4,752 research outputs found

    Fault Detection and Isolation In Gas Turbine Engines

    Get PDF
    Aircraft engines are complex systems that require high reliability and adequate monitoring to ensure flight safety and performance. Moreover, timely maintenance has necessitated the need for intelligent capabilities and functionalities for detection and diagnosis of anomalies and faults. In this thesis, fault diagnosis in aircraft jet engines is investigated by using intelligent-based methodologies. Two different artificial neural network schemes are introduced for this purpose. The first fault detection and isolation (FDI) scheme for an aircraft jet engine is based on the multiple model approach and utilizes dynamic neural networks (DNN). Towards this end, multiple DNNs are constructed to learn the nonlinear dynamics of the aircraft jet engine. Each DNN represents a specific operating mode of the healthy or the faulty conditions of the jet engine. The inherent challenges in fault diagnosis systems is that their performance could be excessively reduced under sensor fault and sensor degradation conditions (such as drift and noise). This thesis proposes the use of data validation and sensor fault detection to improve the performance of the overall fault diagnosis system. In this regard the concept of nonlinear principle components analysis (NPCA) is exploited by using autoassociative neural networks. The second FDI scheme is developed by using autoassociative neural networks (ANN). A parallel bank of ANNs are proposed to diagnose sensor faults as well as component faults in the aircraft jet engine. Unlike most FDI techniques, the proposed solution simultaneously accomplishes sensor faults and component faults detection and isolation (FDI) within a unified diagnostic framework. In both proposed FDI approaches, by using the residuals that are generated from the difference between each network output and the measured jet engine output as well as selection of a proper threshold for each network, criteria are established for performing the fault diagnosis of the jet engines. The fault diagnosis tasks consists of determining the time as well as the location of a fault occurrence subject to the presence of disturbances and measurement noise. Simulation results presented, demonstrate and illustrate the effective performance of our proposed neural network-based FDI strategies

    Neural Networks for Gas Turbine Diagnosis

    Get PDF
    The present chapter addresses the problems of gas turbine gas path diagnostics solved using artificial neural networks. As a very complex and expensive mechanical system, a gas turbine should be effectively monitored and diagnosed. Being universal and powerful approximation and classification techniques, neural networks have become widespread in gas turbine health monitoring over the past few years. Applications of such networks as a multilayer perceptron, radial basis network, probabilistic neural network, and support vector network were reported. However, there is a lack of manuals that summarize neural network applications for gas turbine diagnosis

    Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies

    Get PDF
    Maintenance is crucial for aircraft engines because of the demanding conditions to which they are exposed during operation. A proper maintenance plan is essential for ensuring safe flights and prolonging the life of the engines. It also plays a major role in managing costs for aeronautical companies. Various forms of degradation can affect different engine components. To optimize cost management, modern maintenance plans utilize diagnostic and prognostic techniques, such as Engine Health Monitoring (EHM), which assesses the health of the engine based on monitored parameters. In recent years, various EHM systems have been developed utilizing computational techniques. These algorithms are often enhanced by utilizing data reduction and noise filtering tools, which help to minimize computational time and efforts, and to improve performance by reducing noise from sensor data. This paper discusses the various mechanisms that lead to the degradation of aircraft engine components and the impact on engine performance. Additionally, it provides an overview of the most commonly used data reduction and diagnostic and prognostic techniques

    Flight deck engine advisor

    Get PDF
    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations

    Civil Space Technology Initiative: a First Step

    Get PDF
    This is the first published overview of OAST's focused program, the Civil Space Technology Initiative, (CSTI) which started in FY88. This publication describes the goals, technical approach, current status, and plans for CSTI. Periodic updates are planned

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975

    Real-time diagnostics for a reusable rocket engine

    Get PDF
    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2

    Real-time fault diagnosis for propulsion systems

    Get PDF
    Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations

    Gas turbine diagnosis using a fault isolation enhanced GPA

    Get PDF
    Gas Path Analysis (GPA) and its different derivatives have been developed for more than thirty years and used widely and successfully by many gas turbine manufacturers and operators. In gas turbine gas path component diagnosis, it has been recognized for a long time that GPA would be more successful if degraded components could be located. Unfortunately, only the deviation of measurable parameters is monitored in operation and information about the degraded components is normally not available. In this research, a two-step diagnostic approach is introduced, where a pattern matching method is used first and further developed to isolate degraded components; then Gas Path Analysis is applied to assess the quantity of degradation. A gas turbine performance simulation program, Cranfield University TURBOMATCH, has been modified to simulate the diagnostic process. A model gas turbine engine similar to Rolls-Royce aero AVON is used to test the effectiveness of the approach. It is found that the developed fault isolation method can isolate degraded components accurately and enhance the effectiveness of the quantitative assessment of the degradation with Gas Path Analysis (GPA) in gas turbine diagnostics. Copyright © 2004 by ASM
    corecore