4,746 research outputs found

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Mobility through Heterogeneous Networks in a 4G Environment

    Get PDF
    Serving and Managing users in a heterogeneous environment. 17th WWRF Meeting in Heidelberg, Germany, 15 - 17 November 2006. [Proceeding presented at WG3 - Co-operative and Ad-hoc Networks]The increase will of ubiquitous access of the users to the requested services points towards the integration of heterogeneous networks. In this sense, a user shall be able to access its services through different access technologies, such as WLAN, Wimax, UMTS and DVB technologies, from the same or different network operators, and to seamless move between different networks with active communications. In this paper we propose a mobility architecture able to support this users’ ubiquitous access and seamless movement, while simultaneously bringing a large flexibility to access network operators

    Mobile object location discovery in unpredictable environments

    Get PDF
    Emerging mobile and ubiquitous computing environments present hard challenges to software engineering. The use of mobile code has been suggested as a natural fit for simplifing software development for these environments. However, the task of discovering mobile code location becomes a problem in unpredictable environments when using existing strategies, designed with fixed and relatively stable networks in mind. This paper introduces AMOS, a mobile code platform augmented with a structured overlay network. We demonstrate how the location discovery strategy of AMOS has better reliability and scalability properties than existing approaches, with minimal communication overhead. Finally, we demonstrate how AMOS can provide autonomous distribution of effort fairly throughout a network using probabilistic methods that requires no global knowledge of host capabilities

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD
    corecore