-3,MSG 3) 0 2012 

SEVIRI/Meteosat 11 (MSG 4) 0 2015 

SEVIRI/Meteosat 8 (MSGalaxy-1, MSG-1) 41.5 2002 

SEVIRI/Meteosat 9 (MSGalaxy-2, MSG 2) -0.02 2005 

MTSAT-2 (Multi-Functional Transport Satellite) 145.06 2006 

 161 
Numerous research articles and reviews of aerosol remote sensing have considered history, platforms, 162 
orbits, the theory of scattering (Rayleigh and Mia) and adsorption (infra-red) in detail (Hoff and 163 
Christopher, 2009; Reid et al., 2013; Streets et al., 2013). Considerable success of a qualitative nature 164 
(depicting the plume spatially and temporally) has been achieved to verify emissions inventory 165 
changes (Yang et al., 2015), study large-scale long-range transport events (LRT) (Athanasopoulou et 166 
al., 2016; El-Askary et al., 2015) and short-term exceptional events (i.e. fires and volcanoes) 167 
(Guehenneux et al., 2015; Wickramasinghe et al., 2016). Whilst fires are significant for the frequency 168 
of events, volcanoes are significant in terms of the size of emissions. Fire agencies routinely use fire 169 
detection methods to estimate resultant emissions (Freeborn et al., 2014) and track the movement of 170 
fire and smoke using remote sensing data (Wickramasinghe et al., 2016). Similarly, recent volcanic 171 
eruptions have resulted in a refinement of plume detection methodology and improved 172 
understanding of the vertical plume structure. Passive scattering, with the Multi-angle Imaging 173 
Spectro-radiometer (MISR) (El-Askary et al., 2015; Liu et al., 2011), and active laser back-scattering 174 
using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Lee et al., 175 
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2016) instruments have been used to determine the vertical profile. AERONET and other ground-176 
based sun photometers have provided method validation over large regions (Tegen et al., 2013; van 177 
Donkelaar et al., 2013). Aerosol Optical Depth (AOD) measurements have been integrated with 178 
Chemical Transport Models (CTM) (Li et al., 2016b; Lin and Li, 2016; Philip et al., 2016), Bayesian 179 
analysis (Karlsson et al., 2015; Weber et al., 2016) or neural networks (Lary et al., 2016) to improve 180 
the identification of background events and assist quantification. 181 
Whilst remote sensing of particulate matter is a suitable tool for qualitative analysis (spatial and 182 
temporal) to identify dust events, there are significant problems that limit quantification (Hoff and 183 
Christopher, 2009; Reid et al., 2013; Streets et al., 2013). These limitations arise from poor temporal 184 
resolution, inadequate background AOD determination, circular assumptions in the aerosol inversion 185 
model and vertical parameterisations of the dust plume. Of these limitations, the circular assumptions 186 
of the aerosol model are the most significant. The aerosol inversion problems are a consequence of 187 
deriving solutions with more unknown intrinsic aerosol properties (size, shape, composition, refractive 188 
index) from known extrinsic scattering and absorption properties (Mei et al., 2014; Ruddick et al., 189 
2014; Xiao et al., 2014). The inversion retrieval is constrained to aerosol types included in the lookup 190 
table and the accuracy of the retrieval is dependent on the degree of independence in the spectral 191 
patterns (signatures), per aerosol type, which is further complicated by poorer spectral resolution on 192 
GEO satellites. 193 
This literature review was undertaken to examine the limitations in remote sensing of ground-level 194 
particulate matter concentrations and the quantification challenges. The review sought to determine 195 
which of the methodology changes maximise the benefits from the enhanced temporal resolution of 196 
the GEO data. A “Web of Science” search for all review articles containing the topics aerosol and 197 
remote sensing shows that the number of review articles peaked in 2012/3 but that there has been a 198 
steady growth in the number of citations, indicative of a potentially greater acceptance of remote 199 
sensing. 200 
The literature that was reviewed focussed on the derivation of surface concentrations of particulate 201 
matter using GEO data rather than the more commonly reported, aerosol optical depth remote 202 
sensing product, as it is the surface concentrations that directly affect health, not the total column 203 
parameter. The review has considered the large-scale movement of aerosols from fugitive dust 204 
sources (such as fires, dust storms, and volcanoes) rather than localised industrial sources which 205 
typically affect one or two neighbouring pixels. Fugitive sources are generated over large areas and 206 
are widely dispersed but less represented in sparse surface-based monitoring. The review has 207 
identified changes that occurred since Street’s 2013 review (i.e. from 2014), during which both 208 
Himawari (July 2015) and GOES-R (Dec 2016) satellites were launched, in order to narrow down and 209 
identify progress and/or current trends in the methodology. The review ignores case-studies that 210 
simply use existing AOD product data without contributing additional information to the resolution of 211 
quantification challenges, nor does it replicate extensive historical theoretical frameworks which are 212 
discussed in other recent reviews (Hoff and Christopher, 2009; Reid et al., 2013; Streets et al., 2013). 213 

2. Challenges and Emerging Solutions 214 

2.1. Spatial and Temporal Resolution 215 
One of the biggest criticisms of polar-orbiting satellites (such as MODIS), from an air quality 216 
perspective, is that they supply a single instantaneous measurement and not a period average (Levy 217 
et al., 2013). Although numerous researchers have compared AOD to daily average concentrations 218 
(You et al., 2016a), AOD reflects a short-term, temporal monitoring, gathered once a day, for the few 219 
seconds that the satellite was flying overhead. Apart from the temporal bias of comparing dissimilar 220 
timescales (seconds against hourly and daily monitoring), short-term events such as fires may be 221 
inactive during the satellite overpass, or clouds may obscure the scene, leading to the event being 222 
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missed during the satellite overpass (Baldassarre et al., 2015; Freeborn et al., 2014; O'Loingsigh et al., 223 
2015; Philip et al., 2016; Zhang et al., 2011). 224 
Whilst health and regulatory considerations include daily and annually averaged concentrations of 225 
particulate matter (Brauer et al., 2012), hourly (or sub-hourly) measurements are required to 226 
understand the transport and concentration of particulate matter from short-term significant events 227 
such as fires and dust storms. It has been shown experimentally (Hoven, 1957), and proven 228 
theoretically (Stull, 2012), that turbulence drives air dispersion. Turbulence, therefore, determines the 229 
spatial and temporal scales required for monitoring and the spatial resolution and timing of samples 230 
should be dependent on average wind speeds to ensure that the plume movement between pixels 231 
can be detected in the monitored period. This supports the findings of health-related studies which 232 
suggest that a spatial resolution of about one kilometre and a temporal resolution of an hour are the 233 
minimum requirements for monitoring atmospheric events (Chow, 1995, 1998). Second generation 234 
GEO satellites such as SEVIRI (15 min, 3 km) (Fernandes et al., 2015), GOCI (hourly, 500 m (NIR)) (Choi 235 
et al., 2012), Himawari-8 (10 min, 2 km) (Yumimoto et al., 2016) and GOES-R (15 min, 2 km) (Wang et 236 
al., 2014) meet the hourly and sub-hourly requirements overcoming the previous temporal resolution 237 
restriction of LEO satellites albeit with a reduction in spatial resolution. 238 
Most case studies using GEO data take advantage of the enhanced temporal resolution which implies 239 
a higher probability of cloud-free measurements and fewer missed events. These studies do not utilise 240 
the motion of the aerosols but simply subtract a static background (Fukuda et al., 2013). Aerosols, 241 
carried by turbulent air, implies motion as gravity will cause deposition of particulate matter under 242 
calm conditions (Al-Dousari et al., 2013; Mackie et al., 2008). Therefore, motion detection methods 243 
including frame differences and tracking moving objects can be used to improve aerosol movement 244 
detection and quantification (Tewkesbury et al., 2015), and this has been demonstrated by some 245 
neural network solutions (Lary et al., 2016; Wong et al., 2015). Similarly, consistency tests can identify 246 
clouds and aerosols using the spatial differences in the homogeneity (i.e. standard deviation) across 247 
neighbouring pixels as clouds are patchier than an aerosol plume (Chang and Christopher, 2016). In 248 
the Infrared Differential Dust Index (IDDI) method the minimum reflectance over the chosen time 249 
period is subtracted from the current reflectance and so highlights areas of change (movement) (Xiao 250 
et al., 2015). As most pixels do not change between frames there is a significant reduction in the 251 
number of background pixels which are masked out if they have not changed between frames. The 252 
IDDI methodology has been used for time periods of three days (Di et al., 2016), unspecified “days” 253 
(Hu et al., 2008), fortnights (Xiao et al., 2015) and months (Mishra et al., 2014); however, there is no 254 
agreement on the choice of the correct timespan for the differentiation. 255 
Whilst GEO satellites improve the temporal resolution, this is at a marginal cost to spatial resolution 256 
as evidenced by the latest GEO satellites such as Himawari-8 (10 min, 2 km) (Yumimoto et al., 2016) 257 
and GOES-R (15 min, 2 km) (Wang et al., 2014). To address what spatial resolution is required for GEO 258 
data the question is rephrased to consider how far a low wind speed would move an individual “puff” 259 
within a plume to be discernible either along the plume boundary (i.e. edge detection) or to a pixel 260 
with a different concentration within the plume (i.e. dispersion). For both cases, it is assumed that the 261 
concentration remains above detectable limits. A low wind speed of 1 m/s would disperse a 262 
plume/puff 600 m over ten minutes and this is, therefore, the minimum spatial resolution required to 263 
detect a plume at this wind-speed. This is three times the spatial resolution of Himawari’s infra-red 264 
spectral bands and double that of the visible and near infra-red bands. In an attempt to improve the 265 
spatial resolution of GEO data various mathematical treatments have been used. The greater spatial 266 
resolution of LEO (MODIS) satellites was used to refine GEO data in multi-satellite studies by 267 
determining a daily sub-grid calibration from the MODIS data and applying the sub-grid scale factors 268 
to the GEO data (Naeger et al., 2016; Vanhellemont et al., 2014). This is not ideal as it assumes that 269 
the spatial calibration is not temporally dependent, which is not the case where an aerosol plume 270 
moves across an area. Other studies have demonstrated the ability to enhance the spatial scale of the 271 
infra-red channels by scaling the data using higher resolved visible and near infra-red (NIR) data during 272 
daylight hours (Wickramasinghe et al., 2016; Wooster et al., 2015). This can yield satisfactory results 273 
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during daylight hours where there is a strong correlation between the higher resolved visible or near 274 
infra-red data and the infra-red data. This is similar to a method of detecting fire locations at sub-pixel 275 
resolution by applying a deconvolution filter that is reliant on the wavelength dependent decrease in 276 
fire radiance power across neighbouring pixels (Wooster et al., 2015). 277 
Whilst there is potential to improve the spatial resolution using correlated channels of higher 278 
resolution, they cannot improve the spatial resolution during the night or across uncorrelated 279 
channels. Spatial averaging techniques such as Kriging may be able to double the perceived spatial 280 
resolution but do not yield further spatial improvements (Firas and Fawzi, 2013) as they cannot 281 
improve the detection of a plume which is unresolved in the original data. 282 
Therefore, these studies show that the temporal resolution of GEO data is a substantial improvement 283 
over polar-orbiting satellites and is better than the hourly resolution from most dispersion models and 284 
is comparable to the temporal resolution of most on-line analytical instruments (Chow, 1998). 285 
Unfortunately, this is at a marginal cost in spatial resolution which is adequate for global and regional 286 
studies but too coarse for local studies. The ideal spatial resolution for local studies requires an order 287 
of magnitude improvement to be comparable to the resolution of dispersion model studies (Solomos 288 
et al., 2015). In contrast to the Meteosat, Himawari and GOES series of satellites, China’s Gaofen-4 289 
satellite claims an order of magnitude improvement in spatial (50m VIS and 400m IR) and temporal 290 
resolution (1 minute) (CHEOS, 2018). The spatial and temporal resolution required for air quality 291 
studies is a fundamental aspect of remote sensing that has not received sufficient attention in the 292 
literature. 293 

2.2. Background (i.e. zero) AOD 294 
Determining Aerosol Optical Depth (AOD) from scattered reflectance and absorption temperatures 295 
uses Beer’s law to integrate the extinction coefficients across the vertical column (Hoff and 296 
Christopher, 2009). The determination of the integral from the surface to the top of the plume 297 
requires the surface extinction coefficients (i.e. background AOD) to be known or determined. 298 
Determining background AOD from scattering of electromagnetic energy in the visible part of the 299 
spectrum is complicated by reflective backgrounds such as roofs, bright reflective mineral sands in 300 
deserts and even the presence or absence of vegetation cover. Different algorithms are used to 301 
account for these reflective backgrounds. They depend on the nature of the surface background such 302 
as dark target (DT) algorithm (Tanré et al., 1997) over the ocean, dark target (DT) algorithm over 303 
vegetation and deep blue (DB) algorithm (Hsu et al., 2013) over bright land surfaces such as deserts 304 
(Levy et al., 2013). In addition to MODIS, there are multiple sensors and satellites, each with slight 305 
differences in how AOD is calculated (Mhawish et al., 2018). The retrieval of aerosol properties from 306 
these systems is impacted by cloud, surface, and molecular effects. These impacts must be accounted 307 
for before the aerosol properties can be determined. 308 
To account for the variances in reflective backgrounds across an area, the surface reflectance has 309 
traditionally been averaged spatially when determining background AOD, for example, the MODIS 310 
algorithms average across 10x10 km2 (at nadir) (collection 5) or 3x3 km2 (at nadir) (collection 6) (Levy 311 
et al., 2013). However, both these spatial resolutions are inadequate for monitoring air quality events 312 
which require approximately a 0.6x0.6 km2 resolution, based on the time for a 1 m/s wind speed event 313 
to cross a pixel. The spatial resolution of the MODIS AOD product has been improved using the MAIAC 314 
algorithm which uses temporal changes to improve the spatial resolution (Lyapustin and Wang, 2007) 315 
and the SARA algorithm which uses the resolution of the raw reflectances (500 m) and data from the 316 
AERONET surface based AOD monitoring to refine the spatial resolution. 317 
In addition to difficulties in determining background AOD from the surface variability, clouds may 318 
obscure the surface reflectance. This severely constrains the usefulness of AOD scattering methods to 319 
determine aerosol movement on a global basis - especially in cloudy, tropical regions - as it leads to 320 
masked (i.e. unmeasurable) pixels where significant clouds are present or the surface is not sufficiently 321 
homogeneous (Tsay et al., 2016). The high temporal volume of GEO data can reduce cloud masking by 322 
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using the temporal minimum reflectance across longer time frames with the IDDI method. IDDI only 323 
requires a single cloud free period (per pixel) during the longer timeframe and does not average across 324 
pixels, thus preserving the full pixel resolution with fewer masked events (Kim et al., 2015; Xu et al., 325 
2013). An implicit assumption in the IDDI approach is that the period compared should have minimal 326 
surface reflectance changes (i.e. exclude seasonal effects) and it is thus suited for comparison across 327 
days rather than weeks or months.  328 
The radiation energy received by a satellite sensor is inversely related to the wavelength and therefore 329 
scattering in the visible spectrum is more sensitive to changes in particle composition and size than 330 
absorption at thermal infrared wavelengths (Bond and Bergstrom, 2006; Guehenneux et al., 2015). 331 
Similarly, scattering effects from different surface backgrounds are more problematic than absorption 332 
in determining background AOD. Despite these problems, using the enhanced sensitivity of scattered 333 
reflectance is preferred to absorption when determining AOD. However, with the rapid temporal 334 
updates, there is a requirement to use wavelengths that are continually available (such as infra-red 335 
absorption) and not restricted to daylight hours. Therefore, GEO methods may need to use a 336 
combination of daytime scattering and infra-red absorption at night to maximise both signal strength 337 
and data availability. The NASA/NOAA products favour scattering using visible wavelengths to derive 338 
AOD estimates as used by MODIS (Hsu et al., 2013; Levy et al., 2013; Tanré et al., 1997), newer sensors 339 
such as VIIRS (Jackson et al., 2013), GOES-R GEO satellites (Matter, 2010) and future missions using 340 
TEMPO (Zoogman et al., 2017). In contrast the EUMETSAT methods (BOM, 2012; Naeger and 341 
Christopher, 2014; Wooster et al., 2015; Xiao et al., 2015) used by Meteosat and Himawari use thermal 342 
infrared bands to identify aerosol plumes and a lookup table to convert AOD to plume mass and 343 
average particle size (Wen and Rose, 1994). 344 
The high temporal volume of data from GEO satellites allows a cloud-free background to be 345 
determined which enables the determination of AOD from remote sensing data. The relative signal 346 
intensities at different wavelengths allow the aerosol type to be determined. 347 

2.3. Aerosol Model Inversion Problem 348 
The main limitation of using current AOD calculations to determine surface particulate matter 349 
concentrations is not the lack of temporal resolution, which is overcome using GEO data, nor the 350 
determination of background AOD but the choice of the aerosol model (Carrer et al., 2014). 351 
Atmospheric concentrations and the spatial distribution of particulate matter depend on the emission 352 
of new particles, the dispersion, chemical transformation, and physical removal of those particles 353 
(Streets et al., 2013). Knowing the intrinsic properties of aerosols (size, shape, composition, and 354 
refractive indices) allows determination of the extrinsic spectral properties (radiance and brightness 355 
temperature) with a radiative transfer model (Bond and Bergstrom, 2006; Hess et al., 1998). The 356 
cumulative effect of the substrate (e.g. soil type, vegetation type, barren rock, urban), moisture (e.g. 357 
sea, snow, ice, cloud, liquid, vapour) gaseous and particulate matter determine the total spectral 358 
property which can be calculated at each wavelength (Christopher, 2014; Huang et al., 2011). 359 
Whilst the theoretical framework for calculating extrinsic optical properties from intrinsic source 360 
specific properties is well understood, it is not always possible to calculate the reverse (Bioucas-Dias 361 
et al., 2012). Remote sensing methods use inversion techniques to solve the inverse of the radiative 362 
transfer equations in determining aerosol optical depth, particle composition, size, and number. These 363 
inversion equations cannot be solved explicitly as there are more unknown intrinsic aerosol properties 364 
than known extrinsic measurable parameters. This is worsened by GEO satellites with limited spectral 365 
resolution (for instance MODIS has 36 spectral bands compared to the Spinning Enhanced Visible and 366 
Infrared Imager (SEVIRI) with 12 bands) (Naeger and Christopher, 2014; Wooster et al., 2015). An 367 
aerosol model assumes a fixed set of intrinsic aerosol properties (size, composition, humidity) and 368 
extrinsic radiances/absorption are calculated for each wavelength band. These extrinsic and intrinsic 369 
properties are used to populate a lookup table of aerosol properties (Huneeus et al., 2011; Sessions 370 
et al., 2015). The most probable aerosol type, AOD and particle size (intrinsic) are determined using 371 
the best match spectral approximations (extrinsic) from the lookup table and particle number (or 372 
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concentration) is calculated based on signal intensity (Safarpour et al., 2014). However, the inversion 373 
method introduces circular assumptions as the accuracy of the solution is dependent on correctly 374 
including localised aerosol types and particle sizes (Mann et al., 2014) in global datasets. 375 
The most significant recent contribution to knowledge in the field has been refinements to the aerosol 376 
model’s lookup tables in preparation for the launch of new GEO satellites by pseudo-AOD datasets 377 
generation (Brunner et al., 2016). Radiative transfer (RT) model outputs were compared as part of the 378 
Modern Era Retrospective-analysis for Research and Applications Aerosol Reanalysis (MERRAero) 379 
which compared 16 RT models (Ma and Yu, 2015) against each other. Results suggest that assimilation 380 
of AOD data tends to improve the PM2.5 temporal variability (i.e. temporal correlation) but cannot 381 
correct systematic errors in surface concentrations (i.e. spatial correlation or over/under predicting). 382 
The authors note that systemic errors were due to inadequate aerosol optical properties, missing 383 
species, and/or deficiencies in aerosol vertical structure (Buchard et al., 2016). Closure studies 384 
compared four aerosol models (NASA Global Modeling Initiative, GEOS-Chem v9, baseline GEOS-Chem 385 
with radiative transfer calculations (GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC) 386 
package (Hess et al., 1998) with data gathered during the 2008 Arctic Research of the Composition of 387 
the Troposphere from Aircraft and Satellites (ARCTAS) campaign. These studies found significant 388 
differences (10-23%) between the four models which were attributed to assumptions concerning fixed 389 
size distributions, external mixture assumptions and refractive indices used in the models (Alvarado 390 
et al., 2016). 391 
Improvements to the RT models have encouraged aerosol classification changes from the vague 392 
“strongly absorbing” (Levy et al., 2013) and “non-spherical” (Di et al., 2016) to more meaningful GEOS-393 
CHEM species of dust, namely black carbon, other carbon, sea salt, sulphate and urban 394 
(Athanasopoulou et al., 2015; Naeger et al., 2016). These classification changes considered the natural 395 
abundance of particulate species (Brindley et al., 2015). Whilst the GEOS-CHEM (and similar) model 396 
species do not by themselves result in detailed chemical compound classifications, the refined species 397 
definition is a better source classification scheme (Curci et al., 2015) and by including local speciation 398 
effects (different mineral compositions for instance) (Colarco et al., 2014) could allow the generation 399 
of more regionally specific, compound and size, lookup tables. 400 
Comparative radiative transfer studies have highlighted that it is important to understand and 401 
optimise the inversion process and in this regard, a Jacobian error matrix approach (i.e. optimising a 402 
matrix of first order derivatives instead of signal intensity against explicit aerosol parameters) that 403 
supplies a measure of uncertainty and quantification of the inversion process has been proposed 404 
(Wang et al., 2014). The authors suggest that their study “should be viewed as the starting point for 405 
the development of a framework for objective assessment of aerosol information content for any real 406 
or synthetic measurements and that further development of particle scattering codes for non-407 
spherical particles is essential, especially for large particles that are difficult to handle with current 408 
implementations of [radiative transfer] theory.” 409 
In tandem with, or possibly as a result of the errors in the uncertainty model approach, research has 410 
focussed on a dust index approach (Wen and Rose, 1994) using generic aerosol model lookup tables. 411 
This has used single spectra (0.550 µm or 11 µm) (Kim et al., 2016), double band brightness 412 
temperature reduction (BTR) (3.7 µm -11µm) (Di et al., 2016; Guehenneux et al., 2015), triple band 413 
BTR (12 µm -11 µm, 4 µm -11 µm or 9 µm -11 µm) (Lee et al., 2014; Wong et al., 2015), four BTR bands 414 
(10.3 µm –11.3 µm, 11.5 µm –12.5 µm, 6.5 µm –7.0 µm, 3.5 µm –4.0 µm) (Kim et al., 2016), ratio of 415 
NIR/Red (Wickramasinghe et al., 2016) and IDDI methodologies (Di et al., 2016) using simple cloud 416 
masking ratios. These dust index methodologies could be described as a rudimentary supervised 417 
classification scheme, based on expert knowledge of predominant spectral characteristics (Lee and 418 
Lee, 2015). 419 
However, these dust index products are dependent on the intensity of an event, so the identification 420 
of a minor dust storm which relies on the temperature differences between the land surface and the 421 
cooler aerosols may be missed (i.e. BTR < detection threshold) (Basha et al., 2015; O'Loingsigh et al., 422 
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2015). Dust storms can influence ambient surface temperatures by shielding the sun’s energy from 423 
reaching the surface, thereby influencing the AOD/BTR relationship (Colarco et al., 2014), and 424 
moisture effects need to be properly accounted for in the lookup table (Guehenneux et al., 2015) to 425 
correct the non-linearity in the AOT/BTR relationship for cooler BTR thresholds. 426 
Given the uncertainty of the inverse aerosol model retrievals and influences of external parameters 427 
such as humidity, temperature, topography, cloud cover, cloud optical depth, local mineralogy and 428 
size parameters on the AOD/GLCs relationship, several studies have suggested using neural networks 429 
(Athanasopoulou et al., 2016; Lary et al., 2016; Wong et al., 2015) or Bayesian studies (Weber et al., 430 
2016) to improve the inverse aerosol retrievals. These multivariate, non-linear, and non-parametric 431 
approaches have been used in data assimilation of incompatible timescales (daily and hourly) or 432 
different satellite products of varying spatial resolution. However, whilst these methods can identify 433 
hidden nodes or relationships in the data, they are computationally expensive for large, near-real-434 
time rapidly updating datasets unless the classification steps are predetermined during the initial 435 
training phase for the region (Puttaswamy et al., 2014). 436 
Quantifying AOD and determining aerosol type remains an ongoing challenge in determining GLCs. 437 
However, despite the ongoing uncertainties related to quantifying AOD, the spatiotemporal 438 
qualitative aspects are one of the successes of remote sensing. Relative increases and/or decreases in 439 
AOD indicate sources and sinks of particulate matter (Roberts et al., 2015; Sessions et al., 2015), verify 440 
emission rate changes (Huang et al., 2014), justify control strategies (Zhang et al., 2014) and help 441 
understand the diurnal and annual transportation of aerosols both from local sources and long-range 442 
transport (Hu et al., 2015; Naeger et al., 2016). Whilst knowing the columnar AOD is important, ground 443 
level pollution is the important parameter from a human health and management perspective. 444 

2.4. Vertical Profiles 445 
Surface visibility has been used as a proxy for GLCs of particulate matter (Brunner et al., 2016; Di et 446 
al., 2016), but where neither visibility nor concentration is measured, there is a need to extrapolate 447 
AOD to GLCs using mathematical methods. The methods may include simple linear approximation or 448 
multiple regression taking into consideration secondary effects such as hygroscopic and 449 
meteorological parameters (Bukowiecki et al., 2016; Sotoudeheian and Arhami, 2014). However, 450 
these approaches assume a well-mixed, steady-state plume which results in a predictable smooth 451 
Gaussian-plume vertical relationship where the concentration at different altitudes is correlated to 452 
ground level PM concentration (Sotoudeheian and Arhami, 2014). Dispersion modelling studies show 453 
that a well-mixed neutral state (i.e. plume buoyance determined by adiabatic lapse rate) occurs half 454 
of the time where there is a moderate to high amount of cloud cover and wind speeds greater than 3 455 
m/s at night or 5 m/s during the day) (Hagemann et al., 2014). If the plume is rising rapidly (e.g. near 456 
source, or from fires or volcanoes), or if temperature inversion conditions are present, then the 457 
assumption of well-mixed neutral plumes is invalid. Temperature inversions and increased wind 458 
speeds, leading to heightened dust-lift-off, are an indication of non-neutral weather conditions that 459 
commonly occur during dust storms (Basha et al., 2015). Where plume stratification occurs from high 460 
wind-speeds trapping the plume in layers, or inversion conditions trap a plume below the mixing layer, 461 
or if the plume rises rapidly, the vertical distribution of the plume may be significantly non-Gaussian 462 
and AOD may be uncorrelated to GLCs as detailed in some LRT dust studies (Athanasopoulou et al., 463 
2016). 464 
Various methods exist for determining the vertical profile of the plume. Dispersion modelling can 465 
produce satisfactory results, but the accuracy of the vertical concentration profile depends on 466 
determining the correct meteorological profile for the model, which may lead to high uncertainties. 467 
Several studies have considered using Lidar backscattering from the CALIPSO satellite or forward 468 
multi-angular remote sensing methods such as from the MISR satellite (Basha et al., 2015; Solomos et 469 
al., 2015; You et al., 2016b). However, both CALIPSO and MISR have reduced temporal and spatial 470 
resolution and a hybrid approach is therefore common, where the dispersion model’s vertical profile 471 
is constrained using limited satellite-derived approximations. 472 
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Hybrid methodologies have been noted as an emerging technology in the recent literature. Initially, a 473 
dispersion model such as CMAQ (Roberts et al., 2015) or CAMx (Baldassarre et al., 2015) was coupled 474 
to an independent meteorological model such as WRF (Greenwald et al., 2016) and AOD input data 475 
was used to constrain the dispersion model. However, with the advent of the GEOS-CHEM and HYSPLIT 476 
(Naeger et al., 2016) models, meteorological fields are now obtained and processed directly from 477 
NCAR reanalysis files by the dispersion model, eliminating the separate pre-processing step (Lin et al., 478 
2014; Xu et al., 2015). In a typical coupled modelling scenario, an emissions inventory is estimated and 479 
constrained by AOD data, in order to generate surface consistent concentrations taking into 480 
consideration the modelled mixing height and concentration at multiple internal heights. This is done 481 
by using the magnitude and spatial distribution of the AOD as initial emission input to a dispersion 482 
model and then rescaling the emissions to ensure a best match of the predicted AOD from the coupled 483 
model against the satellite-derived AOD data (Stafoggia et al., 2017). Studies have demonstrated that 484 
best results are obtained by matching the model’s grid resolution and internal time-steps to the 485 
underlying AOD spatiotemporal resolution and the need to understand the overall accuracy of the 486 
coupled methods (Philip et al., 2016). 487 

2.5. Validation/Accuracy 488 
It is vital that improvements to the methodology are developed to enhance accuracy. The current 489 
accuracy of the regression method (AOD to GLCs) is estimated to be twenty percent and the 490 
uncertainty of the aerosol model (wavelength signal intensity to AOD) is estimated to be thirty percent 491 
(Basha et al., 2015; Tu et al., 2015). However, researchers caution that the regression coefficients are 492 
not transferable to other regions and the true uncertainty could be an order of magnitude higher if 493 
assumptions in the aerosol model are not taken into consideration (Basha et al., 2015; Tu et al., 2015). 494 
This has been clearly demonstrated in validation studies that have compared multiple satellite 495 
products across an area and significant disagreements between them were ascribed to uncertainties 496 
in the aerosol retrieval properties of mass, size, and composition (Reid et al., 2013). 497 
The Jacobian error matrix approach discussed earlier allows the uncertainty of the aerosol’s model 498 
output to be directly quantified, which can aid in optimizing the matrix solution by testing alternative 499 
aerosol types and/or wavelengths. The uncertainty associated with converting aerosol radiation to 500 
ground level concentrations is reduced by the matrix optimised solution which requires using a 501 
chemical transport model (CTM), driven by assimilated meteorology and verified against observations 502 
to simulate radiative impacts and surface concentrations. It is critical for an accurate evaluation of 503 
aerosol concentrations and impacts that the matching of observations and simulations accounts for 504 
the timeframe differences between instantaneous satellite measurements and hourly dispersion 505 
predictions or daily measured concentrations in the comparisons between measured and predicted 506 
concentrations (Heald et al., 2014). 507 
Most validation studies have used descriptive statistics to compare AOD-derived GLCs to ground-508 
based measurements. Common statistical tools used to assess the accuracy of the method include 509 
Pearson’s correlation coefficient (R) and the Root Mean Squared Error (RMSE) (Wu et al., 2016; Xu et 510 
al., 2014). However, this approach neglects the statistical assessment of spatial (between pixels) and 511 
temporal (within time) accuracy (Wang et al., 2014), i.e., it does not clarify whether the variability in 512 
space and time is included in the descriptive statistics for each field or parameter being compared. 513 
This issue is evident in a recent study which compared surface PM2.5 and PM10 concentrations and 514 
particle size ratios from four different countries (Israel, Italy, France, and the United States (California 515 
and NE-USA)), against collocated sun-photometer AERONET measurements and AOD products derived 516 
from MODIS Dark Target Collection 06 algorithm and the MultiAngle Implementation of Atmospheric 517 
Correction (MAIAC) algorithm (Sorek-Hamer et al., 2016). Sorek-Hamer et al. (2016) concluded that 518 
there was a very poor correlation between predicted and measured concentrations and apart from a 519 
slight seasonal bias were unable to account for the poor correlation. Despite having data from many 520 
sites, they restricted their spatial analysis to amalgamating across the five regions. Taylor diagrams 521 
have compared measured concentrations (or AOD) with monitored data and correlations across 522 
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multiple sites have been evaluated to determine if algorithm improvements have led to improved 523 
correlations (Kim et al., 2016) in describing temporal variability at monitoring sites. Similarly, 524 
Maximum Covariance Analysis has been used to compare monthly spatial variances between different 525 
satellite products and ground-based measurements and these variances were depicted graphically (Li 526 
et al., 2015). What is lacking are statistical tools that combine the spatial, temporal, and field (or 527 
parameter) variability in one diagram. 528 
Whilst AERONET sites are well distributed about the globe, there remain many locations without 529 
monitored data where it is impossible to determine if the aerosol retrieval has made reasonable 530 
choices, either for pixel selection, cloud screening, aerosol model type or surface reflectance 531 
assumptions (Wind et al., 2016). If the spatiotemporal variability at monitoring sites is poorly defined 532 
this is amplified when aerosol model uncertainty must be included in the assessment of the overall 533 
accuracy of the predicted GLCs. 534 

2.6. Emerging solutions 535 
One of the perceived problems with working with remote sensing is the difficulty of finding suitable 536 
products, downloading large files, and converting those files into meaningful data in a suitable format 537 
(Duncan et al., 2014). Web-based graphical interface tools (such as those presented in Table 1 of 538 
Mhawish et al.) are gaining popularity as a means of rapidly screening and acquiring data (Mhawish 539 
et al., 2018). 540 
Whilst these tools are excellent for routine screening, more intensive investigations may require the 541 
use of raw data files. Increasing standardisation on the netCDF (ver. 4) standard has seen the 542 
proliferation of simple command line tools such as the University of California’s netCDF Operators 543 
(NCO) and the Max-Planck’s Climate Data Operators (CDO) (CDO, 2018). Both tools allow easy data 544 
manipulation. A secondary benefit of the standardisation is the development of improved visualisation 545 
software, such as Paraview (Ayachit, 2015), which use the netCDF data standard and are preconfigured 546 
to take advantage of supercomputers. 547 
However, the biggest change, in computing AOD, has come about with the development of the 548 
Meteosat/SEVIRI AOD algorithms. The Meteosat series of satellites has led the development of GEO 549 
satellites methodologies as reflected in Table 1 and Table 2. Table 2 describes recent literature which 550 
specifically considered the derivation of AOD and GLCs, rather than simple lookup of products. These 551 
studies show that the NASA/NOAA products predominantly determine AOD using scattering of visible 552 
wavelengths as demonstrated across a range of current and future satellite platforms including MODIS 553 
(Hsu et al., 2013; Levy et al., 2013; Tanré et al., 1997), VIIRS (Jackson et al., 2013), GOES-R (Matter, 554 
2010) and future planned satellites such at TEMPO (Zoogman et al., 2017). In contrast to NASA, 555 
EUMETSAT methods favour using thermal infrared bands to identify and quantify aerosol plumes using 556 
thermal infra-red to determine a dust index (BOM, 2012; Naeger and Christopher, 2014; Wooster et 557 
al., 2015; Xiao et al., 2015). 558 
  559 
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Table 2: Recent literature describing GEO aerosol algorithms 560 

Satellite/Sensor 
(Reference, Year) 

Title Source types Algorithm/comments 

GOES-R (Wang et 
al., 2014) 

A numerical testbed for remote sensing of 
aerosols, and its demonstration for 
evaluating retrieval synergy from a 
geostationary satellite constellation of GEO-
CAPE and GOES-R 

Unspecified 
lookup table 

Scattering 

SEVIRI (Zawadzka 
and Markowicz, 
2014) 

Retrieval of Aerosol Optical Depth from 
Optimal Interpolation Approach Applied to 
SEVIRI Data 

Mineral dust, sea 
salt, particulate 
sulphates (SO4) 
and smoke 

AOD from 0.6 µm & 1.6 µm. 
Uses scattering 
Describes algorithms 
Compare to AERONET 

SEVIRI (Naeger 
and Christopher, 
2014) 

The identification and tracking of volcanic 
ash using the Meteosat Second Generation 
(MSG) Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) 

Volcanic ash RGB dust index using Red (12-10.8 µm), 
Green (10.8-8.7 µm), and Blue (10.8 µm) 

SEVIRI 
(Fernandes et al., 
2015) 

Comparisons of aerosol optical depth 
provided by SEVIRI satellite observations and 
CAMx air quality modelling 

CAMx aerosol 
model species 

AOD (0.6 µm) 
Top of Atmosphere reflectance, corrections. 
Compare to AERONET 

SEVIRI (Roberts 
et al., 2015) 

LSA SAF Meteosat FRP products - Part 2: 
Evaluation and demonstration for use in the 
Copernicus Atmosphere Monitoring Service 
(CAMS) 

Wildfires Heat of combustion proportional to amount 
being burnt not vegetation type. 
Uses MIR, NIR, burnt areas 

SEVIRI 
(Guehenneux et 
al., 2015) 

Improved space borne detection of volcanic 
ash for real-time monitoring using 3-Band 
method 

Volcanic ash RGB dust index 
Displays thermal BTR spectra for common 
aerosols 
Compare to Mie theory 

Himawari-8 
(Wickramasinghe 
et al., 2016) 

Development of a Multi-Spatial Resolution 
Approach to the Surveillance of Active Fire 
Lines Using Himawari-8 

Wildfires Multispectral, Red, MIR & TIR 

Himawari-8 
(Sekiyama et al., 
2016) 

Data Assimilation of Himawari-8 Aerosol 
Observations: Asian Dust Forecast in June 
2015 

Asian Dust AOD from 470, 510 and 640 µm 

Himawari-8 
(Yumimoto et al., 
2016) 

Aerosol data assimilation using data from 
Himawari-8, a next-generation geostationary 
meteorological satellite 

Not stated, total 
AOD 

Used AOD from visible (0.47, 0.51, and 
0.64 nm) and near-infrared (0.86 nm) 

INSAT (Di et al., 
2016) 

Dust Aerosol Optical Depth Retrieval and 
Dust Storm Detection for Xinjiang Region 
Using Indian National Satellite Observations 

Dust storm Suggests not spectral but dust index (BTD & 
IDDI) to identify aerosol 
Included spectral graphs 
BTD detects event (by threshold 
exceedance) but not related to intensity. 
Compared to AERONET 
AOD from 1.6 µm 

Himawari-8 
(Wang et al., 
2017) 

Deriving Hourly PM2.5 Concentrations from 
Himawari-8 AODs over Beijing-Tianjin-Hebei 
in China 

Urban regions AOD (500 nm) & AE from Himawari-8 
compared to AERONET sites. 
Use statistical model with inputs of relative 
humidity, boundary height, NDVI (surface 
categories) and topography (DEM) 

SEVIRI (Gonzalez 
and Briottet, 
2017) 

North Africa and Saudi Arabia Day/Night 
Sandstorm Survey (NASCube) 

Sandstorms NASCube compared to DB + AERONET  
pseudo-true colour day and night 
10-day minimum 
Wide spectral range 0.6, 0.8, 1.6, 3.9, 8.7, 
9.7, 10.8, and 12.0 µm 
RGB (12-10.8. 10.8-8.7, 10.8) 
AOD (12-10.8) 

TEMPO 
(Zoogman et al., 
2017) 

Tropospheric emissions: Monitoring of 
pollution (TEMPO) 

Wide range of 
pollutants 

Vis & UV wavelengths 

 561 
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3. Conclusions 562 
This review has highlighted the challenges faced with determining GLCs from remote sensing data. 563 
Because of these challenges, atmospheric scientists have in the past not fully utilised remote sensing 564 
to routinely determine GLCs (Duncan et al., 2014). GEO is a significant step forward in supplying highly 565 
resolved data that satisfy the temporal requirements for sub-hourly data. It goes beyond the hourly 566 
resolution of most dispersion models supplying sub-hourly data that allow aerosol and cloud dynamics 567 
to be investigated with almost near-real-time capabilities for the first time. Spatially the infra-red 568 
resolution is slightly coarse (Himawari 2 km) for localised studies, but adequate for regional and global 569 
studies. Kriging algorithms could potentially refine the continuous representation of the discrete 570 
observations in the spatial scale to be similar to local dispersion model studies, but this only produces 571 
a smoothed estimate and does not improve the underlying spatial resolution. 572 
Currently, AOD methods utilise the enhanced temporal resolution of GEO data to obtain a cloud-free 573 
measurement and increase the analysis frequency. Methods that use the additional information 574 
supplied by the rate of change are notably absent and should be developed. The aerosol model 575 
supplies the concentration vector; the rate of change of this vector presumably determines the rate 576 
at which material is added, removed, or chemically transformed in the plume, and the second 577 
derivative determines if the plume is in an equilibrium state (i.e. stable constant emission) or an active 578 
source/sink. Analysis of these rate of change variables should allow for a better understanding of 579 
emissions and resulting chemical and physical transformations even if the underlying aerosol inversion 580 
model contains assumptions. However, the extent to which particle emission changes are reflected in 581 
satellite data is severely constrained by the resolution of the data (Mhawish et al., 2018). The spatial 582 
resolution determines if the plume is discernible against background concentrations and if the plume 583 
spans multiple pixels or is fully contained within one pixel. The temporal resolution determines if the 584 
underlying chemical and physical changes can be discernible with the data frequency, for example, 585 
rapid photochemical reactions may be faster than the rate of data updates. The data resolution (or 586 
sensitivity) determines the concentration changes that are detectable; for instance, Himawari-8 has a 587 
brightness temperature resolution of 1/16 Kelvin or 1/1024 of scaled radiance (based on personal 588 
inspection of the data). The spectral sensitivity is impacted by the width and number of bands: this 589 
determines what species can be identified. For instance, a hyperspectral instrument can determine 590 
targeted organic compounds while the broad bands of GEO satellites are limited to compound classes 591 
such as black carbon (Adão et al., 2017). 592 
Understanding the error matrix of aerosol models is vital and this should become routine instead of 593 
the lookup table of current methods. At a minimum, this will encourage the use of more than simple 594 
two or three band methodologies in the development of dust indices and instead utilise all wavelength 595 
bands measured by the satellite to better determine the aerosol type. Given the rapid near real-time 596 
availability of the data, processing should at most take half the data rate, allowing the balance of time 597 
for slower data transfers. This implies that processing of all data products has at most five minutes to 598 
complete and this may involve approximations rather than exact solutions.  599 
It is unlikely that GEO aerosol remote sensing will provide a complete standalone solution and in this, 600 
we agree with Hoff and Christopher: so long as the number of intrinsic properties to solve is greater 601 
than the number of reactive wavelengths, the circular assumptions of an aerosol model imply that 602 
quantification remains an approximation. It is highly probable that hybrid methods of neural 603 
networks, Bayesian probabilities and coupled CTM models such as GEOS-CHEM will continue to be 604 
developed and improved. However, the time constraints of near real-time modelling make a fully 605 
coupled CTM unlikely and favour the pre-processing of existing data from statistical neural network 606 
models into enhanced dust index products that take into consideration local mineralogy and particle 607 
size distributions, resolve the vertical profile and account for moisture and other external effects. 608 
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