2,376 research outputs found

    Graph Mining for Cybersecurity: A Survey

    Full text link
    The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters

    Full text link
    Graph Neural Networks (GNNs) have been widely applied to fraud detection problems in recent years, revealing the suspiciousness of nodes by aggregating their neighborhood information via different relations. However, few prior works have noticed the camouflage behavior of fraudsters, which could hamper the performance of GNN-based fraud detectors during the aggregation process. In this paper, we introduce two types of camouflages based on recent empirical studies, i.e., the feature camouflage and the relation camouflage. Existing GNNs have not addressed these two camouflages, which results in their poor performance in fraud detection problems. Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages. Concretely, we first devise a label-aware similarity measure to find informative neighboring nodes. Then, we leverage reinforcement learning (RL) to find the optimal amounts of neighbors to be selected. Finally, the selected neighbors across different relations are aggregated together. Comprehensive experiments on two real-world fraud datasets demonstrate the effectiveness of the RL algorithm. The proposed CARE-GNN also outperforms state-of-the-art GNNs and GNN-based fraud detectors. We integrate all GNN-based fraud detectors as an opensource toolbox: https://github.com/safe-graph/DGFraud. The CARE-GNN code and datasets are available at https://github.com/YingtongDou/CARE-GNN.Comment: Accepted by CIKM 202

    Email phishing detection with BLSTM and word embeddings

    Get PDF
    The paper presents the email phishing detection method that uses BLSTM as a deep learning model. For feature extraction word embeddings ahs been used. Presented results demonstrate high accuracy and precision
    • …
    corecore