124 research outputs found

    Generating Relation Algebras for Qualitative Spatial Reasoning

    Get PDF
    Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras

    06341 Abstracts Collection -- Computational Structures for Modelling Space, Time and Causality

    Get PDF
    From 20.08.06 to 25.08.06, the Dagstuhl Seminar 06341 ``Computational Structures for Modelling Space, Time and Causality\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki
    • …
    corecore