147,688 research outputs found

    Modelling iteration in engineering design

    Get PDF
    This paper examines design iteration and its modelling in the simulation of New Product Development (NPD) processes. A framework comprising six perspectives of iteration is proposed and it is argued that the importance of each perspective depends upon domain-specific factors. Key challenges of modelling iteration in process simulation frameworks such as the Design Structure Matrix are discussed, and we argue that no single model or framework can fully capture the iterative dynamics of an NPD process. To conclude, we propose that consideration of iteration and its representation could help identify the most appropriate modelling framework for a given process and modelling objective, thereby improving the fidelity of design process simulation models and increasing their utility

    An Agent-based approach to modelling integrated product teams undertaking a design activity.

    No full text
    The interactions between individual designers, within integrated product teams, and the nature of design tasks, all have a significant impact upon how well a design task can be performed, and hence the quality of the resultant product and the time in which it can be delivered. In this paper we describe an ongoing research project which aims to model integrated product teams through the use of multi-agent systems. We first describe the background and rationale for our work, and then present our initial computational model and results from the simulation of an integrated product team. The paper concludes with a discussion of how the model will evolve to improve the accuracy of the simulation

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    How Should Life Support Be Modeled and Simulated?

    Get PDF
    Why do most space life support research groups build and investigate large models for systems simulation? The need for them seems accepted, but are we asking the right questions and solving the real problems? The modeling results leave many questions unanswered. How then should space life support be modeled and simulated? Life support system research and development uses modeling and simulation to study dynamic behavior as part of systems engineering and analysis. It is used to size material flows and buffers and plan contingent operations. A DoD sponsored study used the systems engineering approach to define a set of best practices for modeling and simulation. These best practices describe a systems engineering process of developing and validating requirements, defining and analyzing the model concept, and designing and testing the model. Other general principles for modeling and simulation are presented. Some specific additional advice includes performing a static analysis before developing a dynamic simulation, applying the mass and energy conservation laws, modeling on the appropriate system level, using simplified subsystem representations, designing the model to solve a specific problem, and testing the model on several different problems. Modeling and simulation is necessary in life support design but many problems are outside its scope

    Design project planning, monitoring and re-planning through process simulation

    Get PDF
    Effective management of design schedules is a major concern in industry, since timely project delivery can have a significant influence on a company’s profitability. Based on insights gained through a case study of planning practice in aero-engine component design, this paper examines how task network simulation models can be deployed in a new way to support design process planning. Our method shows how simulation can be used to reconcile a description of design activities and information flows with project targets such as milestone delivery dates. It also shows how monitoring and re-planning can be supported using the non-ideal metrics which the case study revealed are used to monitor processes in practice. The approach is presented as a theoretical contribution which requires further work to implement and evaluate in practice
    • 

    corecore