310 research outputs found

    Numerical methods for simulation of electrical activity in the myocardial tissue

    Get PDF
    Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour of this electrical activity. Generating an efficient numerical solution of these models is a challenging task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency of the numerical solution process. In this thesis, we discuss two sets of experiments that test ideas for making the numerical solution process more efficient. In the first set of experiments, we examine the numerical solution of four single cell cardiac electrophysiological models, which consist solely of ODEs. We study the efficiency of using implicit-explicit Runge-Kutta (IMEX-RK) splitting methods to solve these models. We find that variable step-size implementations of IMEX-RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform most methods commonly used in practice for two of the models, and they outperform all methods commonly used in practice for the remaining models. In the second set of experiments, we examine the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically solved separately. We focus these experiments on numerical methods for the solution of the two PDEs in the bidomain model. The most popular method for this task, the Crank-Nicolson method, produces unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method to eliminate these oscillations. We find that although the SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude error tolerances

    A stability index for detonation waves in Majda's model for reacting flow

    Full text link
    Using Evans function techniques, we develop a stability index for weak and strong detonation waves analogous to that developed for shock waves in [GZ,BSZ], yielding useful necessary conditions for stability. Here, we carry out the analysis in the context of the Majda model, a simplified model for reacting flow; the method is extended to the full Navier-Stokes equations of reacting flow in [Ly,LyZ]. The resulting stability condition is satisfied for all nondegenerate, i.e., spatially exponentially decaying, weak and strong detonations of the Majda model in agreement with numerical experiments of [CMR] and analytical results of [Sz,LY] for a related model of Majda and Rosales. We discuss also the role in the ZND limit of degenerate, subalgebraically decaying weak detonation and (for a modified, ``bump-type'' ignition function) deflagration profiles, as discussed in [GS.1-2] for the full equations.Comment: 36 pages, 3 figure

    Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation

    Get PDF
    In this work we introduce and analyse a stochastic functional equation, which contains both delayed and advanced arguments. This equation results from adding a stochastic term to the discrete FitzHugh-Nagumo equation which arises in mathematical models of nerve conduction. A numerical method is introduced to compute approximate solutions and some numerical experiments are carried out to investigate their dynamical behaviour and compare them with the solutions of the corresponding deterministic equation

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic

    Mathematical Methods, Modelling and Applications

    Get PDF
    This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods

    Towards New High-Order Operator Splitting Time-Integration Methods

    Get PDF
    Operator splitting (OS) methods represent a powerful strategy to solve an extensive range of mathematical models in the form of differential equations. They have a long and celebrated history, having been successfully used for well over half a century to provide efficient numerical solutions to challenging problems. In fact, OS methods are often the only viable way to solve many problems in practice. The simplest, and perhaps, most well-known OS methods are Lie--Trotter--Godunov and the Strang--Marchuk methods. They compute a numerical solution that is first-, and second-order accurate in time, respectively. OS methods can be derived by imposing order conditions using the Campbell--Baker--Hausdorff formula. It follows that, by setting the appropriate order conditions, it is possible to derive OS methods of any desired order. An important observation regarding OS methods with order higher than two is that, according to the Sheng--Suzuki theorem, at least one of their defining coefficients must be negative. Therefore, the time integration with OS methods of order higher than two has not been considered suitable to solve deterministic parabolic problems, because the necessary backward time integration would cause instabilities. Throughout this thesis, we focus our attention on high-order (i.e., order higher than two) OS methods. We successfully assess the convergence properties of some higher-order OS methods on diffusion-reaction problems describing cardiac electrophysiology and on an advection-diffusion-reaction problem describing chemical combustion. Furthermore, we compare the efficiency performance of higher-order methods to second-order methods. For all the cases considered, we confirm an improved efficiency performance compared to methods of lower order. Next, we observe how, when using OS and Runge--Kutta type methods to advance the time integration, we can construct a unique extended Butcher tableau with a similar structure to the ones describing Generalized Additive Runge--Kutta (GARK) methods. We define a combination of methods to be OS-GARK methods. We apply linear stability analysis to OS-GARK methods; this allows us to conveniently analyze the stability properties of any combination of OS and Runge--Kutta methods. Doing so, we are able to perform an eigenvalue analysis to understand and improve numerically unstable solutions

    Dynamical models in neuroscience: the delay FitzHugh-Nagumo equation

    Get PDF
    Il primo modello matematico in grado di descrivere il prototipo di un sistema eccitabile assimilabile ad un neurone fu sviluppato da R. FitzHugh e J. Nagumo nel 1961. Tale modello, per quanto schematico, rappresenta un importante punto di partenza per la ricerca nell'ambito neuroscientifico delle dinamiche neuronali, ed è infatti capostipite di una serie di lavori che hanno puntato a migliorare l’accuratezza e la predicibilità dei modelli matematici per le scienze. L’elevato grado di complessità nello studio dei neuroni e delle dinamiche inter-neuronali comporta, tuttavia, che molte delle caratteristiche e delle potenzialità dell’ambito non siano ancora state comprese appieno. In questo lavoro verrà approfondito un modello ispirato al lavoro originale di FitzHugh e Nagumo. Tale modello presenta l’introduzione di un termine di self-coupling con ritardo temporale nel sistema di equazioni differenziali, diventa dunque rappresentativo di modelli di campo medio in grado di descrivere gli stati macroscopici di un ensemble di neuroni. L'introduzione del ritardo è funzionale ad una descrizione più realistica dei sistemi neuronali, e produce una dinamica più ricca e complessa rispetto a quella presente nella versione originale del modello. Sarà mostrata l'esistenza di una soluzione a ciclo limite nel modello che comprende il termine di ritardo temporale, ove tale soluzione non può essere interpretata nell’ambito delle biforcazioni di Hopf. Allo scopo di esplorare alcune delle caratteristiche basilari della modellizzazione del neurone, verrà principalmente utilizzata l’impostazione della teoria dei sistemi dinamici, integrando dove necessario con alcune nozioni provenienti dall’ambito fisiologico. In conclusione sarà riportata una sezione di approfondimento sulla integrazione numerica delle equazioni differenziali con ritardo

    Nanoinformatics

    Get PDF
    Machine learning; Big data; Atomic resolution characterization; First-principles calculations; Nanomaterials synthesi
    • …
    corecore