7,297 research outputs found

    Aggregate Interference Modeling in Cognitive Radio Networks with Power and Contention Control

    Full text link
    In this paper, we present an interference model for cognitive radio (CR) networks employing power control, contention control or hybrid power/contention control schemes. For the first case, a power control scheme is proposed to govern the transmission power of a CR node. For the second one, a contention control scheme at the media access control (MAC) layer, based on carrier sense multiple access with collision avoidance (CSMA/CA), is proposed to coordinate the operation of CR nodes with transmission requests. The probability density functions of the interference received at a primary receiver from a CR network are first derived numerically for these two cases. For the hybrid case, where power and contention controls are jointly adopted by a CR node to govern its transmission, the interference is analyzed and compared with that of the first two schemes by simulations. Then, the interference distributions under the first two control schemes are fitted by log-normal distributions with greatly reduced complexity. Moreover, the effect of a hidden primary receiver on the interference experienced at the receiver is investigated. It is demonstrated that both power and contention controls are effective approaches to alleviate the interference caused by CR networks. Some in-depth analysis of the impact of key parameters on the interference of CR networks is given via numerical studies as well.Comment: 24 pages, 8 figures, submitted to IEEE Trans. Communications in July 201

    Communication in a Poisson Field of Interferers -- Part I: Interference Distribution and Error Probability

    Full text link
    We present a mathematical model for communication subject to both network interference and noise. We introduce a framework where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We consider both cases of slow and fast-varying interferer positions. The paper is comprised of two separate parts. In Part I, we determine the distribution of the aggregate network interference at the output of a linear receiver. We characterize the error performance of the link, in terms of average and outage probabilities. The proposed model is valid for any linear modulation scheme (e.g., M-ary phase shift keying or M-ary quadrature amplitude modulation), and captures all the essential physical parameters that affect network interference. Our work generalizes the conventional analysis of communication in the presence of additive white Gaussian noise and fast fading, allowing the traditional results to be extended to include the effect of network interference. In Part II of the paper, we derive the capacity of the link when subject to network interference and noise, and characterize the spectrum of the aggregate interference.Comment: To appear in IEEE Transactions on Wireless Communication

    Spectrum Sensing Performance in Cognitive Radio Networks with Multiple Primary Users

    Get PDF
    Radio Spectrum sensing has been a topic of strong research in the last years due to its importance to Cognitive Radio (CR) systems. However, in Cognitive Radio Networks (CRNs) with multiple Primary Users (PUs), the Secondary Users (SUs) can often detect PUs that are located outside the sensing range, due to the level of the aggregated interference caused by that PUs. This effect, known as Spatial False Alarm (SFA), degrades the performance of CRNs, because it decreases the SUs’ medium access probability. This work characterizes the SFA effect in a CRN, identifying possible actions to attenuate it. Adopting Energy-based sensing (EBS) in each SU, this work starts to characterize the interference caused by multiple PUs located outside a desired sensing region. The interference formulation is then used to write the probabilities of detection and false alarm, and closed form expressions are presented and validated through simulation. The first remark to be made is that the SFA can be neglected, depending on the path loss factor and the number of samples collected by the energy detector to decide the spectrum’s occupancy state. However, it is shown that by increasing the number of samples needed to increase the sensing accuracy, the SUs may degrade their throughput, namely if SUs are equipped with a single radio that is sequentially used for sensing and transmission. Assuming this scenario, this paper ends by providing a bound for the maximum throughput achieved in a CRN with multiple active PUs and for a given level of PUs’ detection inside the SUs’ sensing region. The results presented in the paper show the impact of path loss and EBS parameterization on SUs’ throughput and are particularly useful to guide the design and parametrization of multi-hop CRNs, including future ad hoc cognitive radio networks considering multiple PUs

    Interference modelling and management for cognitive radio networks

    Get PDF
    Radio spectrum is becoming increasingly scarce as more and more devices go wireless. Meanwhile, studies indicate that the assigned spectrum is not fully utilised. Cognitive radio (CR) technology is envisioned to be a promising solution to address the imbalance between spectrum scarcity and spectrum underutilisation. It improves the spectrum utilisation by reusing the unused or underutilised spectrum owned by incumbent systems (primary systems). With the introduction of CR networks, two types of interference originating from CR networks are introduced. They are the interference from CR to primary networks (CR-primary interference) and the interference among spectrum-sharing CR nodes (CR-CR interference). The interference should be well controlled and managed in order not to jeopardise the operation of the primary network and to improve the performance of CR systems. This thesis investigates the interference in CR networks by modelling and mitigating the CR-primary interference and analysing the CR-CR interference channels. Firstly, the CR-primary interference is modelled for multiple CR nodes sharing the spectrum with the primary system. The probability density functions of CR-primary interference are derived for CR networks adopting different interference management schemes. The relationship between CR operating parameters and the resulting CRprimary interference is investigated. It sheds light on the deployment of CR networks to better protect the primary system. Secondly, various interference mitigation techniques that are applicable to CR networks are reviewed. Two novel precoding schemes for CR multiple-input multipleoutput (MIMO) systems are proposed to mitigate the CR-primary interference and maximise the CR throughput. To further reduce the CR-primary interference, we also approach interference mitigation from a cross-layer perspective by jointly considering channel allocation in the media access control layer and precoding in the physical layer of CR MIMO systems. Finally, we analyse the underlying interference channels among spectrum-sharing CR users when they interfere with each other. The Pareto rate region for multi-user MIMO interference systems is characterised. Various rate region convexification schemes are examined to convexify the rate region. Then, game theory is applied to the interference system to coordinate the operation of each CR user. Nash bargaining over MIMO interference systems is characterised as well. The research presented in this thesis reveals the impact of CR operation on the resulting CR-primary network, how to mitigate the CR-primary interference and how to coordinate the spectrum-sharing CR users. It forms the fundamental basis for interference management in CR systems and consequently gives insights into the design and deployment of CR networks
    corecore