57,729 research outputs found

    Revisiting Interval Graphs for Network Science

    Full text link
    The vertices of an interval graph represent intervals over a real line where overlapping intervals denote that their corresponding vertices are adjacent. This implies that the vertices are measurable by a metric and there exists a linear structure in the system. The generalization is an embedding of a graph onto a multi-dimensional Euclidean space and it was used by scientists to study the multi-relational complexity of ecology. However the research went out of fashion in the 1980s and was not revisited when Network Science recently expressed interests with multi-relational networks known as multiplexes. This paper studies interval graphs from the perspective of Network Science

    Affinity Paths and Information Diffusion in Social Networks

    Full text link
    Widespread interest in the diffusion of information through social networks has produced a large number of Social Dynamics models. A majority of them use theoretical hypothesis to explain their diffusion mechanisms while the few empirically based ones average out their measures over many messages of different content. Our empirical research tracking the step-by-step email propagation of an invariable viral marketing message delves into the content impact and has discovered new and striking features. The topology and dynamics of the propagation cascades display patterns not inherited from the email networks carrying the message. Their disconnected, low transitivity, tree-like cascades present positive correlation between their nodes probability to forward the message and the average number of neighbors they target and show increased participants' involvement as the propagation paths length grows. Such patterns not described before, nor replicated by any of the existing models of information diffusion, can be explained if participants make their pass-along decisions based uniquely on local knowledge of their network neighbors affinity with the message content. We prove the plausibility of such mechanism through a stylized, agent-based model that replicates the \emph{Affinity Paths} observed in real information diffusion cascades.Comment: 11 pages, 7 figure

    Pioneers of Influence Propagation in Social Networks

    Get PDF
    With the growing importance of corporate viral marketing campaigns on online social networks, the interest in studies of influence propagation through networks is higher than ever. In a viral marketing campaign, a firm initially targets a small set of pioneers and hopes that they would influence a sizeable fraction of the population by diffusion of influence through the network. In general, any marketing campaign might fail to go viral in the first try. As such, it would be useful to have some guide to evaluate the effectiveness of the campaign and judge whether it is worthy of further resources, and in case the campaign has potential, how to hit upon a good pioneer who can make the campaign go viral. In this paper, we present a diffusion model developed by enriching the generalized random graph (a.k.a. configuration model) to provide insight into these questions. We offer the intuition behind the results on this model, rigorously proved in Blaszczyszyn & Gaurav(2013), and illustrate them here by taking examples of random networks having prototypical degree distributions - Poisson degree distribution, which is commonly used as a kind of benchmark, and Power Law degree distribution, which is normally used to approximate the real-world networks. On these networks, the members are assumed to have varying attitudes towards propagating the information. We analyze three cases, in particular - (1) Bernoulli transmissions, when a member influences each of its friend with probability p; (2) Node percolation, when a member influences all its friends with probability p and none with probability 1-p; (3) Coupon-collector transmissions, when a member randomly selects one of his friends K times with replacement. We assume that the configuration model is the closest approximation of a large online social network, when the information available about the network is very limited. The key insight offered by this study from a firm's perspective is regarding how to evaluate the effectiveness of a marketing campaign and do cost-benefit analysis by collecting relevant statistical data from the pioneers it selects. The campaign evaluation criterion is informed by the observation that if the parameters of the underlying network and the campaign effectiveness are such that the campaign can indeed reach a significant fraction of the population, then the set of good pioneers also forms a significant fraction of the population. Therefore, in such a case, the firms can even adopt the naive strategy of repeatedly picking and targeting some number of pioneers at random from the population. With this strategy, the probability of them picking a good pioneer will increase geometrically fast with the number of tries

    Dynamical Properties of Interaction Data

    Get PDF
    Network dynamics are typically presented as a time series of network properties captured at each period. The current approach examines the dynamical properties of transmission via novel measures on an integrated, temporally extended network representation of interaction data across time. Because it encodes time and interactions as network connections, static network measures can be applied to this "temporal web" to reveal features of the dynamics themselves. Here we provide the technical details and apply it to agent-based implementations of the well-known SEIR and SEIS epidemiological models.Comment: 29 pages, 15 figure
    • …
    corecore