106,005 research outputs found

    Modelling Local Deep Convolutional Neural Network Features to Improve Fine-Grained Image Classification

    Get PDF
    We propose a local modelling approach using deep convolutional neural networks (CNNs) for fine-grained image classification. Recently, deep CNNs trained from large datasets have considerably improved the performance of object recognition. However, to date there has been limited work using these deep CNNs as local feature extractors. This partly stems from CNNs having internal representations which are high dimensional, thereby making such representations difficult to model using stochastic models. To overcome this issue, we propose to reduce the dimensionality of one of the internal fully connected layers, in conjunction with layer-restricted retraining to avoid retraining the entire network. The distribution of low-dimensional features obtained from the modified layer is then modelled using a Gaussian mixture model. Comparative experiments show that considerable performance improvements can be achieved on the challenging Fish and UEC FOOD-100 datasets.Comment: 5 pages, three figure

    Training a Fast Object Detector for LiDAR Range Images Using Labeled Data from Sensors with Higher Resolution

    Full text link
    In this paper, we describe a strategy for training neural networks for object detection in range images obtained from one type of LiDAR sensor using labeled data from a different type of LiDAR sensor. Additionally, an efficient model for object detection in range images for use in self-driving cars is presented. Currently, the highest performing algorithms for object detection from LiDAR measurements are based on neural networks. Training these networks using supervised learning requires large annotated datasets. Therefore, most research using neural networks for object detection from LiDAR point clouds is conducted on a very small number of publicly available datasets. Consequently, only a small number of sensor types are used. We use an existing annotated dataset to train a neural network that can be used with a LiDAR sensor that has a lower resolution than the one used for recording the annotated dataset. This is done by simulating data from the lower resolution LiDAR sensor based on the higher resolution dataset. Furthermore, improvements to models that use LiDAR range images for object detection are presented. The results are validated using both simulated sensor data and data from an actual lower resolution sensor mounted to a research vehicle. It is shown that the model can detect objects from 360{\deg} range images in real time

    Profile approach for recognition of three-dimensional magnetic structures

    Full text link
    We propose an approach for low-dimensional visualisation and classification of complex topological magnetic structures formed in magnetic materials. Within the approach one converts a three-dimensional magnetic configuration to a vector containing the only components of the spins that are parallel to the z axis. The next crucial step is to sort the vector elements in ascending or descending order. Having visualized profiles of the sorted spin vectors one can distinguish configurations belonging to different phases even with the same total magnetization. For instance, spin spiral and paramagnetic states with zero total magnetic moment can be easily identified. Being combined with a simplest neural network our profile approach provides a very accurate phase classification for three-dimensional magnets characterized by complex multispiral states even in the critical areas close to phases transitions. By the example of the skyrmionic configurations we show that profile approach can be used to separate the states belonging to the same phase

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper
    corecore