50,134 research outputs found

    Hierarchical Multi-Project Planning and Supply Chain Management: an Integrated Framework

    Get PDF
    This work focuses on the need for new knowledge to allow hierarchical multi-project management to be conducted in the construction industry, which is characterised by high uncertainty, fragmentation, complex decisions, dynamic changes and long-distance communication. A dynamic integrated project management approach is required at strategic, tactical and operational levels in order to achieve adaptability. The work sees the multi-project planning and control problem in the context of supply chain management at main contractor companies. A portfolio manager must select and prioritise the projects, bid and negotiate with a wide range of clients, while project managers are dealing with subcontractors, suppliers, etc whose relationships and collaborations are critical to the optimisation of schedules in which time, cost and safety (etc) criteria must be achieved. Literature review and case studies were used to investigate existing approaches to hierarchical multi-project management, to identify the relationships and interactions between the parties concerned, and to investigate the possibilities for integration. A system framework was developed using a multi-agent-system architecture and utilising procedures adapted from literature to deal with short, medium and long-term planning. The framework is based on in-depth case study and integrates time-cost trade-off for project optimisation with multi-attribute utility theory to facilitate project scheduling, subcontractor selection and bid negotiation at the single project level. In addition, at the enterprise level, key performance indicator rule models are devised to align enterprise supply chain configuration (strategic decision) with bid selection and bid preparation/negotiation (tactical decision) and project supply chain selection (operational decision). Across the hierarchical framework the required quantitative and qualitative methods are integrated for project scheduling, risk assessment and subcontractor evaluation. Thus, experience sharing and knowledge management facilitate project planning across the scattered construction sites. The mathematical aspects were verified using real data from in-depth case study and a test case. The correctness, usefulness and applicability of the framework for users was assessed by creating a prototype Multi Agent System-Decision Support System (MAS-DSS) which was evaluated empirically with four case studies in national, international, large and small companies. The positive feedback from these cases indicates strong acceptance of the framework by experienced practitioners. It provides an original contribution to the literature on planning and supply chain management by integrating a practical solution for the dynamic and uncertain complex multi-project environment of the construction industry

    Multi Site Coordination using a Multi-Agent System

    Get PDF
    A new approach of coordination of decisions in a multi site system is proposed. It is based this approach on a multi-agent concept and on the principle of distributed network of enterprises. For this purpose, each enterprise is defined as autonomous and performs simultaneously at the local and global levels. The basic component of our approach is a so-called Virtual Enterprise Node (VEN), where the enterprise network is represented as a set of tiers (like in a product breakdown structure). Within the network, each partner constitutes a VEN, which is in contact with several customers and suppliers. Exchanges between the VENs ensure the autonomy of decision, and guarantiee the consistency of information and material flows. Only two complementary VEN agents are necessary: one for external interactions, the Negotiator Agent (NA) and one for the planning of internal decisions, the Planner Agent (PA). If supply problems occur in the network, two other agents are defined: the Tier Negotiator Agent (TNA) working at the tier level only and the Supply Chain Mediator Agent (SCMA) working at the level of the enterprise network. These two agents are only active when the perturbation occurs. Otherwise, the VENs process the flow of information alone. With this new approach, managing enterprise network becomes much more transparent and looks like managing a simple enterprise in the network. The use of a Multi-Agent System (MAS) allows physical distribution of the decisional system, and procures a heterarchical organization structure with a decentralized control that guaranties the autonomy of each entity and the flexibility of the network

    An agent-based negotiation model to support partner selection in a virtual enterprise

    Get PDF
    Session - MP-Fd Supply Chain Management & Logistics 4: cie182hk-1Conference Theme: Soft Computing Techniques for Advanced Manufacturing and Service SystemsIn response to the global business competitive environment, it is common for several companies to participate in a virtual enterprise (VE) to cooperate and collaborate dynamically to complete a common business opportunity. This paper proposes an agent-based negotiation model to support the partner selection process in a VE. To begin with, the VE partner selection problem is abstracted as a buyer-seller relationship such that the VE initiator is the buyer and the VE partners are sellers or vice verse. In the multi-agent system (MAS) that supports the proposed negotiation model, autonomous agents are established to represent various parties and functions of the VE. For instance, a buyer agent represents the VE initiator and the potential partners are represented by seller agents. Thus, the VE partner evaluation and selection problem is the process of finding the partners that are able to provide the buyer with the right quality products and services at the right price and at the right time. Evaluation and selection of partners is a typical multiattribute decision making (MADM) problem involving various issues that can both be qualitative and quantitative.published_or_final_versionThe 40th International Conference on Computers & Industrial Engineering (CIE40), Awaji City, Japan, 25-28 July 2010. In Proceedings of the International Conference on Computers and Industrial Engineering, 2010, p. 1-

    A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach

    Full text link
    A prominent and contemporary challenge for supply chain (SC) managers concerns the coordination of the efforts of the nodes of the SC in order to mitigate unpredictable market behaviour and satisfy variable customer demand. A productive response to this challenge is to share pertinent market-related information, on a timely basis, in order to effectively manage the decision-making associated with the SC production and transportation planning processes. This paper analyses the most well-known reference modelling languages and frameworks in the collaborative SC field and proposes a novel reference architecture, based upon the Zachman Framework (ZF), for supporting collaborative plan- ning (CP) in multi-level, SC networks. The architecture is applied to an automotive supply chain configuration, where, under a collaborative and decentralised approach, improvements in the service levels for each node were observed. The architecture was shown to provide the base discipline for the organisation of the processes required to manage the CP activity.The authors thanks the support from the project 'Operations Design and Management in Global Supply Chains (GLOBOP)' (Ref. DPI2012-38061-C02-01), funded by the Ministry of Science and Education of Spain, for the supply chain environment research contribution.Hernández Hormazábal, JE.; Lyons, AC.; Poler, R.; Mula, J.; Goncalves, R. (2014). A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach. Production Planning and Control. 25(13-14):1118-1134. https://doi.org/10.1080/09537287.2013.808842S111811342513-14Al-Mutawah, K., Lee, V., & Cheung, Y. (2008). A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing, 20(5), 593-610. doi:10.1007/s10845-008-0142-0Baïna, S., Panetto, H., & Morel, G. (2009). New paradigms for a product oriented modelling: Case study for traceability. Computers in Industry, 60(3), 172-183. doi:10.1016/j.compind.2008.12.004Berasategi, L., Arana, J., & Castellano, E. (2011). A comprehensive framework for collaborative networked innovation. Production Planning & Control, 22(5-6), 581-593. doi:10.1080/09537287.2010.536628Chan, H. K., & Chan, F. T. S. (2009). A review of coordination studies in the context of supply chain dynamics. International Journal of Production Research, 48(10), 2793-2819. doi:10.1080/00207540902791843Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Choi, Y., Kang, D., Chae, H., & Kim, K. (2006). An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology, 35(11-12), 1065-1078. doi:10.1007/s00170-006-0789-7Choi, Y., Kim, K., & Kim, C. (2005). A design chain collaboration framework using reference models. The International Journal of Advanced Manufacturing Technology, 26(1-2), 183-190. doi:10.1007/s00170-004-2262-9COLQUHOUN, G. J., BAINES, R. W., & CROSSLEY, R. (1993). A state of the art review of IDEFO. International Journal of Computer Integrated Manufacturing, 6(4), 252-264. doi:10.1080/09511929308944576Danilovic, M., & Winroth, M. (2005). A tentative framework for analyzing integration in collaborative manufacturing network settings: a case study. Journal of Engineering and Technology Management, 22(1-2), 141-158. doi:10.1016/j.jengtecman.2004.11.008Derrouiche, R., Neubert, G., Bouras, A., & Savino, M. (2010). B2B relationship management: a framework to explore the impact of collaboration. Production Planning & Control, 21(6), 528-546. doi:10.1080/09537287.2010.488932Dudek, G., & Stadtler, H. (2005). Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research, 163(3), 668-687. doi:10.1016/j.ejor.2004.01.014Gruat La Forme, F.-A., Genoulaz, V. B., & Campagne, J.-P. (2007). A framework to analyse collaborative performance. Computers in Industry, 58(7), 687-697. doi:10.1016/j.compind.2007.05.007Gutiérrez Vela, F. L., Isla Montes, J. L., Paderewski Rodríguez, P., Sánchez Román, M., & Jiménez Valverde, B. (2007). An architecture for access control management in collaborative enterprise systems based on organization models. Science of Computer Programming, 66(1), 44-59. doi:10.1016/j.scico.2006.10.005Hernández, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The Reverse Logistic Process of an Automobile Supply Chain Network Supported by a Collaborative Decision-Making Model. Group Decision and Negotiation, 20(1), 79-114. doi:10.1007/s10726-010-9205-7Hernández, J. E., J. Mula, R. Poler, and A. C. Lyons. 2013. “Collaborative Planning in Multi-Tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-Agent System.”Group Decision and Negotiation Journal. doi:10.1007/s10726-013-9358-2.Jardim-Goncalves, R., Grilo, A., Agostinho, C., Lampathaki, F., & Charalabidis, Y. (2013). Systematisation of Interoperability Body of Knowledge: the foundation for Enterprise Interoperability as a science. Enterprise Information Systems, 7(1), 7-32. doi:10.1080/17517575.2012.684401Kampstra, R. P., Ashayeri, J., & Gattorna, J. L. (2006). Realities of supply chain collaboration. The International Journal of Logistics Management, 17(3), 312-330. doi:10.1108/09574090610717509Kim, W., Chung, M. J., Qureshi, K., & Choi, Y. K. (2006). WSCPC: An architecture using semantic web services for collaborative product commerce. Computers in Industry, 57(8-9), 787-796. doi:10.1016/j.compind.2006.04.007Ku, K.-C., Kao, H.-P., & Gurumurthy, C. K. (2007). Virtual inter-firm collaborative framework—An IC foundry merger/acquisition project. Technovation, 27(6-7), 388-401. doi:10.1016/j.technovation.2007.02.010LEE, J., GRUNINGER, M., JIN, Y., MALONE, T., TATE, A., YOST, G., & OTHER MEMBERS OF THE PIF WORKING GROUP. (1998). The Process Interchange Format and Framework. The Knowledge Engineering Review, 13(1), 91-120. doi:10.1017/s0269888998001015Lee, J., Chae, H., Kim, C.-H., & Kim, K. (2009). Design of product ontology architecture for collaborative enterprises. Expert Systems with Applications, 36(2), 2300-2309. doi:10.1016/j.eswa.2007.12.042Liu, J., Zhang, S., & Hu, J. (2005). A case study of an inter-enterprise workflow-supported supply chain management system. Information & Management, 42(3), 441-454. doi:10.1016/j.im.2004.01.010Marques, D. M. N., & Guerrini, F. M. (2011). Reference model for implementing an MRP system in a highly diverse component and seasonal lean production environment. Production Planning & Control, 23(8), 609-623. doi:10.1080/09537287.2011.572469Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Olorunniwo, F. O., & Li, X. (2010). Information sharing and collaboration practices in reverse logistics. Supply Chain Management: An International Journal, 15(6), 454-462. doi:10.1108/13598541011080437Recker, J., Rosemann, M., Indulska, M., … Green, P. (2009). Business Process Modeling- A Comparative Analysis. Journal of the Association for Information Systems, 10(04), 333-363. doi:10.17705/1jais.00193Rodriguez, K., & Al-Ashaab, A. (2005). Knowledge web-based system architecture for collaborative product development. Computers in Industry, 56(1), 125-140. doi:10.1016/j.compind.2004.07.004Romero, F., Company, P., Agost, M.-J., & Vila, C. (2008). Activity modelling in a collaborative ceramic tile design chain: an enhanced IDEF0 approach. Research in Engineering Design, 19(1), 1-20. doi:10.1007/s00163-007-0040-zSandberg, E. (2007). Logistics collaboration in supply chains: practice vs. theory. The International Journal of Logistics Management, 18(2), 274-293. doi:10.1108/09574090710816977Spekman, R. E., & Carraway, R. (2006). Making the transition to collaborative buyer–seller relationships: An emerging framework. Industrial Marketing Management, 35(1), 10-19. doi:10.1016/j.indmarman.2005.07.002Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2), 115-139. doi:10.1147/sj.132.0115Ulieru, M. (2000). A multi-resolution collaborative architecture for web-centric global manufacturing. Information Sciences, 127(1-2), 3-21. doi:10.1016/s0020-0255(00)00026-8Van der Aalst, W. M. P. (1999). Formalization and verification of event-driven process chains. Information and Software Technology, 41(10), 639-650. doi:10.1016/s0950-5849(99)00016-6Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276-292. doi:10.1147/sj.263.0276Zapp, M., Forster, C., Verl, A., & Bauernhansl, T. (2012). A Reference Model for Collaborative Capacity Planning Between Automotive and Semiconductor Industry. Procedia CIRP, 3, 155-160. doi:10.1016/j.procir.2012.07.028Zeng, Y., Wang, L., Deng, X., Cao, X., & Khundker, N. (2012). Secure collaboration in global design and supply chain environment: Problem analysis and literature review. Computers in Industry, 63(6), 545-556. doi:10.1016/j.compind.2012.05.00
    corecore