9,886 research outputs found

    A Neural Algorithm of Artistic Style

    Full text link
    In fine art, especially painting, humans have mastered the skill to create unique visual experiences through composing a complex interplay between the content and style of an image. Thus far the algorithmic basis of this process is unknown and there exists no artificial system with similar capabilities. However, in other key areas of visual perception such as object and face recognition near-human performance was recently demonstrated by a class of biologically inspired vision models called Deep Neural Networks. Here we introduce an artificial system based on a Deep Neural Network that creates artistic images of high perceptual quality. The system uses neural representations to separate and recombine content and style of arbitrary images, providing a neural algorithm for the creation of artistic images. Moreover, in light of the striking similarities between performance-optimised artificial neural networks and biological vision, our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery

    An Exploration of Style Transfer Using Deep Neural Networks

    Get PDF
    Convolutional Neural Networks and Graphics Processing Units have been at the core of a paradigm shift in computer vision research that some researchers have called `\u27the algorithmic perception revolution. This thesis presents the implementation and analysis of several techniques for performing artistic style transfer using a Convolutional Neural Network architecture trained for large-scale image recognition tasks. We present an implementation of an existing algorithm for artistic style transfer in images and video. The neural algorithm separates and recombines the style and content of arbitrary images. Additionally, we present an extension of the algorithm to perform weighted artistic style transfer

    Exploring the structure of a real-time, arbitrary neural artistic stylization network

    Full text link
    In this paper, we present a method which combines the flexibility of the neural algorithm of artistic style with the speed of fast style transfer networks to allow real-time stylization using any content/style image pair. We build upon recent work leveraging conditional instance normalization for multi-style transfer networks by learning to predict the conditional instance normalization parameters directly from a style image. The model is successfully trained on a corpus of roughly 80,000 paintings and is able to generalize to paintings previously unobserved. We demonstrate that the learned embedding space is smooth and contains a rich structure and organizes semantic information associated with paintings in an entirely unsupervised manner.Comment: Accepted as an oral presentation at British Machine Vision Conference (BMVC) 201

    Texture Modelling Using Convolutional Neural Networks

    Get PDF
    We introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. Extending this framework to texture transfer, we introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new artistic imagery that combines the content of an arbitrary photograph with the appearance of numerous well-known artworks, thus offering a path towards an algorithmic understanding of how humans create and perceive artistic imagery

    MetaStyle: Three-Way Trade-Off Among Speed, Flexibility, and Quality in Neural Style Transfer

    Full text link
    An unprecedented booming has been witnessed in the research area of artistic style transfer ever since Gatys et al. introduced the neural method. One of the remaining challenges is to balance a trade-off among three critical aspects---speed, flexibility, and quality: (i) the vanilla optimization-based algorithm produces impressive results for arbitrary styles, but is unsatisfyingly slow due to its iterative nature, (ii) the fast approximation methods based on feed-forward neural networks generate satisfactory artistic effects but bound to only a limited number of styles, and (iii) feature-matching methods like AdaIN achieve arbitrary style transfer in a real-time manner but at a cost of the compromised quality. We find it considerably difficult to balance the trade-off well merely using a single feed-forward step and ask, instead, whether there exists an algorithm that could adapt quickly to any style, while the adapted model maintains high efficiency and good image quality. Motivated by this idea, we propose a novel method, coined MetaStyle, which formulates the neural style transfer as a bilevel optimization problem and combines learning with only a few post-processing update steps to adapt to a fast approximation model with satisfying artistic effects, comparable to the optimization-based methods for an arbitrary style. The qualitative and quantitative analysis in the experiments demonstrates that the proposed approach achieves high-quality arbitrary artistic style transfer effectively, with a good trade-off among speed, flexibility, and quality.Comment: AAAI 2019 spotlight. Supplementary: http://wellyzhang.github.io/attach/aaai19zhang_supp.pdf GitHub: https://github.com/WellyZhang/MetaStyle Project: http://wellyzhang.github.io/project/metastyle.htm

    Using Principal Paths to Walk Through Music and Visual Art Style Spaces Induced by Convolutional Neural Networks

    Get PDF
    AbstractComputational intelligence, particularly deep learning, offers powerful tools for discriminating and generating samples such as images. Deep learning methods have been used in different artistic contexts for neural style transfer, artistic style recognition, and musical genre recognition. Using a constrained manifold analysis protocol, we discuss to what extent spaces induced by deep-learning convolutional neural networks can capture historical/stylistic progressions in music and visual art. We use a path-finding algorithm, called principal path, to move from one point to another. We apply it to the vector space induced by convolutional neural networks. We perform experiments with visual artworks and songs, considering a subset of classes. Within this simplified scenario, we recover a reasonable historical/stylistic progression in several cases. We use the principal path algorithm to conduct an evolutionary analysis of vector spaces induced by convolutional neural networks. We perform several experiments in the visual art and music spaces. The principal path algorithm finds reasonable connections between visual artworks and songs from different styles/genres with respect to the historical evolution when a subset of classes is considered. This approach could be used in many areas to extract evolutionary information from an arbitrary high-dimensional space and deliver interesting cognitive insights
    • …
    corecore