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ABSTRACT

Fault Detection and Isolation In Gas Turbine Engines

Zakieh Sadough

Aircraft engines are complex systems that require high reliability and adequate monitoring to

ensure flight safety and performance. Moreover, timely maintenance has necessitated the need

for intelligent capabilities and functionalities for detection and diagnosis of anomalies and

faults. In this thesis, fault diagnosis in aircraft jet engines is investigated by using intelligent-

based methodologies. Two different artificial neural network schemes are introduced for this

purpose. The first fault detection and isolation (FDI) scheme for an aircraft jet engine is based

on the multiple model approach and utilizes dynamic neural networks (DNN). Towards this

end, multiple DNNs are constructed to learn the nonlinear dynamics of the aircraft jet engine.

Each DNN represents a specific operating mode of the healthy or the faulty conditions of the

jet engine.

The inherent challenges in fault diagnosis systems is that their performance could be

excessively reduced under sensor fault and sensor degradation conditions (such as drift and

noise). This thesis proposes the use of data validation and sensor fault detection to improve

the performance of the overall fault diagnosis system. In this regard the concept of nonlinear

principle components analysis (NPCA) is exploited by using autoassociative neural networks.

The second FDI scheme is developed by using autoassociative neural networks (ANN).
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A parallel bank of ANNs are proposed to diagnose sensor faults as well as component faults

in the aircraft jet engine. Unlike most FDI techniques, the proposed solution simultaneously

accomplishes sensor faults and component faults detection and isolation (FDI) within a unified

diagnostic framework.

In both proposed FDI approaches, by using the residuals that are generated from the

difference between each network output and the measured jet engine output as well as selec-

tion of a proper threshold for each network, criteria are established for performing the fault

diagnosis of the jet engines. The fault diagnosis tasks consists of determining the time as well

as the location of a fault occurrence subject to the presence of disturbances and measurement

noise. Simulation results presented, demonstrate and illustrate the effective performance of

our proposed neural network-based FDI strategies.
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Chapter 1

Introduction

Modern complex systems require high precision and reliable performance due to the

criticality and complexity. Fault diagnosis is essential for attaining such a high reliability in

safety critical systems. In general, fault diagnosis is a process (or a technique) to detect the

presence of faults and to determine their locations and to estimate their significance or sever-

ities in a system that is being monitored. The goal of fault detection and isolation system

is to improve the reliability, availability and safety. Traditionally, redundancy and therefore

fault diagnosis is achieved by using extra hardware, which is known as hardware redundancy

approach to fault diagnosis. In this approach, multiple critical components such as an actuator

or a sensor is used to control or measure a particular variable in the system. Typically, a voting

technique is applied to the hardware redundant system to decide if a fault has occurred and

the location of the component among all the redundant system parts. The major problems

1



encountered with hardware redundancy is that the increase in sensors leads to an increase in

cost, weight, and complexity [2]. Consequently, another approach for generating redundancy

known as the analytical redundancy was introduced in early 1970’s by Beard [9]. Analyti-

cal redundancy, by contrast, eliminates the need for additional instrumentation hardware. In

Figure 1.1, the hardware and analytical redundancy concepts are illustrated.

The analytical FDI approach can take a variety of forms including ordinary differential

equations, intelligent data-driven models, and expert system models. Therefore, analytical

redundancy-based fault diagnosis can generally be applied in three distinct frameworks based

on the way the knowledge about the system is utilized. The first one is the mathematical

model-based framework [2], [10–13], where a priori knowledge of the system is represented

by the system’s mathematical model derived by using physical principles. The second one

is the learning-based or computational intelligence-based framework [14, 15] which utilizes

system’s historical data and data-driven models of the system. References [16, 17] provide

comparison of various methods within the above two frameworks. Finally, the third frame-

work includes the expert system-based or fuzzy rule-based approaches to fault detection and

isolation (FDI) [18, 19], which use an expert’s knowledge of the system operation and its

failure modes to obtain a qualitative model of the system.

The analytical redundancy-based FDI, in general, consists of two main stages namely,

residual generation and residual evaluation (or decision making), as shown in Figure 1.2. The

residual generation process is based on comparison between the measured and the estimated

2



Figure 1.1: Analytical versus hardware redundancy based FDI [1].
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system outputs, the resulting differences generated between the measured signals and the cor-

responding estimated signals obtained from the model is called a residual signal. The residual

signal is expected to stay close to zero when no fault is present (normal operation) in the

system, but should distinguishably diverge from the zero neighbourhood when a fault occurs.

This property of the residual is used to determine whether or not faults are presented and

occurred.

In the residual evaluation stage, on the other hand, the generated residuals are inspected

for the likelihood of faults by analyzing the residual signal. The fault presence is determined

by applying a decision rule. The decision rule may simply be a threshold test on the instan-

taneous values or the moving window averages of the residuals, or it may consists of more

complex statistical approaches such as, likelihood ratio testing or sequential probability ratio

testing [20, 21].

Figure 1.2: Schematic of a fault diagnosis approach [2].
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1.1 Motivation of the Work

In this thesis the problem of fault diagnosis in aircraft jet engines is addressed by using

intelligent-based methods. Fault diagnosis, that is the problem of fault detection and isola-

tion (FDI), of aircraft jet engine has been a matter of wide interest in recent years due to the

increasing demand and requirements on reliable operations and maintainability of these safety

critical systems. Engine related costs comprise a large portion of the direct operating cost of

an aircraft, particularly due to the overall maintenance costs of the propulsion system in air-

craft. Fault diagnosis technologies allow one to avoid heavy economic losses due to stopped

or aborted flights as well as the cost associated with untimely and unnecessary replacement of

the components and parts. On the other hand, an early diagnosis of faults and anomalies in

an engine makes it possible to perform important condition-based maintenance decisions and

actions as opposed to conventional time-based maintenance actions.

The removal of noise and outliers from measurement signals is a major problem in jet

engine fault diagnosis systems. The effectiveness and reliability of the FDI system is strongly

limited by measurement uncertainties. Sensor measurements are the first essential factors

needed for monitoring operating conditions of a jet engine to establish the fault diagnosis and

performance analysis. The above mentioned facts, calls for the necessity of validating the

quality of the measurement data prior to be used for health monitoring.

Sensor fault diagnosis is another point of investigation on engine performance evalua-

tion. Indeed, before the measurements can be used for engine condition assessment, it must
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be ensured that they correctly represent the measured physical quantities, namely that the

corresponding sensor readings do not contain a fault such as bias or drift. Diagnostic tools al-

lowing sensor fault detection are thus necessary and must be efficient specially in cases when

component faults occur.

1.2 Literature Review on Fault Diagnosis

In the problem of jet engine fault diagnosis one utilizes knowledge on the measured variables

taken along the engine’s gas path to determine how an engine system performance differs

from its desired state. Changes in the engine speeds, temperatures, pressures, fuel flows, etc.,

derive the required information for identifying the engine system malfunctions. Using such

characteristics the most popular diagnosis procedure has appeared in the literature as the so-

called Gas Path Analysis (GPA).

As expressed above the goal of GPA is to detect physical faults that consist of variety

of problems or combinations of anomalies and factors such as foreign object damage (FOD),

blade erosion and corrosion, worn seals, excess clearance or plugged nozzles, etc. Such physi-

cal faults cause changes in the thermodynamic performance of the engine and the components.

The condition of the components can be mathematically represented by a set of independent

performance parameters. The performance parameters that are mostly investigated in the lit-

erature are component efficiencies and flow capacities.
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Figure 1.3 shows the GPA’s main concepts [3]. In general, the fundamental idea un-

derlying this approach is that physical faults occurring in the engine cause a change in the

component performance as introduced by efficiencies and flow capacities which in turn pro-

duce observable changes in measurable parameters such as the temperature, pressure, speed,

etc. If changes are then observed in the gas path measurements, the problem would be in

detecting the fault and evaluating which module or thermodynamic parameter or components

parameters are responsible for that change. This itself may assist for the prospective isolation

of the physical faults.

A large number of methodologies have been proposed in the literature for GPA. Some of

these are Kalman filter approaches [6,7,22,23], neural networks [24,25], fuzzy logic [26,27],

probabalistic networks [28], genetic algorithms [29], and hybrid diagnosis [30].

Figure 1.3: GPA principle [3].
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1.2.1 Fault Diagnosis

A fault refers to unpredicted or unexpected deviation or change in a system’s behaviour from

that desired, for a bounded or unbounded period of time. The overall goals of the jet engine di-

agnostic system are to correctly detect, isolate and identify the changes in the engine modules.

In other words, a fault diagnosis system is capable of performing the three tasks of detection,

isolation, and identification of faults in a system, which are defined as follows [2]:

Fault detection: To make a binary decision whether something has gone wrong or that ev-

erything is fine.

Fault isolation: To determine the location of the fault, i.e., to identify which component,

sensor, or actuator has become faulty.

Fault identification To estimate the severity, type or nature of the fault.

Fault diagnosis algorithms are mainly divided into two categories, namely model-based

and data-driven (computational intelligent-based) techniques. Both model-based and data-

driven techniques have been extensively studied in the literature for health monitoring of air-

craft jet engines. Some of the important survey papers in the field of model-based FDI include

Betta and Pietrosanto [31], Frank [32], Venkatasubramanian [33], [34], Isermann [10] and

Marinai [35]. In recent model-based approaches, the observer based methods and Kalman fil-

ters are quite popular [6,7,23]. Although, such model-based techniques have their advantages

in terms of on-board implementations, their reliability for health monitoring often decreases
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as the system nonlinear complexities and modelling uncertainties increase. The inherent non-

linearity of gas-turbine performance and diagnosis relationships as well as the limitations of

the analytical model-based technique, makes the need for the application of an alternative

computational technique, such as employing neural networks even more essential.

Artificial Neural Networks

Data-driven approaches such as those based on neural networks mostly rely on real-time or

collected historical data from sensors and do not require a detailed mathematical model of the

system [32,36–40]. Neural networks are promising tools for fault diagnosis due to their proven

success in system identification and strong capability in learning nonlinear transformations

that map a set of inputs to a set of outputs. Examples of works published in the field of

NN-based FDI schemes include [41–45].

Applications of neural networks to engine fault diagnosis have been widely developed

and discussed in the literature. Zedda and Singh [46] have proposed the use of a modular-

based diagnosis system for a dual spool turbofan gas turbine. Multiple neural networks are

proposed in [47] for fault diagnosis of a single shaft gas turbine. The authors in [48] have

further extended multiple neural networks method to generate a cascaded network to isolate

component and sensor faults. Green [39] have discussed the need to incorporate a neural

network with other AI techniques to perform the estimates of the active life, diagnostics and

prognostics capabilities for the engine. Romessis et al. [49] have applied a probabilistic neural
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network (PNN) to diagnose faults and investigate the diagnostic capability of the PNN on tur-

bofan engines. Volponi et al. [25] introduced a hybrid neural network where part of the model

was replaced by influence coefficients. They reported that the accuracy of such a network was

favourably compared with a backpropagation network and Kalman filter approach.

Dynamic Neural Networks

It has been shown in the literature that multi-layer perceptron networks (MLP) can be used as

universal approximator for static nonlinearities and are capable of identifying any nonlinear

unique static function [4]. In recent years several approaches have been suggested in the liter-

ature that incorporate dynamics to artificial neural networks due to the need for identification

of dynamical systems. Patton et al. [50] have outlined artificial intelligence approaches to

fault diagnosis of dynamic systems. Some of the most applied neural network structures for

fault diagnosis in dynamical systems are, recurrent neural networks [51], time-delay neural

networks (TDNN) [52] and dynamic neural networks (DNN) [4, 53].

In recurrent or time delayed networks, the network is fed with current or delayed values

of the process inputs and outputs. They count as quasi dynamical models, since the neural

network used in the structure remains a static approximator. On the other hand, the dynamic

networks have dynamic elements within their structure. Therefore, they provides a viable tool

for dealing with nonlinear problems and modeling complex and nonlinear dynamical systems
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with great flexibility and capability. Dynamic multilayer perceptrons or dynamic neural net-

works have recently been applied and utilized for system identification problems due to their

capabilities in modelling nonlinear dynamical systems. Such networks have a feedforward

multilayer architecture and their dynamic properties are achieved by using dynamic neurons.

Each neuron by itself possesses dynamic characteristics that is constructed through a locally

recurrent globally feedforward (LRGF) scheme [4, 53].

Recently, dynamic neural networks have been utilized for fault diagnosis of nonlinear

systems. The authors in [40] have used a multilayer perceptron network embedded with dy-

namic neurons for fault detection and isolation (FDI) of thrusters in the formation flight of

satellites. A dynamic neural network is constructed in [54] for accomplishing the fault detec-

tion task, and a static neural classifier is then used based on the learning vector quantization

(LVQ) for the fault isolation task. The authors in [8] have applied dynamic neural networks

that was developed in [53] for fault detection of aircraft jet engines.

1.2.2 Data Validation

Gas turbine performance analysis make use of measurements (such as gas path temperatures,

gas path pressures and rotational speeds) to recognize the poorly performing engine and to

isolate and identify the cause of the deficiencies or faults. As all fault diagnosis systems require

correct sensor measurements, unreliable sensors can cause the system to move the diagnosis in

an erroneous direction. Therefore, data validation of sensor measurements and correcting data
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from sensors is a prerequisite in applying fault diagnosis techniques. Traditional approaches

to sensor validation involve periodic instrument calibration. These calibration processes are

expensive. Many periodic sensor calibration techniques require the process shut down, the

instrument taken out of service, and the instrument loaded and calibrated. This method can

lead to damaged equipment, incorrect calibrations due to adjustments made under non-service

conditions, and loss of product due to unnecessarily shutting down a process [55].

Several approaches have been used for sensor data validation. For example, analytical

redundancy using an on-line nonlinear model of a turbo fan engine is proposed in [56] to pro-

vide estimates for failed sensors. The reference [57] has proposed unknown input observer as

a robust sensor and actuator fault detection, isolation, and accommodation techniques. The

usual approach to deal with measurements uncertainty is to use techniques based on Kalman

filter (KF), which should be able to estimate engine performance parameters and measure-

ment biases in the presence of noise [58, 59]. However, Kalman filter based estimation tech-

niques are affected by several drawbacks, resulting in inaccuracy and lack of reliability [56].

In general, using model-based methods one always encounters uncertainties as the system

complexity increases. In this thesis, autoassociative neural networks is used by incorporating

nonlinear principal component analysis (NPCA) concept to detect, identify and reconstruct

faulty sensors in gas turbine engine.
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1.2.3 Sensor Fault Detection

Sensors are basically the output interface of a system to the external world, and convey in-

formation about a system’s behaviour and internal states. Therefore, sensor faults may cause

substantial performance degradation of all decision-making systems or processes that depend

on data integrity for making decisions. Such systems include, but not limited to, feedback con-

trol systems, safety control systems, quality control systems, navigation systems, surveillance

and reconnaissance systems, state estimation systems, optimization systems, and interestingly

health monitoring and fault diagnosis systems [1].

Common sensor faults/failures include: (a) bias; (b) drift; (c) performance degradation

(or loss of accuracy); (d) sensor freezing; and (e) calibration error [60]. Figure 1.4 depicts the

effect of the above faults on system measurements.

The design of sensor fault diagnosis schemes using the hardware redundancy and an-

alytical redundancy approaches have been addressed in the literature [61]. In the hardware

redundancy approach, redundant sensor systems are incorporated into the control system to

improve the reliability of sensor measurements and enable sensor fault detection. However,

cost and space make this approach unattractive. In contrast, the analytical redundancy-based

fault-diagnosis architectures use system physics based models and information processing

methods to achieve the necessary redundancy.

In the literature, both data-driven and model-based approaches have been proposed to

diagnose different sensor faults. The majority of model-based sensor fault diagnosis schemes
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Figure 1.4: The impact of various sensor faults on system measurements [1]

rely on linear time-invariant (LTI) models [62] which can be considered as the major chal-

lenge. Unfortunately, in nonlinear, time-varying systems, LTI models can sometimes fail to

give satisfactory results. As an alternative there has been a growing interest in the use of

adaptive neural networks (NNs) as nonlinear system approximators [36].

There are also several sensor fault diagnosis schemes that are proposed in the litera-

ture, which are specifically designed to detect multiple sensor faults. These include the dedi-

cated observer scheme (DOS) (Clark [63]), generalised observer scheme (GOS) (Frank [32]),

multiple model Kalman filter (MMKF) (Willsky et al. [20]) and the multi-layer perceptron
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(MLP)-NN based SFDIA scheme proposed in [64].

In spite of the popularity of model-based approaches in fault detection, this is challeng-

ing and sometimes inappropriate method for sensor fault detection. This is due to the fact that

most model-based approaches are designed at a nominal health condition and rely on the cor-

rect input data in general [65]. It assumes that the input to the real system and the input to the

model are correct (fault free). Any observed deviation (due to any faults related to the actuator,

sensor or components) in the engine outputs from their reference condition values indicates

the presence of a fault. This makes the sensor fault detection unreliable and challenging.

Sensor fault detection isolation and accommodation (SFDIA) via neural networks have

been proposed over the years due to their nonlinear structures, online learning capabilities and

no needs for explicit mathematical model [62,66–71]. Comparison between Kalman filter and

neural network approaches for sensor validation or fault detectionis provided in [72].

Autoassociative neural networks (ANNs) have been used extensively in the recent past

few years as a solution in sensor fault detection and identification. Hines and Uhrig [55]

applied the ANN method to detect faulty sensors. The author in [73] proposes a sensor fault

detection and repair method based on Autoassociative neural network to detect multi-faulty

transducers of an IEEE 1451 based intelligent sensor, synchronously, through a well-trained

ANN. The reference [74] identified a single fault sensor using an enhanced ANN and the

exact value of the fault sensor was reconstructed. The rationale for the use of ANN in sensor

fault detection is their capacity to provide a robust identity mapping between the input and the
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output of the network, which could be exploited in sensor fault detection. In Chapter 5 we

have also shown how the ANN can be exploited for engine fault diagnosis as well.

1.3 Thesis Contributions

In this thesis, our goal is to develop novel solutions for the problem of aircraft jet engine com-

ponents and sensor fault detection and isolation based on artificial neural network approaches.

Towards this end, two different neural network-based schemes are proposed which each pos-

sess noble features. The contributions of this thesis in solving the above problem is listed as

follows:

First, a multiple model dynamic neural network-based scheme for component fault de-

tection and isolation is proposed which makes use of both the benefits of multiple model

characteristics and the advantages of artificial neural networks. On the other hand, the dy-

namic neural networks used in this scheme are an ideal tool in identifying nonlinear dynamic

systems under different operating modes. Indeed, unlike the approaches in the literature which

use static neural network, dynamic neural network renders it possible to develop a single non-

linear neural network for a range of operating conditions. The developed neural network-based

multiple model is applied to the aircraft jet engine.

Second, knowing the fact that using the validated and qualified data enhances the relia-

bility of the FDI system, an intelligent-based approach using autoassociative neural networks

is developed for validation and qualification of the jet engine data.
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Third most of the standard approaches in the literature are proposed for either sensor

fault detection or system fault detection or they incorporate either two or three separate subsys-

tems to accomplish the tasks of fault diagnosis in both sensors and components. Consequently,

both FDI systems need to be active in order to isolate the sensor faults from the system faults.

As a novel approach, we developed an integrated diagnostic approach that simultaneously di-

agnose and isolate both the sensor faults and component faults. In our framework we also

propose a criterion to investigate the residuals that are obtained from the difference between

each neural network-based model outputs and the measured jet engine outputs in order to iso-

late the sensor faults and component faults. Using our approach fast and accurate detection

and isolation of both sensor and component faults can be obtained. In addition, in the event of

a failed sensor the scheme is capable of replacing the faulty sensor value with the virtual true

sensor value. The scheme is extremely robust to measurement noise and it can very reliably

and accurately perform FDI, even in presence of large measurement noise.

The capabilities of our proposed dynamic neural network-based FDI approach and au-

toassociative neural network-based sensor and component fault diagnosis approach are demon-

strated under different fault scenarios. Finally, the two proposed fault diagnosis approaches

are compared in terms of performance and their capabilities in accomplishing fault diagnosis

of aircraft engines.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review the back-

ground material which will be used in the following chapters. We review the structure of

the two proposed artificial neural networks namely dynamic neural networks and autoassocia-

tive neural networks. We also review the nonlinear mathematical modelling of the aircraft jet

engine that is used in this work. In Chapter 3, our fault detection and isolation (FDI) method-

ology using dynamic neural networks is proposed along with the simulation results showing

the effectiveness of our approach. The results of applying the autoassociative neural networks

for data validation in the jet engine output variables are presented in Chapter 4. In Chapter 5,

our proposed integrated sensor and component fault diagnosis scheme is described in detail.

Finally, concluding remarks and future work are included in Chapter 6.

Some of the results of this research have already been published in the following con-

ference and journal:

[1] S. Sina Tayarani Bathaie, Z. Sadough and K. Khorasani, “Fault Detection of Gas

Turbine Engines using Dynamic Neural Networks”, IEEE Canadian Conference on Electrical

and Computer Engineering , Montreal, Quebec, April, 2012.

[2] S. Sina Tayarani Bathaie, Z. Sadough and K. Khorasani, “Dynamic Neural Network-

based Fault Diagnosis of Gas Turbine Engines”, Neurocomputing , NEUCOM-D-12-00466,

2012.
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Chapter 2

Background Information

In this chapter, we present an overview of the background material related to our work. In this

thesis we have studied fault diagnosis of aircraft jet engines using neural network methodolo-

gies. In this chapter, we introduce two different neural networks and provide the aircraft jet

engine model to which our fault diagnosis methodologies are applied to. We first describe and

introduce dynamic neural networks (DNN) as an efficient tool for nonlinear dynamic systems

identification. The DNN is later used in Chapters 3 and 4 for engine components fault diag-

nosis. Next, we introduce autoassociative neural networks which will later be used for data

validation and fault diagnosis in Chapters 4 and 5, respectively. Finally, we briefly describe the

nonlinear mathematical model of a dual spool jet engine that is used to develop a SIMULINK

model of the system for data generation and neural network training and validation.
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2.1 Dynamic Neural Networks (DNNs)

Dynamic multilayer perceptrons or dynamic neural networks (DNNs) have recently been ap-

plied and utilized for dynamic system identification problems due to their capabilities in mod-

elling nonlinear dynamical systems. Such networks have the feedforward multilayer archi-

tecture and their dynamic properties are obtained by using dynamic neurons. Each neuron

by itself possesses dynamic characteristics which can lead to constructing a locally recurrent

globally feedforward (LRGF) network. This kind of structure allows one to design an effective

feedforward multilayer network that both has dynamic characteristics and has less complexity

than time-delay and recurrent networks which use a global feedback in their structures [4,53].

Dynamic neural networks presented in [4] and [53] have a great capability in learning the

dynamics of complicated nonlinear systems where conventional static neural networks cannot

yield an acceptable modeling performance. Dynamic neural networks or dynamic multilayer

perceptron networks (MLP) represent an extension of static neural networks by including

discrete or continuous time dynamics to the neuron model. Such an extension enhances the

capability of the resulting neural network to approximate not only the static nonlinearities of

the system but also its dynamic nonlinearities. The dynamic neuron model and the dynamic

neural network architecture are presented in the following subsections.
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2.1.1 Dynamic Neuron Model

A dynamic neuron model [4] is constructed by adding internal dynamics and by making the

neuron’s activity dependent on its internal states. This can be achieved by integrating an

Infinite Impulse Response (IIR) filter within the standard static perceptron structure. Figure

2.1, represents the structure of such a dynamic neuron model. Three main modules are used

in this structure. The first module is an adder, namely

x(k) = WTu(k) =
P

∑
p=1

wpup(k) (2.1)

where W= [w1w2...wP]
T denotes the input-weight vector, P denotes the number of inputs, and

u(k) = [u1(k)u2(k)...uP(k)]T is the input vector (T denotes the transpose operator). The output

of the adder is passed through the IIR filter (H(q−1)) through which a dynamic mapping is

then generated between the input and the output of the neuron. Applying an nth order filter,

the output of the filter and the filter transfer function are given by

ỹ(k) =−a1ỹ(k−1)−a2ỹ(k−2)− ...−anỹ(k−n)+b0x(k)+b1x(k−1)+ ...+bnx(k−n)

(2.2)

or

ỹ(k) =
n

∑
i=0

bix(k− i)−
n

∑
i=1

aiỹ(k− i) (2.3)
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and

H(q−1) =
b0 +b1q−1 +b2q−2 + ...+bnq−n

1+a1q−1 +a2q−2 + ...+anq−n (2.4)

where x(k) denotes the filter input, ỹ(k) denotes the filter output, a = [a1,a2, ...,an]
T and

b = [b0,b1,b2, ...,bn]
T are the numerator and the denominator coefficients of the filter transfer

function (feedback and feedforward filter parameters) and q is the time shift operator. There-

fore, the neuron output can be expressed as:

y(k) = F(g.ỹ(k)) (2.5)

where F(.) is a nonlinear activation function that produces the neuron output and g is the slope

of the activation function.

Figure 2.1: A dynamic neuron having an internal IIR filter [4].

In many cases time delays exist between inputs and outputs. For the systems that con-

tain time delays and when these are considerable for the system performance and cannot be

ignored, ỹ(k) can be modified as follows:
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ỹ(k) =
n

∑
i=0

bix(k− i−nk)−
n

∑
i=1

aiỹ(k− i) (2.6)

In order to use such a modification, one needs the delayed inputs x(k− i− nk) and the

parameter nk which can be determined arbitarily or by using optimization procedure [75].

2.1.2 Dynamic Neural Network Architecture

Let us consider an L-layered network as shown in Figure 2.2 using dynamic neurons that are

described by a differentiable activation function F(.). Let Nl denote the number of neurons in

the l-th layer, Ol
n(k) denote the output of the nth neuron of the lth layer, and ul

p(k) denote the

input of the lth layer, generated from the p-th neuron of the previous layer at discrete times

k (l = 1, ...,L; n = 1, ...,Nl). It can be shown [76] that the output of the nth neuron in the lth

layer is given by

Ol
n(k) = F [gl

n(
D

∑
d=0

bl
dn

Nl−1

∑
p=1

wl
npul

p(k−d)−
D

∑
d=1

al
dnỹl

n(k−d))] (2.7)

It can be seen from equation (2.7) that the network outputs depend on the past outputs

ỹ(k − 1), ỹ(k − 2), ..., ỹ(k − n). Since it is assumed that the activation function F(.) is an

invertible function (e.g. tangent hyperbolic), then network outputs will also depend on the

past outputs y(k− 1), y(k− 2), ... , y(k− n). Consequently, the expression for the last layer

outputs is given by equation (2.8), where Γ(.) is a nonlinear function. This illustrates that the

23



network outputs are nonlinear functions of the inputs and their delays as well as the previous

output samples, that is

OL
n(k) = Γ[y(k−1), ...,y(k−ms),u(k),u(k−1), ..,u(k−ns)] (2.8)

The main objective of the neural network learning process is to adjust all the unknown

network parameters so that the nonlinear jet engine system can be identified by the proposed

dynamic neural network by using a given training set of input-output data pairs. The unknown

network parameters are denoted by w, a, b, g, where w = [wl
np]l=1,...,L;n=1,...,Nl ;p=1,...,Nl−1 is the

weight matrix, a = [al
dn]l=1,...,L;n=1,...,Nl ;d=1,...,D and b = [bl

dn]l=1,...,L;n=1,...,Nl ;d=1,...,D are the

filter parameters matrices, where D denotes the order of the filter, and g = [gl
n]l=1,...,L;n=1,...,Nl

denotes the slope parameter matrix.

Figure 2.2: Dynamic neural network architecture.

To adjust the network parameters, pairs of healthy input and output data sets are used.

The backpropagation error is widely applied for the purpose of training static networks. Its
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extension to dynamic applications is known as the extended dynamic backpropagation algo-

rithm [76].

2.1.3 Extended Dynamic Backpropagation Algorithm

In both static and dynamic neural networks, the objective is to determine an adaptive algorithm

or a rule which adjusts the parameters of the network based on a given set of input-output pairs.

The idea of the error backpropagation is widely applied for this purpose in static contexts and

has extension to dynamic systems. To define an extended dynamic backpropagation (EDBP)

algorithm, the standard approach can be applied. Assuming that the unknown parameter vec-

tors w, a, b, g are considered as elements of a parameter vector v, the learning process involves

the determination of the vector v∗ which minimizes the performance index Jv(k) according to

the error function e(k):

Jv =
��e(k)

��2
=
��yd(k)− y(k)

��2 (2.9)

where yd(k) denotes the desired output of the network and y(k) denotes the actual response of

the network on the given input pattern u(k) [76] .

The adjustment of the parameters of the sth neuron in the mth layer according to the

EDBP algorithm in a M-layered network has the form,

vm
s (k+1) = vm

s (k)+ηδ m
s (k)Sm

vs(k) (2.10)
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where v = [w,a,b,g] represents the unknown generalized parameter vector, η is the learning

rate, δ m
s is the generalized output error which is described below for both hidden and out-

put layers (equation (2.11)), and Sm
vs denotes the sensitivity function for the elements of the

unknown generalized parameter v (equations 2.12-2.15).

δ m
s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

es(k)F ′(gM
s ỹM

s (k)) for m = M

Sm+1

∑
l=1

(δ (m+1)
s (k)gm+1

l bm+1
0l wm+1

ls )F ′(gm
s ỹm

s (k)) for m = 1, ..., M - 1
(2.11)

where F(.) is a nonlinear activation function that produces the neuron output as described in

equation 2.5.

The sensitivity function Sm
vs(k) for the elements of the unknown generalized parameter

v is defined as follows:

1. Sensitivity with respect to the feedback parameter am
is:

Sm
ais(k) =−gm

s ỹm
s (k− i) (2.12)

2. Sensitivity with respect to the feedforward parameter bi:

Sm
bis(k) = gm

s xm
s (k− i) (2.13)
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3. Sensitivity with respect to the weight parameter wp:

Sm
wps(k) = gm

s
( D

∑
i=0

bm
isum

p (k− i)−
D

∑
i=1

am
isSm

wps(k− i)) (2.14)

4. Sensitivity with respect to the slope parameter gm
s :

Sm
gs
(k) = ỹm

s (k) (2.15)

2.2 Autoassociative Neural Networks

Autoassociative neural networks [77] are feedforward neural networks that are used to ac-

quire input-output models by using backpropagation training or similar learning procedures.

In autoassociative neural networks the function to be learned is the identity mapping between

network inputs and outputs, implying that the outputs are an approximation of the inputs. By

selecting a proper internal architecture and training the network to learn the identity mapping,

the autoassociative neural networks can carry out several useful data screening tasks such as

reducing the measurements noise. In addition, by constructing the residuals from the differ-

ence of the inputs and outputs of the network, they can be used to detect sensor faults as well

as the missing and faulty sensor data can be estimated.

Autoassociative networks are different from networks that implement associative mem-

ory even though both are used to treat noisy and corrupted data. Autoassociative neural
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networks perform functional mappings while associative memories are basically classifiers,

recalling a stored typical examples that most closely resembles a partial or corrupted input

patterns. In bidirectional associative memory networks [78] the output is a stored pattern as-

sociated with the classification of the input. Therefore, the number of possible responses from

the associative memory is finite, and for any input one of the pre-stored patterns is recalled. In

contrast, the autoassociative network has no discrete classes and its outputs can be continuous

variables.

2.3 Autoassociative Neural Network (ANN) Structure

The general structure of an autoassociative neural network (ANN) as shown in Figure 2.3,

contains three hidden layers. The first hidden layer is called the mapping layer. The activation

function of the mapping layer can be sigmoidal, tangent hyperbolic or any other similar non-

linearity. The second hidden layer is called the bottleneck layer and can have linear transfer

functions. The dimension of the bottleneck layer should be smaller than the dimension of the

other hidden layers. The third hidden layer is called the demapping layer and has the same

activation function as the mapping layer. The mapping and the demapping layers have the

same dimension.

The bottleneck layer output is the compressed representation of the data given in the

input layer. If the inputs are a set of observations of correlated variables, the mapping layer
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Figure 2.3: Architecture of autoassociative neural network where σ denotes sigmoidal nodes
and l indicates linear nodes.

converts these sets of correlated observations into a set of uncorrelated variables. The autoas-

sociative neural network is derived from the concept of principle components analysis which

is applicable to both linear and nonlinear correlations among variables. The output of the

nodes in the bottleneck layer can be viewed as principle components as compact represen-

tation of the inputs. Same as the principle component analysis, the goal of the ANN in the

bottleneck layer is to compress the data into a set of new variables in new space with lower

dimensionality so that the data can be described as concisely as possible. An important issue

regarding ANN is that it can deal with linear and nonlinear correlations among the variables

and produce a compact and concise data representation.

The use of a structure with three hidden layers as opposed to one hidden layer is due
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to the need for data compression inside the network in order to filter out both noise and bi-

ases. According to the Figure 2.3, the autoassociative network should be viewed as a cascade

combination of two single-hidden layer networks. The input, the mapping and the bottleneck

layers together represent a nonlinear function G : Rm →R f which projects the inputs to a lower

dimensional space designated as the feature space. This mapping has the following form

T = G(Y) (2.16)

where G is a nonlinear vector function, composed of f individual nonlinear functions (G =

[G1,G2, ...,G f ]
T ). Let Ti denotes the output of the ith bottleneck node or the ith element of

T = [T1,T2, ...,Tf ], i = 1, ..., f , and Y = [Y1,Y2...,Ym]
T denotes the network input. Therefore,

the map is described according to Gi : Rm → R which has the form

Ti = Gi(Y ), i = 1, ..., f (2.17)

For the inverse transformation (restoring the original dimensionality of the data), the bottle-

neck layer output, the demapping layer and the output layer represent a second network that

is modelled as a nonlinear function H : R f → Rm, which reproduces an approximation to the

input from the factors at the output of the bottleneck layer. This mapping has the following

form

Ŷ = H(T) (2.18)
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where H is a nonlinear vector function composed of m individual nonlinear functions (H =

[H1,H2, ...,Hm]
T ). Each output can be described according to Hj : R f → R, such that

Ŷj = Hj(T ), j = 1, ...,m (2.19)

For sake of generality, the subnets representing G and H functions must each be capable of

representing nonlinear functions of arbitrary nature. This can be achieved by providing each

subnetwork with a single layer containing a sufficiently large number of nodes. The mapping

layer is the hidden layer of the subnet representing G, and the demapping layer is the hidden

layer of the subnet representing H.

Autoassociative networks require “supervised” training, where a desired output is spec-

ified for each training example. One cannot train the network representing G by itself, since

the output T is unknown. Similarly, the network H cannot be trained separately even thought

the desired output is known (the target output is Ŷ ), because the corresponding input T is

unknown. Therefore, direct supervised training of each of these networks individually is in-

feasible. To circumvent this problem, the two networks are combined in series so that G feeds

directly into H, resulting in a network whose inputs and desired outputs are known. Specifi-

cally, Ŷ uses both the input to G and the desired output from H. The combined network with

G and H in series contains three hidden layers, since the bottleneck layer is shared, being the

output of G and the input layer H, as shown in Figure 2.3. Finally, for classifying the data

into valid and invalid sets, the residual signals defined as R = Y −Y ′ are generated , and the
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threshold values are then selected properly for each residual.

2.4 Data Preprocessing

Normalization is a “scaling down” transformation of the data. Within a data set there is often

a large difference between the maximum and the minimum values. When normalization is

performed the value of the signals are scaled to appreciably lower values. The two most

common methods for normalization are as follows.

• min- max normalization

x′= 2
x− xmin

xmax − xmin
−1 (2.20)

where xmin and xmax denote the minimum and the maximum of x, respectively. This

re-scales the variable x to lie within the range [-1,1].

• z-score normalization

x′= x−μ(x)
σ(x)

(2.21)

where μ(x) and σ(x) denote the mean and the standard deviation of x, respectively.

This normalization produces a data set where each point has a mean close to zero and a

variance close to one.

Normalization should be applied to all the data sets before commencement of the train-

ing process. One should note that the means and standard deviations that are computed
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from the data must be retained and used later in the testing process for de-normalization.

Otherwise, the performance of the neural network will vary significantly as it was

trained on a different data representation than the un-normalized data. The advantage of

the statistical normalization is that it reduces the effects of the outliers in the data.

2.5 Aircraft Jet Engine Mathematical Model

Gas turbine engines are used in many land, sea and air vehicles. The jet engine (shown in Fig-

ure 2.4) belongs to one type of gas turbine engines and is used to generate a high-speed jet for

propulsion. A mathematical representation of a gas turbine is fairly common and has been in-

vestigated by several authors in the literature [8,30,79]. Based on the available literature [8] on

modeling of aircraft jet engines, a Matlab Simulink model of the nonlinear dynamics of the a

dual spool jet engine is used in this thesis. The simulation model was developed by using ther-

modynamic, aerodynamic and mechanical relationships of each of the major components. The

model represents the functional relations that exist among the engine variables, such as pres-

sures, temperatures and gas flow rates. The details of the thermodynamic relations reviewed

in this section can be found in [79]. Rotor and volume dynamics are considered in order to

obtain a nonlinear dynamics for the system. The engine components (compressors and tur-

bines) are modelled by corresponding performance maps which are adopted from commercial

software GSP [7]. In the following, brief explanation of each specific component and detailed

mathematical expressions corresponding to the engine dynamics are presented. A schematic
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Figure 2.4: A dual-spool jet engine [5].

diagram depicting the main modules and the overall information flows and interdependencies

are shown in Figure 2.5.

Intake Duct

Intake duct is placed before the compressor and supplies the engine with the required air flow

at highest possible pressure. The air velocity in the intake duct decreases when air reaches

the compressor. At the same time, the temperature and the pressure increase. In the engine

intakes, by assuming adiabatic process, the pressure and temperature are computed as follows,

with the inlet pressure ratio equation can be written as

Pd

Pamb
=

[
1+ηd

γ −1
2

M2
] γ

γ−1

(2.22)
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Figure 2.5: The aircraft jet engine modules and information flowchart and interdependencies
( [6, 7] and [8]).

35



where M is the mach number in the air temperature and pressure. The inlet temperature ratio

can be expressed in terms of M as

Td

Tamb
= 1+

γ −1
2

M2 (2.23)

Compressor

A compressor in a gas turbine engine is in charge of providing high-pressure air to the com-

bustion chamber. The compressor behaviour, as a quasi-steady component, is determined

by using the compressor performance map (this map is obtained from the commercial soft-

ware package GSP [80]). Given the pressure ratio (πC) and the corrected rotational speed

(N/
√

θ ), one can obtain the corrected mass flow rate (ṁC
√

θ/δ ) and efficiency (ηC) from the

performance map by using a proper interpolation technique, where θ = Ti
T0

and δ = Pi
P0

, i.e.

ṁC
√

θ/δ = fṁC(N/
√

θ ,πC) and ηC = fηC(N/
√

θ ,πC). Once these parameters are obtained,

the compressor temperature rise and the mechanical power are obtained as follows:

T0 = Ti

[
1+

1
ηC

(π
γ−1

γ
C −1)

]
(2.24)

WC = ṁCcp(T0 −Ti) (2.25)

It should be noted that the power consumed by the compressor is related to the speed of the

shaft WC =
J(

N.2π
60

)2

2
where J is the momentum of inertia of the shaft and N is the speed of
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the shaft.

Combustion Chamber

Combustion chamber is the place in the engine in which the fuel is burned in the high pressure

air supplied by the compressor to raise the temperature. The rise in the temperature is due to

the energy released by the burning fuel. The combustion chamber represents both the energy

accumulation and the volume dynamics between the high pressure compressor and the high

pressure turbine at the same time. The dynamics inside the combustion chamber is governed

by the following equations,

ṖCC =
PCC

TCC
ṪCC +

γRTCC

VCC
(ṁC + ṁ f − ṁT ) (2.26)

ṪCC =
1

cvmCC
[(cpTCṁC +ηCCHuṁ f − cpTCCṁT )− cvTCC(ṁC + ṁ f − ṁT )] (2.27)

Turbine

The function of the turbine in a jet engine is to extract a portion of the pressure and kinetic

energy from the high-temperature combustion gases for driving the compressor and acces-

sories. In a typical engine about 75 percent of the power produced is used internally to drive

the compressor. The remaining power is used to generate the required thrust [79]. Like com-

pressors, the behaviour of a turbine is represented by characteristic maps (from the software

package GSP [80]). Given the pressure ratio (πT ) and the corrected rotational speed (N/
√

θ ),

37



the corrected mass flow rate (ṁT
√

θ/δ ) and the efficiency (ηT ) are obtained from the per-

formance map, i.e. ṁT
√

θ/δ = fṁT (N/
√

θ ,πT ) and ηT = fηT (N/
√

θ ,πT ). The temperature

drop and the turbine mechanical power (which is proportional to the temperature decrease in

the turbine) are obtained as follows:

T0 = Ti

[
1−ηT (1−π

γ−1
γ

T )

]
(2.28)

WT = ṁT cp(Ti −T0) (2.29)

Nozzle

Nozzle is the final component of a jet engine in which the working fluid is expanded to produce

a high-velocity jet. The high pressure exhaust gas is accelerated in a jet pipe located between

the turbine outlet and the nozzle throat to come close to the ambient pressure and consequently,

to produce thrust. The nozzle exit temperature Tno is given by

Tni −Tno = ηnTno

[
1− (

1
Pni/Pamb

)(γ−1)/γ
]

(2.30)

Rotor Dynamics

Energy balance between the shaft and the compressor results in the following differential

equation:

dE
dt

= ηmechWT −WC (2.31)
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where E =
J(

N.2π
60

)2

2
(J is the moment of inertia of the shaft and N is the speed of the shaft).

Volume Dynamics

The volume dynamics is considered to take into account the unbalance mass flow rates among

various components. Assuming that the gas has zero speed and has homogeneous properties

over volumes, this dynamics can be described by the following equation:

Ṗ =
RT
V

(∑ ṁin −∑ ṁout) (2.32)

Now that all the components of the engine are described, we explain how the tempera-

tures, the pressures or the pressure ratios and the rotational speeds can be obtained from the

above nonlinear equations for each component.

For a low pressure compressor, the pressure ratio πLC is calculated from the volume dy-

namics between the high pressure compressor and the low pressure compressor as described by

equation (2.32). The rotational speed (N2) is obtained from the solution to equation (2.5) for

the spool that is connecting the low pressure compressor to the low pressure turbine. Accord-

ing to the pressure ratio and the rotational speed, the corrected mass flow and the efficiency

are obtained from the performance maps, therefore the temperature rise can be obtained from

the equation (2.24). The same procedure is followed for the high pressure compressor. The
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pressure is obtained from the volume dynamics that is described by equation (2.26). The ro-

tational speed (N1) is obtained from equation (2.5) for a spool that is connecting the high

pressure compressor to the high pressure turbine.

Finally, the pressure ratio of high pressure turbine is obtained from the volume dynamics

between the high and the low pressure turbines, and the pressure ratio for the low pressure

turbine is obtained by using the volume dynamics after the low pressure turbine. The mass

flow rate of the nozzle is computed as follows.

If condition (2.33) exists. the mass flow rate can be obtained from equation (2.34),

otherwise, it is calculated from equation (2.34), that is

Pamb

Pni

<

[
1+

1− γ
ηn(1+ γ)

] γ
γ−1

(2.33)

ṁn
√

Tni

Pni

=
u√
Tni

An

R
Pamb

Pni

Tni

Tno

(2.34)

ṁn
√

Tni

Pni

=
u√
Tni

An

R
Pcrit

Pni

Tni

Tcrit
(2.35)

where u√
Tni

=

√
2cpηn(1− (Pamb

Pni

γ−1
γ )), TNo

Tni
= 1−ηn(1− (Pamb

Pni

γ−1
γ )), and where Pcrit

PNi
=

(1− 1
ηn
( γ−1

γ+1))
γ

γ−1 , u√
Tni

= 2γR
γ+1 , and Tcrit

Tni
= 2

γ+1 .

Here, it is assumed that Pni = PLT and Tni = TM, TM is calculated from the energy balance in
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the mixer as follows:

TM =
ṁLT TLT +β ṁLCTLC

ṁLT +β ṁLC
(2.36)

Control Inputs

The input or the control signal of the dual spool engine is the power level angle (PLA) that is

set by the pilot which is related to the fuel mass flow rate (Wf ) through a variable gain. The

relation between the PLA and the control inputs are considered as follows in this work [30]

⎧⎪⎪⎨
⎪⎪⎩

PLA×W max
f

70 i f PLA ≤ 70◦

W max
f i f PLA > 70◦

(2.37)

Corresponding to different phases or stages of the flight (such as Take off, climb, cruise

and descent) the engine experiences different operating regimes, namely shutdown, starting,

idle thrust, acceleration, deceleration, cruise thrust, etc. In this thesis the fault diagnosis prob-

lem is addressed in the cruise mode when the engine is in its steady state.

The resulting engine model that is considered in this thesis has twelve (12) measurable

variables (refer to Figure 2.5) that are defined as TLC, PLC, PHC, THC, N1, N2, PLT, TLT,

PHT, THT, PCC and TCC, where they represent the low pressure compressor temperature, low

pressure compressor pressure, high pressure compressor pressure, high pressure compressor

temperature, high pressure spool speed, low pressure spool speed, low pressure turbine pres-

sure, low pressure turbine temperature, high pressure turbine pressure, high pressure turbine
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temperature, combustion chamber pressure, and combustion chamber temperature, respec-

tively.

As explained in Section 1.2, common component faults are modelled as changes in

the components efficiency and flow capacity. In this thesis eight (8) component faults are

investigated which are namely,

• Low pressure compressor efficiency decrease

• Low pressure compressor flow capacity decrease

• High pressure compressor efficiency decrease

• High pressure turbine flow capacity decrease

• High pressure turbine flow capacity decrease

• High pressure turbine efficiency decrease

• Low pressure turbine flow capacity decrease

• Low pressure turbine efficiency decrease

2.6 Conclusion

In this chapter, an overview of the background material related to our work were presented.

Two different neural networks were introduced and the aircraft jet engine mathematical model
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and the equations are provided on which our fault diagnosis methodologies are developed and

applied to.
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Chapter 3

A Multiple-Model FDI Scheme Using

Dynamic Neural Networks

In this chapter, the problem of fault detection and isolation (FDI) of gas turbine engines is

presented. A neural network-based fault detection and isolation scheme is proposed to detect

and isolate faults in a highly nonlinear dynamic system corresponding to an aircraft jet engine.

Towards this end, dynamic neural networks (DNN) are developed to learn the dynamics of the

jet engine. The DNN is constructed based on a dynamic multilayer perceptron network which

uses infinite impulse response (IIR) filters to generate dynamics between the input and output

of the system. The dynamic neural networks that is described in this chapter is developed to

detect and isolate component faults that may occur in a dual spool turbo fan engine. The fault

detection and isolation scheme consists of multiple DNNs, each representing various operating
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modes of the healthy and faulty conditions. Using the residuals produced by the difference of

each network output and the measured system output a criterion has been established for fault

diagnosis of the system components. Various simulations are carried out to demonstrate the

performance of our proposed fault diagnosis scheme. In this chapter, it is assumed that there

are no sensor faults occurring during the component fault detection and isolation process.

Recently dynamic neural networks have been utilized and employed in achieving fault

detection and isolation due to their capability in learning the dynamics of nonlinear systems.

The authors in [40] have used a multilayer perceptron network embedded with dynamic neu-

rons for fault detection and isolation (FDI) of thrusters in the formation flight of satellites.

A dynamic neural network is constructed in [54] for accomplishing the fault detection task,

and a static neural classifier is then used based on the learning vector quantization (LVQ) for

the fault isolation task. The authors in [8] have applied dynamic neural networks that was

developed in [53] for fault detection of aircraft jet engines. Our proposed scheme provides an

integrated solution for both fault detection and isolation of jet engines in a single framework

using the dynamic neural network-based multiple model strategy. It will be shown that by

using a bank of dynamic neural networks the problem of fault detection and isolation of a dual

spool jet engine can be addressed quite effectively.
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3.1 Dynamic Neural Network FDI Approach

In this section, a fault diagnosis methodology for a dual spool gas turbine engine is developed.

Towards this end, a dynamic neural network-based multiple model scheme is proposed in

which the bank of dynamic neural networks acts as an estimator or identifier of different

engine operating conditions corresponding to the various but limited faulty modes that are of

most interest or possible in the jet engine.

The dynamic neural network-based multiple model idea is derived and motivated from

that of multiple model-based FDI schemes in the literature [6, 7], where the mathematical

models corresponding to multiple operating conditions are replaced by a parallel bank of dy-

namic neural network identifiers. The basic structure of the FDI scheme that uses dynamic

neural networks is illustrated in Figure 3.1. The proposed neural network-based multiple

model scheme requires training data on the healthy and faulty situations in order to learn all

the classes of the system behavior.

Note that for the purpose of only fault detection, the dynamic neural networks is trained

with only the data corresponding to the healthy condition of the jet engine. In this case learning

data can be collected directly from the healthy engine, if possible, or from a simulation model

that is as realistic and high fidelity as possible. However, for the purpose of fault isolation

since the dynamic neural networks need to be trained for different faulty situations, such data

has to be obtained through high fidelity simulation studies or over the life of the real engine

(the engine that has been deteriorated and the percentage of the deterioration is known).
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According to Figure 3.1, a bank of dynamic neural network models is needed for fault

detection and isolation purposes. The first model (Model 0) represents the healthy system and

the others represent the corresponding assumed L faulty conditions of interest to be isolated.

The residuals are generated by comparing the jet engine outputs and the dynamic neural net-

works outputs. Consequently, when the residual r0 is smaller than an appropriately selected

threshold, the system is considered healthy, otherwise a system is considered faulty. For fault

isolation, unlike the detection phase, the residuals (r1,r2, ...,rL) are close to zero (or below

their thresholds) associated with the faulty condition. Indeed, a fault is isolated by evaluating

the residuals so that before the occurrence of a fault all the residuals would be above their

thresholds or significantly different from zero given the healthy condition of the system. Once

a fault occurs, the residual for the corresponding fault model should be close to zero or below

a threshold and the residuals generated for the other fault models should then be above their

thresholds or significantly different from zero.

It is worth to noting that in order to reduce the computational cost of the proposed FDI

system during the normal operation of the engine, it is also possible to just have the healthy

model active and once the fault is detected then fault models will be activated to isolate the

faults.

The jet engine component faults considered correspond to changes in eight (8) health

parameters which are the efficiencies and the flow capacities of the low pressure compres-

sor, the high pressure compressor, the low pressure turbine, and the high pressure turbine.

47



Figure 3.1: The dynamic neural network architecture proposed for performing fault detection
and isolation simultaneously.

Therefore, eight (8) component faults, as shown in Table 3.1, are investigated in this thesis

to be detected and isolated. Hence, a total of nine (9) models or dynamic neural networks

(DNN) are needed (L = 8), where each model represents and is associated with one class of

the jet engine behavior. The input to DNNs is fuel mass flow rate (Wf ) and the outputs are

engine variables such as pressures, temperatures and rotational speeds. The networks DNN1

to DNN8 correspond to the component faults and the ninth dynamic neural network DNN0

corresponds to the healthy mode of the jet engine. Table 3.1 presents the associated network

labels for each fault scenario.
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Component
Fault

Description Dynamic Neural
Networks Label

ΔΓLC Low pressure compressor flow capacity decrease DNN1
ΔηLC Low pressure compressor efficiency decrease DNN2
ΔΓHC High pressure compressor flow capacity decrease DNN3
ΔηHC High pressure compressor efficiency decrease DNN4
ΔΓHT High pressure turbine flow capacity decrease DNN5
ΔηHT High pressure turbine efficiency decrease DNN6
ΔΓLT Low pressure turbine flow capacity decrease DNN7
ΔηLT Low pressure turbine efficiency decrease DNN8

Table 3.1: The definitions and descriptions of the considered components faults.

3.1.1 Threshold Selection Criterion

In order to evaluate the residuals and to obtain information about the faults, a simple threshold

selection technique which employs the statistical parameters of the residuals is applied. As

mentioned earlier, for the purpose of fault detection the residuals should ideally be very close

to zero when the system is healthy and should deviate noticeably from zero when a fault occurs

in the system. However, in practice due to modelling uncertainties and measurement noise, it

is necessary to assign appropriate thresholds larger than zero in order to avoid false alarms.

Indeed, in presence of measurement noise and system disturbances, the residual signals shall

remain in the vicinity of zero under healthy condition and diverge from the neighbourhood of

zero (i.e., exceed a certain threshold band around zero) when faults occur in the system. On

the other hand, by selecting the thresholds too high may lead to the FDI scheme missing low

severity faults. This imposes a tradeoff between reducing the number of false alarms and the

number of missed alarms (i.e., missing to detect the presence of an actually occurred fault).

Below a probabilistic threshold selection method is proposed as a reliable solution to
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this trade-off. Assume that the residuals are normal random variables expressed as

ri(k) = ε(k), k = 1, ...,K; i = 0, ...,L (3.1)

where ε(k) is a normal random variable N(m,v), with the mean m and the standard deviation

v, K and L denote the size of the data used for testing and the number of operating models,

respectively. A significance level β is first defined corresponding to the probability that a

residual exceeds the value of the threshold denoted by Ti [75], that is

β = prob(|ri(k)|> Ti) f or i = 0,1, ...,L (3.2)

Standardizing 1 the normal random variable r(k) to have zero mean and a standard

deviation of 1, β is now written as

β = prob(|z(k)|> tiβ ) f or i = 0,1, ...,L (3.3)

where z(k) is standard normal random variable and tiβ is obtained from

tiβ =
(Ti −m)

v
(3.4)

1In mathematical statistics, a random variable X is standardized by subtracting its expected value E[X] (the
mean of the random variable) and dividing the difference by its standard deviation σ(X) =

√
Var(X),

Z = X−E(X)
σ(X)
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By specifying a certain value for an acceptable probability of false alarms (β ), tiβ can

then be found by using the cumulative normal probability tables. In this way, by assuming a

significance level β , one can obtain tiβ and then the threshold Ti is selected according to

Ti = tiβ v+m (3.5)

The parameters m and v for each residual (r0,r1,r2, ...,rL) are empirically obtained

through conducting multiple Monte Carlo simulations corresponding to random noise of 100

runs of each input setting. The mean and standard deviations of the residuals in the steady state

during the healthy or faulty operation of the jet engine are computed for each run and then the

average corresponding to all the runs are considered as the mean and standard deviations (m

and v) for the residual signals of the bank of dynamic neural networks.

3.2 Simulation Results

The implementation of our proposed dynamic neural network-based fault detection and isola-

tion scheme consists of three main tasks, namely (i) System Identification, (ii) Fault Detection,

and (iii) Fault Isolation. The implementation of these steps and the case studies are explained

and illustrated in detail below.
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3.2.1 System Identification Phase

The performance of the system identification phase plays an important role in the capability

of the overall fault diagnosis scheme. Three subtasks have to be performed for this phase,

which include (a) the data preprocessing, (b) architecture and training, and (c) testing of the

proposed dynamic neural networks.

(a) Data Preprocessing: The engine variables have various amplitude and ranges, and there is

often a large difference between their maximum and minimum values. Neural network training

could be made more efficient by performing certain preprocessing steps on the network inputs

and targets. It has been observed that the training procedure is sensitive to the data normaliza-

tion method and after several investigations we have determined that among the normalization

methods discussed in Section 2.4, the max-min normalization process yields the best results.

Specifically, we employ the following operation on the raw data that is generated by using our

simulator, that is

Xn = 2∗ (X −a)
b−a

−1 (3.6)

where a and b denote the maximum and the minimum of the range of the signal X , respectively.

This normalization is applied to both the input and the output signals of the neural networks.

(b) Dynamic Neural Networks Architecture and Training: The training data are generated

from the simulation model of the jet engine, such that the engine input fuel mass flow rate is

in the form of periodic triangular signal having a period of 2000 samples. Due to the high
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complexity of the engine dynamics, a large amount of data is required for network to learn the

dynamics of the engine. To adjust the weights and filter coefficients of each dynamic neural

network, the so-called extended back propagation algorithm was used. The learning algorithm

is initialized with small random values for the network parameters (namely, weights, feedback

filters, activation function slope) while the IIR filter’s denominator coefficients are initially set

to zero to ensure stable learning. The activation functions in the hidden layers are taken as

hyperbolic tangent functions, and linear activation functions for the output layer neurons.

The order of all the IIR filters is set to 2 since choosing higher order filters does not

necessarily lead to better performance while it increases the computational cost. Starting with

a relatively small structure, we developed an optimal architecture of our proposed nine (9)

dynamic neural networks in each bank of dynamic neural networks by incrementally increas-

ing the number of neurons in the hidden layers and also changing the learning rates for each

parameter until a desired performance specification is satisfied.

In order to achieve the desired performance, first the number of training data must be

large enough so that the dynamic neural network is able to learn the dynamics of the system

quite well. Second, the network update parameters (weights w, filter feed back parameters b,

filter feedforward parameters a, and slope coefficient g) must converge to a certain value after

several iterations. Selecting an appropriate learning rate helps for faster convergence. Finally,

the performance (cost) index needs to be as minimum as possible for training and testing data.

Indeed the best structure has been selected by changing the number of neurons and selecting
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the structure with the lowest performance (cost) index.

Each dynamic neural network model was trained by using suitable data corresponding

to healthy or faulty modes. Subsequently, the performance of the constructed models are

examined by using both the nominal and the faulty data. We observed that having one hidden

layer in the network requires a relatively large number of neurons in that hidden layer to learn

the engine dynamics. Hence, we have used two hidden layers for all the networks.

The dynamic neural networks specifications for four trained variables THC, THT, PLC

and N1 that are representative of the system in the healthy condition (health model 0 in Fig-

ure 3.1) is presented in Table 3.2. This table shows the dynamic neural networks structure

(number of neurons in the first hidden layer n1 and the number of neurons in the second

hidden layer n2), the updating learning rates parameters (ηw,ηa, ηb and ηg), the number of

iterations for each network and two performance indices for the training and the testing (JTrain

and JTest , respectively). The associated performance index is defined according to

J =
∑n

i=1(yd(n)− yNet(n))2

∑n
i=1(yd(n))2 (3.7)

where yd(n) and yNet(n) denote the desired and the network outputs, respectively, and n is the

size of the training or the testing samples. Other dynamic neural networks corresponding to

the faulty modes of the engines have almost the same specifications as those given in Table 3.2.

(c) Dynamic Neural Network Testing: The representation capabilities of the trained net-

works are evaluated through generalizing them with another data set of 6,000 samples that
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Engine Variables n1 n2 ηa ηb ηg ηw # of Iterations JTrain JTest

PLC 1 3 0.3 0.5 0.5 0.5 40,000 0.17% 0.35%
THC 4 7 0.2 0.5 0.5 0.5 60,000 0.1% 0.9%
THT 4 5 0.9 0.5 0.5 0.5 60,000 0.09% 0.2%
N1 7 6 0.5 0.5 0.5 0.5 100,000 0.15% 0.7%

Table 3.2: Selected neural networks parameters used for representing the healthy engine
model.

were not seen previously by the dynamic neural networks. Table 3.2 shows the value of the

performance index JTest that is obtained during the testing phase. It shows that the selected

networks carry out the estimation of the output variables quite well.

3.2.2 Fault Detection and Isolation

In order to evaluate the performance of our proposed fault detection and isolation (FDI)

scheme, nine (9) sets of training data are generated, one set of data corresponding to normal

operating condition as well as eight sets of data corresponding to eight (8) engine compo-

nent faults. The component faults are simulated by decreasing the value of the component

efficiency or the flow capacity by specific percentages. We have selected a 5% severity as a

typical level to illustrate the capabilities of our proposed FDI scheme.

It should be noted that by using only one or two output measurements it might not be

possible to isolate all the eight (8) faults and at least three (3) measurements, and consequently

three banks of neural networks are necessary. The structure of the neural network banks is

depicted in Figure 3.2. Any output measurement can be chosen to construct a bank of dynamic

neural networks. However, we have observed that different fault types and scenarios manifest
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different effects on the measurement variables. In Figure 3.2 four output measurements PLC,

THC, THT, and N1 that show better detection and isolation performance are depicted.

The faults are injected in the steady state (cruise) mode of the aircraft operation where

the engine transients have all settled down. All the analysis was concluded in presence of

noise. The measurement noise level was chosen to be twice the nominal noise at cruising

condition. The nominal value of the noise levels are shown in Table 3.3 where the standard

deviations are given as percentage of the nominal values at typical cruise conditions [28]. The

analysis has been conducted for input profiles in the range of 70% to 95% of the maximum fuel

value, as this is the fuel mass flow rate input range for the cruise mode. The ambient conditions

are set to standard condition 2 and the Mach number is 0.7 as a typical Mach number in cruise

mode. Both fault detection and isolation are performed by using threshold selection criterion

that were explained in Section 3.1.1 assuming a significant level of β = 0.02 (2%).

As an example the threshold for DNN0 network corresponding to the variable THC is

obtained as follows:

Since β is set equal to 0.02, from β = Prob(|z(k)| > tβ ) = 2Prob(z(k) < −tβ ) and using the

cumulative normal probability tables, tβ is found to be 2.33. The mean and standard deviation

of the residuals using the Monte Carlo simulation is now m = 2.61 and v = 0.14. Finally, the

threshold value is found to be 2.9 by using equation (3.5).

2Standard temperature and pressure (informally abbreviated as STP) are temperature of 273.15 K (0◦C, 32◦F)
and absolute pressure of 100 kPa (14.504 psi, 0.986 atm, 1 bar)

56



The thresholds of each dynamic neural network corresponding to the four engine vari-

ables are provided in Table 3.4. In the following subsections, three fault cases are considered

in detail to demonstrate the performance of our developed detection and isolation scheme.

Figure 3.2: The multiple model architecture corresponding to the four specific or more bank
of dynamic neural networks.

N1 THT THC PLC
0.051 0.097 0.094 0.164

Table 3.3: The noise standard deviations (as percentage of the nominal noise at the cruise
condition).

57



Engine Vari-
ables

DNN0 DNN1 DNN2 DNN3 DNN4 DNN5 DNN6 DNN7 DNN8

PLC 0.014 0.03 0.03 0.01 0.015 0.009 0.015 0.09 0.015
THC 2.9 3.3 0.9 3.0 0.9 3.4 3.5 2.5 0.7
THT 8.0 7.2 3.5 8.6 2.7 6.7 5.7 0.1 6.5
N1 26.3 60.0 60.0 14.0 60.0 4.5 60.0 5.5 60.0

Table 3.4: Threshold values that are used for achieving fault detection and isolation.

3.2.3 Fault Detection Analysis Case Studies

Fault detection is conducted by using the model representing the nominal healthy operating

condition namely, DNN0. The residuals for this model should not be greater than the threshold

that is specified in Table 3.4 when the system components are healthy and should exceed it

under faulty situations.

(a) Fault Scenario ΔΓLC. A 5% ΔΓLC fault is injected at t = 16 seconds when the input

fuel mass flow rate is at 70% of its maximum. Figure 3.3 shows the residuals that are generated

by the DNN0T HC (corresponding to the output measurement THC), DNN0T HT (corresponding

to output measurement THT) and DNN0N1 (corresponding to the output measurement N1). It

follows that the residual generated by DNN0N1 is above the selected threshold, however, the

residuals generated by DNN0T HC and DNN0T HT are not above their thresholds. This implies

that among these three dynamic neural networks, the network corresponding to N1 is the only

network that can detect the ΔΓLC fault with the selected severity level. The detection delay

time for DNN0N1 is 0.12 sec.

(b) Fault Scenario ΔηLC. The next scenario is a 5% ΔηLC fault that is injected at

t = 16 seconds when the input fuel mass flow rate is at 80% of its maximum. Figure 3.4
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Figure 3.3: The DNN0 generated residuals corresponding to THC, THT and N1 for the case
of a 5% ΔΓLC fault.

shows the residuals that are generated by the dynamic neural networks. It follows that all the

three generated residuals exceeded their thresholds so that this fault scenario can be detected

with either of the three DNN0PLC, DNN0T HT and DNN0N1 dynamic neural networks. The

detection delay time for the networks are 0.05 sec, 0.05 sec and 0.02 sec, respectively.

Figure 3.4: The DNN0 generated residuals corresponding to PLC, THT and N1 for the case of
a 5% ΔηLC fault.

(c) Fault Scenario ΔΓHC. The third faulty scenario corresponds to a 5% ΔΓHC fault

that is injected at t = 16 seconds when the input fuel mass flow rate is at 85% of its maximum.

Figure 3.8 shows the residuals that are generated by the dynamic neural networks DNN0T HC,

DNN0T HT and DNN0N1. In this case the only residual that exceeds its threshold and remains

above the threshold is the one corresponding to N1.
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Figure 3.5: The DNN0 generated residuals corresponding to THC, THT and N1 for the case
of a 5% ΔΓHC fault.

3.2.4 Fault Isolation Case Studies Analysis

Single Fault Scenario

(a) Fault Scenario ΔΓLC. A 5% fault is injected at t = 16 seconds when the input fuel mass

flow rate is at 70% of its maximum. The DNN1 network is representative of this fault (refer

to Table 3.1). It is expected that before the occurrence of the fault, all the residuals should

be above their thresholds and following the occurrence of the fault the residuals generated

by the DNN1 are below their thresholds. Other bank of dynamic neural networks should

then generate residuals that are above their thresholds. Figure 3.6 shows the residuals of the

eight (8) fault models DNN1 to DNN8. One can observe that this fault is isolated by the

bank of dynamic neural networks corresponding to THT and N1 networks. Note that only

these DNN1 residuals are below their thresholds. Furthermore, the bank of dynamic neural

networks belonging to THC is not capable of isolating this fault since the residual in this model

is not below its threshold.

(b) Fault Scenario ΔηLC. The next fault scenario is a 5% ΔηLC fault that is injected at
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t = 16 seconds when the input fuel mass flow rate is at 80% of its maximum. The DNN2 net-

work is representative of this fault model (refer to Table 3.1). Figure 3.7 shows the residuals

corresponding to the fault models for this case. Considering the residuals that are obtained

from the THT bank of dynamic neural networks one can conclude that this fault cannot be

isolated by that bank of networks, since not only the DNN2 residual but also the DNN7 resid-

ual are below their thresholds. The same property also exists for the bank of dynamic neural

networks corresponding to N1, since other than DNN2 in this bank of networks, DNN4 and

DNN8 residuals are also below their thresholds. However, note that it is possible to isolate

this fault by using the bank of dynamic neural networks corresponding to PLC, since only

the DNN2 generates the residual that is below its threshold in this bank of dynamic neural

networks.

(c) Fault Scenario ΔΓHC. The third fault scenario corresponds to a 5% ΔΓHC fault that

is injected at t = 16 seconds when the input fuel mass flow rate is at 85% of its maximum. The

DNN3 dynamic neural network is representative of this fault. Figure 3.8 shows the fault model

residuals for this case. In this case the fault can only be isolated by the N1 bank of dynamic

neural networks. Similar to the previous case study, the THT bank of dynamic neural networks

is not capable of isolating this fault since two of the residuals are below their thresholds after

the occurrence of the fault. Also, the T HC bank of dynamic neural networks cannot detect

this fault since the DNN3 residuals corresponding to this bank of dynamic neural networks

never exceed their thresholds.
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Figure 3.6: The DNN1 to DNN8 generated residuals corresponding to THC, THT and N1 for
the case of a 5% ΔΓLC fault.
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Figure 3.7: The DNN1 to DNN8 generated residuals corresponding to PLC, THT and N1 for
the case of a 5% ΔηLC fault.
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Figure 3.8: The DNN1 to DNN8 generated residuals corresponding to THC, THT and N1 for
the case of a 5% ΔΓHC fault.
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A summary of the fault detection and fault isolation results are shown in Table 3.5 and

Table 3.6, respectively. Table 3.5 shows the fault detection results using DNN0 for three dif-

ferent fault severities of 5%, 2% and 1%. Investigations have been conducted for six different

input fuel flow rates (70%, 75%, 80%, 85%, 90% and 95% of its maximum). In this table if

the fault can be detected in all the 6 input profiles with DNN0 bank of dynamic neural net-

works it is indicated by a
√

. As the percentage of the fault severity decreases, the ability of

the network DNN0 in detecting the faults for all of the input profiles decreases. Indeed, for

some fault scenarios DNN0 is only able to detect the fault in some specific input fuel mass

flow rates as specified in Table 3.5.

Table 3.6 is prepared for two different fault severities. The results are obtained with the

bank of dynamic neural networks that are trained with the 5% fault. One can conclude for the

5% faults that the fault ΔΓHC can only be isolated by the bank of dynamic neural networks

corresponding to N1. The THC bank of dynamic neural networks can isolate the ΔηHT and

ΔηLC faults and the THT bank of dynamic neural networks can isolate the ΔηHC, ΔΓHT , ΔηHT

and ΔΓLC faults. Also, the PLC bank of dynamic neural networks can isolate the ΔηHT , ΔΓLT ,

ΔηLT and ΔηLC faults. Therefore, considering all the banks of dynamic neural networks, all

the eight (8) components faults can indeed be isolated.

However, concerning the 4% fault that the network was not trained for before, only

few faults can be isolated by the banks of dynamic neural networks. This shows that the

bank of trained networks with the 5% faults does not necessarily yield good generalization
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5% Fault Severity 2% Fault Severity 1% Fault Severity
Faults PLC THC THT N1 PLC THC THT N1 PLC THC THT N1
ΔΓLC

√
- -

√ √
- -

√
- - -

√
ΔηLC

√ √ √ √ √ ◦1 √ ◦3 √
- ◦1 -

ΔΓHC - - -
√

- - - ◦4 - - - -
ΔηHC

√ √ √ √ √ √ √ ◦3 - ◦2 √ ◦3

ΔΓHT -
√ √

- -
√ √

- - ◦2 - -
ΔηHT

√ √ √ √ √
-

√ √ √
-

√
-

ΔΓLT
√

-
√ √ √

-
√

-
√

- ◦1 -
ΔηLT

√ √
-

√ √
- -

√ √
- - -

Table 3.5: The fault detection results.
(- or

√
denotes that one cannot detect or can detect a fault

◦1 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70, 75, and
95% of its maximum.

◦2 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70 or 95% of
its maximum.

◦3 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70, 75, and
80% of its maximum.

◦4 denotes that one cannot detect the fault if the input fuel mass flow rate is at 85, 90, and
95% of its maximum. )

performance for faults that are corresponding to the 4% severity, and hence for faults with

different severities one would require other specially trained bank of dynamic neural networks.

3.2.5 Concurrent Component Fault Scenario

All the above results are obtained by assuming that faults do not occur exactly at the same

time or concurrently. It is highly unlikely that two faults take place at the same time i.e. at

each instant of time only one fault may occur in the system. However, the possibility of two

concurrent faults is not unlikely. To evaluate the performance of the proposed FDI system

for concurrent faults, we assume that two component faults namely ΔΓLT and ΔηLT occurring
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5% Fault Severity 4% Fault Severity
(networks trained for this fault severity) (networks not trained for this fault severity)

Faults PLC THC THT N1 PLC THC THT N1
ΔΓLC - -

√ √
- - -

√
ΔηLC

√ √
- -

√
- - -

ΔΓHC - - -
√

- - - -
ΔηHC - -

√
- - - - -

ΔΓHT - -
√

- - -
√

-
ΔηHT

√ √ √
- -

√
- -

ΔΓLT
√

- - -
√

- - -
ΔηLT

√
- - - - - - -

Table 3.6: The fault isolation results (- or
√

denotes that one cannot isolate or can isolate a
fault).

concurrently. DNN7 and DNN8 are representative of these faults, respectively. According

to Table 3.6, ΔΓLT and ΔηLT faults with 5% severities can only be isolated by the bank of

DNNs corresponding to the variable PLC. Therefore, only the residuals corresponding to that

bank of DNNs are shown in Figure 3.9. The DNN0 (healthy model) residual is under its

threshold and the other DNNs residuals are above their thresholds before fault occurrence,

which indicates the healthy operation of the engine. By occurrence of the first fault at t=16

seconds the DNN0 residual increases and exceeds its threshold and the fault is detected. The

DNN7 residual decreases and stays below its threshold whereas other residuals corresponding

to other faulty models still remain above their thresholds. Therefore, the fault is detected and

isolated. However, once the second fault occurs at t=25 seconds the DNN7 residual exceeds

its threshold whereas the DNN8 residual remains above its threshold since the first fault still
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exists. The other DNNs (DNN1-DNN6) residuals are above their thresholds for those con-

current fault occurrence (DNN1-DNN4 are not shown in Figure 3.9 due to the similarity with

DNN5 and DNN6). Hence, the only information that can be concluded is that the second fault

has occurred but the fault cannot be isolated. For the detection and isolation of two concurrent

faults, a hierarchical approach can be employed [7] which is not considered in this thesis and

can be treated as future work.
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(a) The DNN0 residuals.

(b) The DNN5 residuals. (c) The DNN6 residuals.

(d) The DNN7 residuals. (e) The DNN8 residuals.

Figure 3.9: Concurrent faults (5% ΔΓLT fault injected at t=16 seconds and the 5% ΔηLT fault
injected at t=25 seconds.)
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3.2.6 Conclusions

In this chapter, a dynamic neural network-based multiple model scheme is proposed for fault

diagnosis of aircraft jet engines. Several banks of dynamic neural networks are trained where

each network corresponds to a specific faulty and/or healthy mode of the aircraft jet engine.

The presented simulations demonstrate the effectiveness of the proposed strategy. Our fault

detection and isolation results are summarized in Tables 3.5 and 3.6, respectively. In the next

chapters we develop fault diagnosis schemes for sensor faults and for the cases when the

system is subjected to higher levels of noise and presence of outliers.

70



Chapter 4

Data Validation Using Autoassociative

Neural Network

4.1 Introduction

Performance and success of fault detection and isolation systems to detect and isolate compo-

nent faults are mainly dependent on the validity and quality of the measurement data. All the

measurements which are obtained from sensors in the gas turbine are subject to sensor noise,

biases, drifts and other sensor faults. Such sensor faults and anomalies cause deviations from

real values and can result in poor fault diagnosis. An autoassociative neural network, intro-

duced first time by Kramer [77] is a useful neural network to perform data validation. It is

practical for both filtering or signal smoothing as well as sensor error correction. It is therefore
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a helpful technique to improve fault detection and isolation task and also to enhance reliabil-

ity and robustness of the diagnostic system. As described in Section 2.2 in Chapter 2 such a

neural network is feed forward with a symmetrical topology structure which is constructed to

make the outputs the same as the inputs, and has a unique capability of characterizing the data

dependency of the input data.

It will also be shown in the next chapter that autoassociative neural networks (ANN)

has great capabilities for both sensor fault and component fault detection and isolation. As de-

scribed in Section 2.2 on Chapter 2, the ANN architecture (Figure 4.1) consists of two parts,

the mapping layer and the de-mapping layer. These layers are interconnected through the bot-

tleneck layer which is the most important layer in the ANN. The bottleneck layer compresses

the data into low dimensional representation, eliminates redundancies and extracts principal

components in the output data.

The faults in the gas turbine engine can occur during the operation of the gas turbine.

Due to the fact that faults affect performance and life of the gas turbine, it is necessary to

diagnose and correct them. However, it is important to note that in addition to component

faults, measurement noise and sensor biases are other sources of parameter changes in the gas

path of a gas turbine. In order to avoid false alarms it is practically important to validate the

data that are received from the sensors. Otherwise, noise, bias, or other sensor faults contained

in the measurement data would easily be mistaken for engine components faults, resulting in

misjudgement in the diagnosis of faults. Such a misjudgement can cause lots of financial loss

72



Figure 4.1: Architecture of autoassociative neural network where σ denotes sigmoidal nodes
and l denotes linear nodes

for mistakenly changing a part in a good health instead of changing a simple sensor that might

have less cost.

4.2 Autoassociative Neural Networks for Data Validation and

Faulty Sensor Correction

Autoassociative neural network is an efficient method used to process the measurements or

sensor data before performing fault detection and isolation. Sensors in a gas turbine are prac-

tically utilized in harsh operating environments and situations such as high pressures and high

temperatures which generate high levels of noise or other undesirable effects that make the
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fault diagnosis problem a challenging issue. Autoassociative neural networks show a sig-

nificant robustness in presence of noise and sensor faults. In this chapter the autoassociative

neural network is utilized for the following tasks in aircraft jet engine, namely noise reduction,

inaccurate sensor correction, filtering outliers and sensor error correction.

4.2.1 Network Training

During the training process the weights would be updated by using backpropagation algorithm

so that the outputs are the same as inputs. The training data and also the number of neurons

in the bottleneck layer must be selected properly, so that the internal representation that is

developed by the network by assigning the weights, retains the maximum possible amount of

information.

The weight updating process should be accomplished by starting from a small number of

neurons in the mapping, the bottleneck and the de-mapping layers and gradually the neurons

are increased in these layers, however one should note that the number of neurons in the

bottleneck layer is less than the mapping and the de-mapping layers and the mapping and the

de-mapping layers have the same number of neurons. The important key to have an efficient

ANN for data validation is to use the appropriate input data to provide a proper amount of

information to the network for learning and also the most important factor is the number of

the bottleneck neurons. A network with a better noise filtering and lower input-output error

should be selected as the suitable network for use in the data validation problem.
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The weights and biases are updated iteratively until the overall network mean square

error is minimized and the output approximates the input as closely as possible. This as-

sures that the internal representation that is constructed by the network retains the maximum

possible amount of information from the original data set for a given degree of dimensional

compression that is represented by the bottleneck layer.

In this thesis, a network has been trained with the data that are generated from a Matlab

Simulation Model, however it is possible to retrain the network with the data from a real

engine with noise. Using the data with some level of noise as the training data causes a slow

learning and higher training error and less noise reduction. Knowing the fact that there are

usually accurate simulators, it might be more efficient to first use the data that is generated

from a simulator to find the suitable structure of the network and then retrain the network with

the real engine data to adjust the weights accordingly. This procedure helps the network to

match accordingly with that specific engine properties. However, the data from the real engine

may contain noise. Therefore, it should be noted that the retraining phase must be terminated

before the error function is actually minimized to avoid poor network generalization. In other

words, in case of using the noisy data, the retraining time must be sufficiently long to provide

an adequate fit and not to be too long to fit and memorize the noise, therefore a trade off is

required to be considered.

Noise present in the data that is imposed to the input nodes is filtered in the mapping

layer before the bottleneck layer. The reconstructed data are generated in the subsequent
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demapping layers after the bottleneck layer. The percentage of noise that is removed depends

on the redundancy of the input variables. For removing bias the same procedure as in the noise

filtering can be applied, however in some cases the network may not be able to achieve the task

properly. Under these cases a robust autoassociative neural network (RANN) is introduced to

improve the ANN performance [77]. Using RANN one may need to train the network in two

steps in order to be able to perform both noise filtering and sensor fault correction. Therefore,

the training procedures contain the following steps. First, in order to improve the training

capability of the network, the generated data from sensors must be normalized to have values

between -1 and 1. Second, by using the clean and uncorrupted data (no sensor faults), variety

of networks with different architectures are trained among which the best network is selected

according to the best input estimation and noise reduction capabilities.

After selecting the network structure if the ANN performance is poor in bias correction

then as part of the third step, retraining is required to force the network to produce uncor-

rupted output values for inputs containing bias or drift errors. To accomplish this, the input

data must be from faulty sensor data but the output data correspond to the corrected ones.

Considering the role of the two sub-networks of the ANN, the noise is filtered in the first sub-

network containing the mapping layer and the bottleneck layer. This sub-network has the role

of compressing the dimension of the inputs where the redundancies and random variations due

to measurement noise are removed during the space dimensional compression of the inputs.

On the other hand, the role of the second sub-network is to re-transform the compressed and
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filtered data to its original dimension.

Based on this fact, during the retraining process it is helpful to fix the weights of the

post-bottleneck layers (second sub-network) and let the training process to only update the

weights in the first sub-network [77] where the noise filtering is accomplished. This implies

that during the retraining process only the weights of two layers need to be updated.

4.3 Simulation Results

4.3.1 Training of the Autoassociative Neural Networks

The sensor measurements that are used in the following study are TLC, PLC, THC, PHC, TLT,

PLT, N1, N2 and TCC. Another input to the network is the engine fuel flow rate (Wf) which is

not normally directly measured and is the input of the gas path system. It can be obtained by

using the power level angle (PLA) which is set by the pilot (details are provided in Chapter 2).

The fuel flow rate in this work can change from 70% to 98% as it is almost the range

for the cruise mode. The ANN structure that is used for the data validation of a dual spool

engine is shown in Figure 4.2. The training data is collected from the simulation model of the

jet engine. Both input and output data are normalized by using the min-max normalization

to be scaled in the range of -1 to 1. The number of neurons in each layer should be found

properly for the network training. Starting with a relatively small number of neurons for

the three hidden layers, an optimal architecture is developed for our proposed ANN. During
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the optimization processes (that is finding the optimized number of neurons for each layer)

the number of the bottleneck layer neurons are changed from 3 to 7 and the number of the

mapping and the de-mapping layer neurons are changed from 10 to 60 neurons in order to

obtain the best structure of the ANN. The number of the mapping and the demapping neurons

for all the architectures considered are the same.

Using the batch training method a total of 7000 data are utilized for each ANN input in

the training and the number of epochs vary from 30 to 60 iterations. The data are generated

for different engine input fuel mass flow rates changing from 70% to 98% of the maximum

fuel mass flow rates (approximate range of the fuel flow in the cruise condition). The ambient

conditions are set to standard condition.

Among all the evaluated architectures, the results of nine (9) architectures are shown

in Table 4.1. The table summarizes the architecture, the training error JTrain, test error JTest

and the percentage of the reduced noise variance which is the average of all the output mea-

surements for different engine’s input profiles. The noise level was chosen to be the nominal

noise at the cruise conditions. The nominal value of the noise levels are shown in Table 3.3 in

Chapter 3. According to Table 4.1 the maximum noise reduction belongs to the structure #4,

however such a structure has a high training and testing error (JTrain and JTest) implying that

the network has not learned the input-output relationship as required. The next higher per-

centage of the noise reduction is related to the structure #6 with a training and testing errors of

2.15 and 2.33, respectively. The structure #2 has both the lower training and the testing errors
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but such low errors imply that the network has captured somehow the random aspect or the

noisy behaviour of the data. This is due to the fact that the percentage of the noise that such a

network can reduce is low.

In general the structures with 6 bottleneck neurons has shown better noise reduction

capabilities. Among the ANNs with 6 bottleneck layer we select #6 with the structure of

10-32-6-32-10 which has the average of 68.49% noise filtering capability.

Figure 4.2: ANN structure for the gas turbine engine sensor validation.

The simulation results are presented in the following to evaluate the performance of

ANN for data validation including noise reduction, inaccurate sensor correction, removing

outliers and sensor error correction.
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# Structure JTrain JTest Reduced noise level (%)
1 10-29-4-29-10 2.46 2.59 8.5%
2 10-35-4-35-10 1.78 1.98 45.44%
3 10-47-5-47-10 2.13 3.47 33.06%
4 10-35-5-35-10 10.21 13.82 84.78%
5 10-30-6-30-10 2.098 2.04 59.51%
6 10-32-6-32-10 2.15 2.33 68.49%
7 10-41-6-41-10 1.91 1.97 38.14%
8 10-34-7-34-10 2.12 2.14 32%
9 10-49-7-49-10 3.55 3.82 16%

Table 4.1: Trained autoassociative neural networks.

Noise Reduction

Noise filtering properties of the autoassociative network depend on how much the network

learns the interrelation among variables in its mapping and bottleneck layers. Therefore, it

excludes random variations due to measurement noise in the bottleneck output, and after the

de-mapping layer the network will yield "clean” corrected data. However, the level of noise

that is removed from data depends on the level of the redundancy among the measurement

data that is used in the ANN inputs.

TLC THC THT N1 N2 TCC PLC PHC PHT
ANN Inputs
Noise Level

0.49 0.17 0.28 0.18 0.14 0.19 0.31 0.33 0.21

ANN Output
Noise Level

0.08 0.06 0.03 0.08 0.04 0.027 0.15 0.16 0.17

Percentage
of the Noise
Filtered

84% 65% 89.5% 53% 70% 86% 60% 50.26% 20%

Table 4.2: The percentage of the noise filtered by the ANN.
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Figure 4.3: Input and the output of the autoassociative neural network for noise filtering.

The capability of the autoassociative neural network with the structure of 10-32-6-32-10

in filtering noise for each input variable is presented in Table 4.2. The noise levels are defined

in the form of percentage of the standard deviations at typical cruise condition. The ANN has

shown a significant capability in removing noise for most of the variables.

Figure 4.3 shows the noise filtering capability of the above ANN for the case when the

fuel flow rate is at 85% of the maximum fuel flow. The ANN output is the filtered version of
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the input data with a significant percentage of the noise reduction. In this case the nominal

values for the above cruise condition for TLC, THC, THT, N1, N2, TCC, PLC, PHC, PHT are

respectively at 443 K, 793 K, 1457 K, 8390 rpm, 11725 rpm, 1458 K, 3.64 bar, 20.9 bar and

5.57 bar.

Inaccurate Sensor Correction

The ANN is also capable of correcting the data from inaccurate sensors. Accuracy in sensors is

the ability of a sensor measurement to match the actual value of the quantity being measured.

Clearly, sensor accuracy is essential for success and reliability of FDI systems, However, over

the life time of sensors, they may encounter loss of accuracy.

In order to evaluate the performance of ANN for this type of sensor fault, sensor inac-

curacy is modelled by increasing the level of the noise variance. Figure 4.4 shows the results

when the sensor noise variances are increasing linearly from the nominal sensor variance to

the variance which is ten (10) times the nominal sensor noise variances. In this case, Ta-

ble 4.3 shows the percentage of the noise filtered using ANN. The percentages are obtained

through conducting multiple Monte Carlo simulations corresponding to random noise and by

considering the deducted value of the noise root mean square (rms) in the ANN output.

Removing Outlier using the ANN

One of the major problems in gas turbine engines is the presence of outliers that may lead

to false alarms in the engine fault detection system. Such noise outliers need to be removed
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Figure 4.4: Input and the output of ANN corresponding to the recovery of sensor inaccuracies.

TLC THC THT N1 N2 TCC PLC PHC PHT
ANN Inputs per-
centage of noise
rms at nominal
value

2.6 0.95 1.07 0.95 0.7 0.69 1.65 1.9 1.43

ANN Output per-
centage of noise
rms at nominal
value

0.2 0.3 0.26 0.37 0.11 0.25 0.49 0.8 0.96

Percentage of the
noise filtered

92% 68% 76% 65% 84% 63% 71% 56% 33%

Table 4.3: The percentage of the noise filtered by the ANN.
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before conducting engine fault detection. As typical examples, random outliers are injected

to the temperature of the high pressure turbine, high pressure rotational speed and pressure

of the low pressure compressor with the level of 1% for rotational speed and 10% for other

measurements. The results are shown in Figures 4.5, 4.6 and 4.7 which indicate that the

proposed data validation approach using the ANN is capable of removing the outliers that

may have occurred on the temperature and rotational speed sensors completely. However,

the ANN can only remove the significant amount of outlier for the PLC. Table 4.4 shows the

results of applying ANN with presence of outliers for different sensor measurements. The

outliers are selected at 1% level of the nominal values of N1 and N2 measurements and at

10% level of the nominal values for other measurement signals. In this table
√

denotes the

complete removal of the outlier. Corresponding to the PLC and PHT measurements, the ANN

is capable of removing 86% and 47% of the outliers, respectively.

Outlier removal capability of ANN
TLC THC THT N1 N2 TCC PLC PHC PHT√ √ √ √ √ √

86%
√

47%

Table 4.4: Outlier removing by the ANN.

Error Correction

Besides filtering the noise, the ANN has the capability to replace the faulty data due to the

sensor faults such as biases and drifts with estimated true data. The ANN is also useful in the

sense that if one measurement is lost, the lost measurement can be replaced with an estimate
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Figure 4.5: Input and the output of the ANN corresponding to the THC measurement signal
outlier noise.

Figure 4.6: Input and the output of the ANN corresponding to the N1 measurement signal
outlier noise.
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Figure 4.7: Input and the output of the ANN corresponding to the PLC measurement signal
outlier noise.

from the remaining valid sensors. However, sometimes the ANN which was trained using

valid data acts poorly in correcting the sensor faults for certain input variables. In such a case

as proposed in [77] by using robust autoassociative neural networks the training set should be

modified by including false data. The network is then retrained with the data sets that include

sensor fault data in order to learn how to filter the false information. It is also recommended to

adjust the weights after the bottleneck layer during the retraining and only update the weights

before the bottleneck layer.

In this section, the objective is to evaluate how efficiently the ANN corrects the cor-

rupted data and also how much other variables that are from the healthy sensors are robust to

the changes in the faulty variable. Several simulations have been performed in this section.
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Figures 4.8 to 4.15 show the results of our evaluations. These figures illustrate the recovery

rate of the faulty sensor data as well as the percentage of the deviations for other healthy vari-

ables from their real values when there are different biases ranging from 1% to 100%. The

recovery rates and the deviation rates is calculated according to [81]

Recovery Rate = (1− |YANN −YTarget |
|YTarget | )×100 (4.1)

Deviation Rate = (
|YANN −YTarget |

|YTarget | )×100 (4.2)

For instance, in Figure 4.8 the top plot is the recovery rate corresponding to the sensor

TLC while the bias was increased from 1% to 100%. The bottom plot shows the deviation rate

of the other healthy sensors in case the TLC sensor bias is changed from 1% to 100%. The

same plots are presented for the other sensors. The results show a significant recovery for the

temperature and speed measurements, and acceptable percentage of recovery for the pressure

measurement. From the shown figures it might be concluded that for the low biases the per-

formance is smaller than the large biases, however one should note that as the percentage of

the biases increase, the deviation rate of the other healthy measurements increase undesirably.

The biases on the variables THC, PHC, THT, N1 and N2 have less effect and produce smaller

deviation on the other healthy output measurements which are from the healthy sensors.
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Figure 4.8: The sensor recovery rate and the deviation rate corresponding to TLC.

Figure 4.9: The sensor recovery rate and the deviation rate corresponding to PLC.
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Figure 4.10: The sensor recovery rate and the deviation rate corresponding to THC.

Figure 4.11: The sensor recovery rate and the deviation rate corresponding to PHC.
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Figure 4.12: The sensor recovery rate and the deviation rate corresponding to THT.

Figure 4.13: The sensor recovery rate and the deviation rate corresponding to PHT.
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Figure 4.14: The sensor recovery rate and the deviation rate corresponding to N1.

Figure 4.15: The sensor recovery rate and the deviation rate corresponding to N2.
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4.3.2 Effects of the None-Validated Data on Engine Fault Detection

In this section, we will examine the effects of the proposed data validation system on the

engine fault diagnosis system. Sensor measurements will first be validated by the noise filter-

ing and error correction using the proposed ANN. Then the obtained validated data from the

ANN outputs will be used for fault diagnosis by using dynamic neural networks as discussed

in Chapter 3. Figures 4.16 and 4.17 show the effects of the noise filtering on the performance

of the dynamic neural networks when the system is in the healthy mode but the measurements

have noise with twice the nominal noise level in the cruise condition.

Figure 4.16 is related to the case when the input fuel flow rate is at 85% of its maxi-

mum and Figure 4.17 is related to the scenario when the input fuel flow rate is at 75% of its

maximum. The DNN0 is a neural network which is the representative of the healthy operation

of the gas turbine engine and is used for fault detection. Figures 4.16(a), 4.16(c) and 4.16(e)

show the residuals corresponding to the variables THC, TCC and N1 that are obtained from

DNN0 subject to the validated data that are generated from the autoassociative neural net-

work. On the other hand, Figures 4.16(b), 4.16(d) and 4.16(f) show the residuals of the same

DNN0 which use the non-validated data. It is obvious that false alarms would be produced in

this case since the residuals exceed their thresholds at some points. Similar case exist for an

another scenario that is shown in Figure 4.17.
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(a) DNN0 residuals corresponding to
THC with validated data for the
healthy operation of the engine.

(b) DNN0 residuals corresponding to
THC with non-validated data for the
healthy operation of the engine

(c) DNN0 residuals corresponding to
TCC with validated data for the-
healthy operation of the engine.

(d) DNN0 residuals corresponding to
TCC with non-validated data for the
healthy operation of the engine.

(e) DNN0 residuals corresponding to
N1 with validated data for the healthy
operation of the engine.

(f) DNN0 residuals corresponding to
N1 with non-validated data for the
healthy operation of the engine.

Figure 4.16: Effect of the non-validated data that produce false alarms (when input fuel flow
rate is at 85% of its maximum).
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(a) DNN0 residuals corresponding to
THC with validated data for the
healthy operation of the engine.

(b) DNN0 residuals corresponding to
THC with non-validated data for the
healthy operation of the engine.

(c) DNN0 residuals corresponding to
TCC with validated data for the-
healthy operation of the engine.

(d) DNN0 residuals corresponding to
TCC with non-validated data for the
healthy operation of the engine.

(e) DNN0 residuals corresponding to
N1 with validated data for the healthy
operation of the engine.

(f) DNN0 residuals corresponding to
N1 with non-validated data for the
healthy operation of the engine.

Figure 4.17: Effect of the non-validated data that produce false alarms, (when input fuel mass
flow rate is at 75% of its maximum).
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4.3.3 Effects of Data Validation on Component Fault Detection

When component faults occur the interrelationship among the variables may change and be-

cause the ANN network has not seen all the faulty conditions during its training phase, some-

times the network outputs cannot exactly follow the changes due to the component faults but

it is still possible to detect faults using the validated data and invoke the benefits of not misdi-

agnosing the sensor faults instead of components faults. Table 4.5 presents the fault detection

results of a bank of dynamic neural networks corresponding to the healthy mode of the engine

(DNN0) for three different fault severities (5%, 2% and 1%) by using the validated data.

Regarding the 5% severity, the networks corresponding to the variables PLC and N1

can detect all different fault types that are indicated in the table. The only fault type that

cannot be detected by the THC bank of networks is ΔΓHT . Furthermore, the THT bank of

networks can only detect the four fault types as presented in the table. As the percentage of

the fault severity decreases, the ability of the network DNN0 in detecting faults for all the

input profiles decreases. Indeed, for some fault scenarios DNN0 is only able to detect the fault

in some specific input fuel mass flow rates as specified in Table 4.5.

Comparing Table 4.5 with the one presented in Chapter 3 (Table 3.5) shows that the bank

of networks corresponding to PLC, THC and N1 can detect more faults with the validated data.

Besides, one should note that the most important benefits of using the validated data would be

to prevent false alarms due to the sensor faults.

For fault isolation using validated data and the bank of DNNs it is required that the
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5% Fault Severity 2% Fault Severity 1% Fault Severity
Faults PLC THC THT N1 PLC THC THT N1 PLC THC THT N1
ΔΓLC

√ √ √ √ √ ◦1 ◦1 √ √ ◦2 ◦3 -
ΔηLC

√ √ √ √ √
- ◦1 ◦4 √

- ◦1 -
ΔΓHC

√ √
-

√ √
- - - - - - -

ΔηHC
√ √

-
√ √ ◦1 - ◦4 ◦2 ◦3 - ◦3

ΔΓHT
√

- -
√ √

- - - - - - -
ΔηHT

√ √
-

√ √ ◦2 -
√ √ ◦1 - ◦1

ΔΓLT
√ √ √ √ √ √ √ √ √ ◦2 ◦1 ◦1

ΔηLT
√ √ √ √ √ ◦1 ◦1 ◦4 √

- ◦3 -

Table 4.5: The fault detection results.
(- or

√
denotes that one cannot detect or can detect a fault

◦1 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70, 75 and 95
% of its maximum.

◦2 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70 and 95 % of
its maximum.

◦3 denotes that one cannot detect the fault if the input fuel mass flow rate is at 70 ,85, 90 and
95 % of its maximum.

◦4 denotes that one cannot detect the fault if the input fuel mass flow rate is at 75 and 80 % of
its maximum. )

ANN follows the changes in the data because of the component faults and only correct the

sensor faults. However, as mentioned earlier the ANN trained with data of healthy engine is

not able to identify the changes due to the component faults. Therefore, fault isolation with

dynamic neural networks cannot be performed using the validated data. In the next chapter, we

will show how such problem is solved by using a multiple ANN for improved fault diagnosis

capability and performance.
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4.4 Conclusion

This chapter presents the results of applying autoassociative neural networks (ANN)to the sen-

sor validation problem in aircraft jet engine. The capability of ANN in validating sensor data

including noise and outlier reduction, sensor inaccuracy correction and sensor error correction

has been investigated in detail and large number of simulation results were presented. Finally,

the results of utilizing the validated data for fault diagnosis using dynamic neural networks

have been presented. It was indicated, however that by using such validated data dynamic

neural networks does not allow fault isolation. The solution for the problem of fault isolation

will be described in the next chapter.
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Chapter 5

Multiple-Model Sensor and Components

FDI Using Autoassociative Neural

Networks

In the previous chapter a methodology was proposed for data validation in order to improve

the performance of the aircraft engine fault detection system using validated data. However, as

mentioned the problem of fault isolation of engine faults under the presence of faulty sensors

is more challenging. Indeed, one autoassociative neural network which is trained with data

generated in the healthy condition is not adequate to validate the data for all the engine faulty

conditions.

This chapter presents the results of applying autoassociative neural networks (ANN) for
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both sensor and components fault detection and isolation. We propose a bank of ANNs to

diagnose sensor faults as well as the component faults while isolating them in a dual spool

aircraft jet engine. The proposed fault diagnosis methodology is an integrated solution to the

problem of both sensor faults and component faults even if both the engine faults and sensor

faults occur concurrently. The parallel bank of autoassociative neural networks proposed for

fault diagnosis can be viewed as multiple-model methodology.

5.1 Sensor Fault Detection Scheme Using ANN

After training the ANN using a backpropagation (BP) technique with a certain number of

training samples, the ANN captures the interrelationship among the gas path system variables

that have some degree of interdependence with each other. This make the inputs match the

outputs as closely as possible. Therefore, when non-faulty data is fed to the trained ANN,

the difference between the input and output of the ANN would be zero. When the data is

contaminated (a sensor is faulty), the difference between the input and the output of the ANN

will be non-zero. In this manner, the ANN approach can be used to determine the occurrence

of sensor faults.

Figure 5.1 shows a sensor monitoring system for a group of n measurements. In prin-

ciple the ANN maps inputs mi (i = 1,2, ...,n) to outputs, m
′
i (i = 1,2, ...,n) in such a manner

that mi = m
′
i.

As proposed in [55] and [82] when the ith sensor that is input to the autoassociative
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Figure 5.1: Sensor fault detection scheme.

network with the value mi is faulty as a result of sensor drifts or biases, the network will

produce m
′
i as a close approximation and estimation of the true value of the measurement mi.

The difference between m
′
i and mi which is the residual can be used as an indicator of that

specific faulty sensor.

5.2 Engine Component Fault Diagnosis

In this section, it will be shown that autoassociative neural networks can also be used to per-

form fault diagnosis in presence of sensor faults for a dual spool gas turbine engine. Occur-

rence of faults cause the changes in the health or performance parameters which will generate

changes in the engine measuring variables and the interrelationship among them. Therefore,

having only one ANN that is trained with the healthy data will not be sufficient to estimate

the engine variables for all the healthy and faulty operations of the engine. Consequently, a

bank of ANNs needs to be utilized. Each bank of neural networks is trained with healthy data

as well as the corresponding faulty data. Hence, each network acts as an estimator of both

healthy and one of the engine operating conditions corresponding to the various but limited
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faulty modes that are of most interest or possible in the jet engine. Note that the fault detection

and isolation tasks through this approach will be accomplished simultaneously.

The same input-output variables as those used in Chapter 4 are utilized to construct the

ANNs based on TLC, PLC, THC, PHC, TLT, PLT, N1, N2 and TCC and Wf. As mentioned

in Chapter 3, the jet engine component faults considered correspond to changes in the eight

(8) health parameters which are the efficiencies and the flow capacities of the low pressure

compressor, the high pressure compressor, the low pressure turbine, and the high pressure

turbine. Therefore, eight (8) component faults, as shown in Table 5.1, are investigated for

diagnosis.

Hence, a total of eight (8) models or autoassociative neural networks (ANN) are needed,

where each model represents and is associated with two class of the jet engine behaviour, one

faulty mode and the other the healthy mode. Table 5.1 presents the associated network labels

for each fault scenario. Figure 5.2 shows the structure of the fault diagnosis system that uses

a bank of ANNs.

Component
Fault

Description Autoassociative
Networks Label

ΔΓLC Low pressure compressor flow capacity decrease ANN1
ΔηLC Low pressure compressor efficiency decrease ANN2
ΔΓHC High pressure compressor flow capacity decrease ANN3
ΔηHC High pressure compressor efficiency decrease ANN4
ΔΓHT High pressure turbine flow capacity decrease ANN5
ΔηHT High pressure turbine efficiency decrease ANN6
ΔΓLT Low pressure turbine flow capacity decrease ANN7
ΔηLT Low pressure turbine efficiency decrease ANN8

Table 5.1: The definitions and descriptions of the considered components faults.
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Figure 5.2: The multiple model architecture for bank of ANNs for fault diagnosis.

After constructing the bank of ANNs, the residuals are generated for each output of the

ANNs by comparing the jet engine output and each ANN output. The following itemizes the

three (3) scenarios that may occur during the operation of the engine and for each case the

form of the residuals are described:

∗ Occurrence of no component or sensor fault: When all the residuals of all ANNs are smaller

than an appropriately selected threshold the system is considered healthy and neither

component faults nor sensor faults are detected.

∗ Occurrence of component fault: Once a component fault occurs the residual for the cor-

responding fault model (the residual of the ANN trained with that specific faulty case)

remains under its threshold and other ANNs residuals exceed their thresholds.

∗ Occurrence of sensor fault: The occurrence of only a sensor fault causes the residuals cor-

responding to the faulty sensor exceed their thresholds and this should happen in all bank

of ANNs.
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Considering the generated residuals of ANNs and the above described residual charac-

teristics one can isolate the component faults from the sensor faults.

5.3 Simulation Results

As in the previous two chapters the simulations are performed in the cruise mode of the en-

gine. The ambient pressure and the temperature are set to standard conditions and the Mach

number is set to 0.7 as a typical value in the cruise mode. The analysis is conducted for in-

put profiles in the range of 70% to 95% of the maximum fuel rate. Similar to the previous

chapters, to select the eight (8) network structures, both the values of the performance index

(J = ∑n
i=1(yd(n)−yNet(n))2

∑n
i=1(yd(n))2 , where yd(n) and yNet(n) denote the desired and the network outputs,

respectively, and n is the size of the training or the testing samples) and the generalization

capability for validating the data were considered. The data that is used to train the networks

are derived from the nonlinear model that is introduced in Chapter 2 and normalized to the

range of [-1,1].

The ANNs are used to carry out component fault detection and isolation as well as

sensor faults in the gas turbine engine. Common component faults are modelled as changes

in the component efficiency and flow capacity. Eight (8) component faults are investigated

as shown in Table 5.1. Corresponding to each component fault one autoassociative neural

network is trained. Each network is trained with the healthy data (the gas turbine engine

variables) as well as the associated faulty data. The variables used for the ANNs are made
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up of nine (9) measurements (temperature and pressure of the low pressure compressor, tem-

perature and pressure of the high pressure compressor, temperature and pressure of the high

pressure turbine, the high pressure and low pressure rotational speeds and the temperature of

the combustion chamber) and also the engine fuel flow which is considered as an engine input.

Considering eight (8) autoassociative neural networks corresponding to the component

faults for the fuel flow rate of 70-95%, Table 5.2 specifies each network structure and the

percentage of the noise that can be removed by each network for each variable that is obtained

from the sensors. The networks are trained with healthy as well as corresponding faulty data

with 2% and also 5% fault severities. Table 5.2 shows the significant capability of the ANNs

in filtering noise in the temperature and the rotational speed variables.

Neural
Network Structure

Percentage of the noise removed from measurement data
Networks TLC THC THT N1 N2 PLC PHC PHT
ANN1 10-33-7-33-10 86 57 75 47 54 18 50 19
ANN2 10-43-5-43-10 64 43 50 35 57 6 40 5
ANN3 10-47-6-47-10 73 74 79 48 36 1 58 51
ANN4 10-28-5-28-10 86.5 68 45 68 54 - 60 -
ANN5 10-33-6-33-10 88 65 81 59 79 8 11 17
ANN6 10-44-7-44-10 75 77 40 61 50 - 74.5 63
ANN7 10-42-5-33-10 76 73 63.5 66 61 10 61 15
ANN8 10-33-7-33-10 75 65 70 58.5 62 3 52 30

Table 5.2: The ANN structures and percentage of the noise filtering.

For each ANN1 to ANN8, the residuals which are the differences between the network

outputs and the network inputs are calculated, and thresholds are selected for each of them.

Thresholds are selected using the probabilistic threshold selection method as described in

Section 3.1.1. Selected thresholds are shown in Table 5.3.
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Neural Networks TLC THC THT N1 N2 PLC PHC PHT
ANN1 1.65 2.78 4 55 13 0.0072 0.11 0.02
ANN2 2 3.5 4.17 26.8 16.3 0.022 0.07 0.022
ANN3 1.3 2.9 22.5 36.2 28.5 0.015 0.18 0.28
ANN4 1.3 3.45 4.17 19.83 10.67 0.008 0.05 0.009
ANN5 1.3 1.43 2.27 19.33 14.04 0.007 0.068 0.02
ANN6 0.28 1.019 8.11 24.8 10.5 0.0028 0.056 0.019
ANN7 2.06 1.56 5.34 31.61 28.1 0.01 0.13 0.034
ANN8 0.4 0.6 3.55 21.81 18.9 0.0035 0.063 0.01

Table 5.3: The selected thresholds for each ANNs output.

5.3.1 Sensor Fault Detection and Isolation

For sensor fault detection and isolation the ANN outputs are compared with its inputs and

from the generated residuals one can investigate if there is a sensor fault and which sensor is

faulty. The outputs from the ANN provide the reconstructed and estimated values of the non-

faulty inputs. If the input data is fault free, then the ANN output will be the same as the input

and the difference between the output and the input will be close to zero. When one of the

inputs drift or vary from the nominal value, the corresponding output will not track the input

and their difference will be non-zero and this will cause the residual to exceed its threshold.

A number of simulations are performed to investigate the performance of the fault di-

agnosis system in evaluating sensor faults and determining how the residuals change in the

ANNs outputs. Figure 5.3 illustrates a typical sensor drift case on the ANN1 where the drift

has a rate of 0.06% per second from the nominal value that is injected at t=15 seconds on

the inputs corresponding to the variables THT and N2. Figure 5.3(a) shows the actual biased

and the neural network estimate for the measurements THT and N2. Figure 5.3(b) shows the
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residuals between the estimated outputs and the inputs of the network for eight (8) ANN1

input-output variables. Both the residuals corresponding to the variables THT and N2 have

exceeded their thresholds after several seconds, while the residuals corresponding to the other

output variables remain under their thresholds. Figures 5.4 to 5.10 show the same fault case

for the ANN2 to ANN8 networks, and the same results are obtained for those network as well.

As another sensor drift case, it is assumed that there is a drift of 0.15% per second

from the nominal value on the PHC output, when the fuel mass flow rate is at 80% of its

maximum value. The sensor reconstruction and the residuals corresponding to ANN4 and

ANN8 are depicted in Figures 5.11 and 5.12 (due to the similarity in results the other ANNs

are not illustrated). In this scenario only the residual corresponding to the PHC has passed the

threshold, therefore the sensor fault can be isolated. However, it is clear from the residuals

that there are also small deviations for the other ANN outputs. Indeed, when one of the

ANN inputs deviates from its true value, it may affect other ANN outputs. Depending on the

“severity” level of the sensor fault, other sensor estimates may or may not be affected by the

information of the faulty sensor. Simulation results have shown that a severe fault on a sensor

output (which is an input to the ANN) can create false alarms for other outputs due to the

network dependencies on a selected few parameters. However, the residual levels are lower

than that of the failed sensors.

Considering the above facts one can specify a minnimum and a maximum value of the

bias for which the specific sensor faults can be detected and isolated. Choosing the thresholds
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according to Table 5.3 and assuming that the nominal values of the variables are corresponding

to the case when the input fuel mass flow rate is at 85% of its maximum, the minimum and

maximum biases for each variable that can be isolated are obtained according to Table 5.4. Out

of this range the sensor fault is detectable but the residual is not sufficient to localize the faulty

sensor and isolate it as explained above. Finally, Table 5.5 specifies the lowest and the highest

value of the bias that can be isolated for each measurement considering all the ANNs. Those

obtained by finding the lowest value of the minimum and the highest value of the maximum

biases are shown in Table 5.4 for each variable.

(a) THT and N2 sensor reconstruction. (b) ANN1 residuals.

Figure 5.3: The ANN1 sensor reconstruction and the residual error for the sensor drift fault
with the rate of 0.06% per second on THT and N2.
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(a) THT and N2 sensor reconstruction. (b) ANN2 residuals.

Figure 5.4: The ANN2 sensor reconstruction and the residual error for the sensor drift fault
with the rate of 0.06% per second on THT and N2.

(a) THT and N2 sensor reconstruction. (b) ANN3 residuals.

Figure 5.5: The ANN3 sensor reconstruction and the residual error for the sensor drift fault
with the rate of 0.06% per second on THT and N2.
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(a) THT and N2 sensor reconstruction. (b) ANN2 residuals.

Figure 5.6: The ANN4 sensor reconstruction and the residual error for the sensor drift fault
with the rate of 0.06% per second on THT and N2.

(a) THT and N2 sensor reconstruction. (b) ANN5 residuals.

Figure 5.7: The ANN5 sensor reconstruction and the residual errors for the sensor drift fault
with the rate of 0.06% per second on THT and N2.
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(a) THT and N2 sensor reconstruction. (b) ANN6 residuals.

Figure 5.8: The ANN6 sensor reconstruction and the residual errors for the sensor drift fault
with the rate of 0.06% per second on THT and N2.

(a) THT and N2 sensor reconstruction. (b) ANN7 residuals.

Figure 5.9: The ANN7 sensor reconstruction and the residual errors for the sensor drift fault
with the rate of 0.06% per second on THT and N2.
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(a) THT and N2 sensor reconstruction. (b) ANN8 residuals.

Figure 5.10: The ANN8 sensor reconstruction and the residual errors for the sensor drift fault
with the rate of 0.06% per second on THT and N2.

(a) PHC sensor recon-
struction.

(b) ANN4 Residuals.

Figure 5.11: The ANN4 sensor reconstruction and residual errors for the sensor drift fault of
0.15% per second on PHC.
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(a) PHC sensor reconstruc-
tion.

(b) ANN8 Residuals.

Figure 5.12: The ANN8 sensor reconstruction and the residual errors for the sensor drift fault
of 0.15% per second on PHC.

Neural Network TLC(%) THC(%) THT(%) N1(%) N2(%) PLC(%) PHC(%) PHT(%)
Min - Max Min - Max Min - Max Min - Max Min - Max Min - Max Min - Max Min - Max

ANN1 0.3 - 1.27 0.3 - 8.83 0.3 - 29 0.59 - C.F. 0.1 - 16 - 0.47 - 2.4 0.44 - 0.81
ANN2 0.45 - 0.67 0.45 - 5.55 0.39 - 35 0.3 - 98 0.1 - 52.5 - 0.33 - 9.6 0.35 - 0.9
ANN3 0.29 - 0.79 0.38 - 10.72 2 - 51 0.46 - 80 0.2 - C.F. - - -
ANN4 0.29 - 3.4 0.43 - 12.7 0.3 - 37 0.2 - C.F. 0.08 - 15 - 0.2 - 2.9 -
ANN5 0.29 - 0.31 0.18 - 3.6 0.2 - C.F. 0.22 - C.F. 0.1 - 7 0.19 - 0.42 0.28 - 0.87 0.35 - 0.9
ANN6 0.27 - 1.13 0.13 - 2.5 0.76 - 7.11 0.28 - 60 0.04 - 7.5 - 0.2 - 0.8 0.2 - 1.08
ANN7 0.46 - 2.82 0.19 - 3.8 0.5 - 53 0.3 - 24 0.23 - 10.7 - 0.47 - 8.6 0.33 - 4.5
ANN8 0.3 - 4.97 0.1 - 10 0.33 - 7.21 0.2 - 89.4 0.16 - 49 0.42 - 1.3 0.3 - 3.73 -

Table 5.4: The minimum and the maximum biases (C.F. denotes complete failure, when the sensor
reaches its full scale value).

TLC THC THT N1 N2 PLC PHC PHT

Maximum Bias 4.97% 12.7% Complete
Failure

Complete
Failure

Complete
Failure

1.3% 8.6% 4.5%

Minimum Bias 0.27% 0.1% or 0.2% 0.2% 0.1% 0.19% 0.2% 0.2%

Table 5.5: The minimum and the maximum biases.
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5.3.2 Component Fault Detection and isolation

Single Fault Scenario

To investigate the performance of the bank of ANNs in detecting component faults several

fault scenarios are shown in the following case studies.

(a) Fault Scenario 4% ΔΓHT . The fault is injected at t = 16 seconds. The ANN5 net-

work is representative of this fault (refer to Table 5.1). Figure 5.13 shows the residuals of

the eight (8) autoassociative neural networks. Before the occurrence of the fault all the resid-

uals are below their thresholds, and once the fault occurs the residuals corresponding to the

model ANN5 still remain under their thresholds whereas for the other ANNs models almost

all the residuals have exceeded their thresholds except for a few of them (for instance, all the

ANN1 residuals have exceeded their thresholds except the one corresponding to variable PLC

or among ANN2 residuals only the one corresponding to TLC has not exceeded its threshold).

Indeed what is required is that at least one of the residuals exceeds from its threshold in any

of the other ANNs for fault isolation.

(b) Fault Scenario 1% ΔηHT . The next faulty scenario is a 1% ΔηHT that is injected

at t=16 seconds. The ANN6 network is representative of this fault mode (refer to Table 5.1).

Figure 5.14 shows the residuals corresponding to the fault for this case. All the ANN6 residu-

als remain below their thresholds, while at least one residual has exceeded its threshold in the

other ANNs which implies that this fault is isolated quite successfully.
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Figure 5.13: The ANN1 to ANN8 generated residuals corresponding to the case of a 4% ΔΓHT
fault.
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Figure 5.14: The ANN1 to ANN8 generated residuals corresponding to the case of a 1% ΔηHT
fault.
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(c) Fault Scenario ΔηLT . For this faulty scenario for which the ANN8 is the represen-

tative as depicted in Figure 5.15, for 2% fault severity not only the ANN8 network residuals

remain under their thresholds but also none of the ANN6 residuals have the chance to exceed

their thresholds. This yields an inability to isolate the fault with such a severity. However,

increasing the fault up to 3% as depicted in Figure 5.16 ensures the isolation as the residuals

corresponding to the ANN6 have exceeded their thresholds for this fault severity.

(d) Fault Scenario ΔΓLT . The ANN5 is representative of this fault case. Figure 5.17

shows the residuals of the ANN5 for the case of 8% and 9% fault severities. It can be seen

that for the 8% fault severity the residuals are still under the thresholds so that this fault can be

isolated. However, in case of a 9% fault severity the residuals would no longer remain under

their thresholds and the isolation cannot be achieved. As mentioned previously, the networks

are trained with the data that contain the 2% and 5% fault severities. Therefore, by increasing

the fault severities the networks are not capable of correctly estimating the changes on the

variables that are caused by the fault. In order to isolate higher fault severities one should add

other fault severities data to the training data. This would clearly increase the learning process

and requires larger network structures with more neurons. Alternatively, one can construct

other banks of ANNs with these higher level fault severities.

A summary of the fault detection and isolation results stating the minimum and the

maximum values of the faults that can be diagnosed by using the bank of ANNs are shown

in Tables 5.6 - 5.8. We have injected the faults with different severities at different input
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Figure 5.15: The ANN1 to ANN8 generated residuals corresponding to the case of a 2% ΔηLT
fault.
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Figure 5.16: The ANN6 and ANN8 generated residuals corresponding to the case of a 3%
ΔηLT fault.

Figure 5.17: The ANN5 generated residuals corresponding to the case of a 8% and 9% ΔΓHT
fault.
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fuel mass flow rates. Table 5.6 shows minimum faults that can be detected by each ANN

network which are not representative or were not trained with the specific faults. Indeed the

specified percentages are the minimum faults for which at least one of the residuals on that

ANN exceeds its threshold. Clearly there is no minimum value of fault for the ANN that is

representative of that specific fault, therefore a dashed line (-) is used in the table for these

cases. Moreover, Table 5.7 shows the maximum severity of faults of what each corresponding

ANNs can be representative of. In other words, this table presents the maximum fault by

which the corresponding ANN residuals would not exceed their thresholds.

Faults ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8
ΔΓLC - 2% 2% 1% 2% 1% 2% 1%
ΔηLC 2% - 1% 1% 1% 1% 2% 1%
ΔΓHC 1% 1% - 1% 1% 1% 1% 1%
ΔηHC 1% 1% 1% - 1% 1% 1% 1%
ΔΓHT 1% 1% 1% 1% - 1% 1% 1%
ΔηHT 1% 1% 1% 1% 1% - 1% 1%
ΔΓLT 1% 1% 1% 1% 1% 1% - 1%
ΔηLT 2% 2% 1% 2% 2% 3% 2% -

Table 5.6: The minimum faults that are detectable by using each autoassociative neural net-
work ANN1-ANN8 (the minimum fault that causes the residuals exceed their thresholds).

Summarizing the two Tables 5.6 and 5.7, the minimum and the maximum faults that can

be diagnosed in general by the bank of ANNs are now shown in Table 5.8.

Concurrent Components Faults and Sensor Fault Scenarios

Given the fact that component and sensor faults do not occur exactly at the same time, it is

assumed that the ΔΓHT component fault with a 4% severity has occurred in t=15 seconds and
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Faults ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8
ΔΓLC 6% - - - - - - -
ΔηLC - 6% - - - - - -
ΔΓHC - - 5% - - - - -
ΔηHC - - - 7% - - - -
ΔΓHT - - - - 8% - - -
ΔηHT - - - - - 5% - -
ΔΓLT - - - - - - 5% -
ΔηLT - - - - - - - 5%

Table 5.7: The maximum faults by which the corresponding ANN residuals would not exceed
their thresholds.)

ΔΓLC ΔηLC ΔΓHC ΔηHC ΔΓHT ΔηHT ΔΓLT ΔηLT
2% - 6% 2% - 6% 2% - 5% 1% - 6% 1% - 8% 1% - 5% 1% - 5% 3% - 5%

Table 5.8: The maximum and the minimum faults that can be detected and isolated by using
the bank of ANNs.

after 5 seconds (at t=20 seconds) the THC has encountered with a 20K bias (5%). Figure

5.18 shows the residuals corresponding to different networks for this fault scenario. Due to

the occurrence of a component fault at t=15 seconds all the residuals corresponding to the

network ANN5 remain below their thresholds whereas the other ANNs have their residuals

exceed their thresholds which result in the isolation of the component fault. After 5 seconds,

due to the occurrence of the THC sensor fault, the only residual in the ANN5 that would

exceed its threshold is the one corresponding to the THC output, which makes the sensor

isolation task possible.
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Figure 5.18: The ANN1 to ANN8 generated residuals for the case of a 4% ΔηHT fault injected
at t=15 seconds and 20 K bias injected on the THC sensor at t=20 seconds.
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Concurrent Component Fault Scenario

Figure 5.19 shows the results for two typical component faults occurring concurrently, namely

ΔΓLT and ΔηLT . ANN7 and ANN8 are representative of these faults, respectively, therefore

only the residuals corresponding to ANN7 and ANN8 are shown. Figure 5.19(a) illustrates the

ANN7 residuals when a 5% ΔΓLT fault has occurred at t=16 seconds and a 5% ΔηLT fault has

occurred concurrently at t=25 seconds. Figure 5.19(b) shows the ANN8 (ΔηLT fault model)

residuals for the same scenario. The ANN7 (ΔΓLT fault model) residuals remain under their

threshold when the 5% ΔΓLT fault occurred at t=16 seconds and the ANN8 residuals exceeded

their thresholds, therefore this fault is diagnosed. However, once the second fault has occurred

the ANN7 residuals exceed their thresholds whereas the ANN8 residuals still remain above

their thresholds due to the fact that the first fault still exists. The other ANNs (ANN1-ANN6)

residuals are above their thresholds for those fault occurrences. Hence, the only information

that can be concluded is that the second fault has occurred but the fault cannot be isolated. For

detection and isolation of two concurrent faults, a hierarchical approach can be employed [7]

which is not considered in this thesis and can be treated as future work.
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(a) The ANN7 residuals for the 5% ΔΓLT
fault injected at t=16 seconds and the 5%
ΔηLT fault injected at t=25 seconds.

(b) The ANN8 residuals for the 5% ΔΓLT
fault injected at t=16 seconds and the 5%
ΔηLT fault injected at t=25 seconds.

Figure 5.19: concurrent fault

5.4 Comparison of Autoassociative Neural Networks With

Dynamic Neural Networks

This section presents a comparison between the two proposed approaches, namely dynamic

neural networks and the autoassociative neural networks for fault diagnosis of the jet engine.

As explained in Chapter 3 by using dynamic neural networks approach each network is to

learn the input-output dynamic characteristics of the jet engine corresponding to one variable.

This is to decrease and reduce the computational cost. For instance, for the four variables

PLC, THC, THT and N1, four dynamic neural networks are trained.

On the other hand, the autoassociative neural networks are multi-input and multi-output
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networks with a redundancy between their inputs and output variables. For comparison Ta-

ble 5.9 shows the characteristics and parameters of the ANN7 and DNN7 (both are represen-

tative of the ΔΓLT fault) for three engine output variables (THC, THT and N1). The size of

the three DNNs corresponding to the variables THC, THT and N1 are 1-4-4-1, 1-4-5-1 and

1-7-6-1, respectively and the number of updating parameters are 78, 89 and 139, respectively,

which gives a total of 306 updating parameters. On the other hand, the ANN7 has the structure

of 10-42-5-42-10 and a large number of updating parameters which is 1359. The training and

the testing performance indices are also shown in this table. This shows that dynamic neural

networks produce a better performance, in other words, the dynamic neural networks quality

of learning the engine dynamics is superior to that of the autoassociative neural networks.

Network Characteristics
Dynamic Neural Networks Autoassociative Neural Networks

DNNT HC DNNT HT DNNN1 THC THT N1
Size of network 1-4-4-1 1-4-5-1 1-7-6-1 10-42-5-42-10

Number of parameters 78 89 139 1359
Total number of parameters 306 1359

Performance index JTrain 0.001 0.0008 0.0043 0.006 0.007 0.0016
Performance index JTest 0.0062 0.0032 0.06 0.02 0.05 0.1

Table 5.9: Characteristics and parameters of the DNN7 and ANN7.

In dynamic neural networks, there are more learning parameters for a single neuron

(weights, IIR filter nominator and denominator coefficients, and the activation function slope)

and the updating algorithm, namely the “extended backpropagation” is a more computation-

ally intensive than the general backpropagation algorithm, however the networks have smaller

architectures as compared to autoassociative neural networks. Indeed, even though extended
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backpropagation algorithm is a slightly more complicated than a general backpropagation al-

gorithm, due to the size of the network the training process in the ANN is slightly more time

consuming than the DNNs.

By using dynamic neural networks approach, fault detection is decoupled from the fault

isolation task. Therefore, if one is only interested in the fault detection problem there is no

need to activate the dynamic neural networks corresponding to the isolation task, which can

reduce the computational load. In contrast, in the ANN approach the detection and isolation

tasks are integrated.

Comparing Table 3.6 (the DNN isolation results) and Table 5.8 (the ANN isolation re-

sults) it can be concluded that the DNN performs satisfactorily for the faulty cases with the

same fault severity as those that the networks were trained with. On the other hand, the ANN

approach is capable of isolating a wider range of fault severities.

Finally, the most important difference is that by using the ANN approach the sensor

faults can be isolated as well, and the ANN approach is capable of distinguishing between

sensor faults and components faults.

5.5 Conclusion

In this chapter, a multiple-model sensor and components fault detection and isolation approach

was introduced for aircraft jet engine using parallel bank of autoassociative neural networks.

This approach provides an integrated scheme for simultaneously detecting and isolating the
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sensor faults and the component faults. Various scenarios including sensor faults, component

faults, concurrent sensor and components faults and concurrent component faults have been

presented to investigate the performance of the proposed scheme. A discussion on the simu-

lation results for each scenario is also provided under each section. Finally, comparison of the

two proposed neural network-based fault detection and isolation approaches are presented.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

In this thesis the problem of fault detection and isolation (FDI) in nonlinear dynamical system

of an aircraft jet engine is addressed using two artificial intelligent approaches. Artificial

neural networks are employed in this thesis due to their great capability in identifying any

nonlinear static and dynamic function and their competence to cope with system complexity,

uncertainty as well as noisy and corrupted data and information.

The main challenge in FDI systems is to diagnose incipient and abrupt faults in complex

dynamic systems under the assumption that input and output measurements are affected by

noise or faulty sensors. In other words, the FDI analysis can be strongly affected by the

measurement uncertainty and unreliability. This thesis addresses three main problems in the
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jet engine health monitoring and fault diagnosis system, namely component faults diagnosis,

data validation and sensor fault diagnosis. Towards this end, two multiple model schemes

using two different types of artificial neural networks were introduced.

The first multiple model FDI scheme was composed of dynamic neural networks (DNN).

This FDI architecture consists of parallel bank of dynamic neural network estimators which

are capable of learning the intrinsic dynamical nonlinear behaviour of the system. Each net-

work corresponds to a specific faulty or healthy mode of the aircraft jet engine. The DNNs in

this scheme were constructed based on a dynamic multilayer perceptron network which uses

IIR filters to generate dynamics between the input and output of the system. Dynamic neural

networks has a great capability in learning the dynamics of complicated nonlinear systems

where conventional static neural networks cannot yield an acceptable modelling performance.

In other words, such FDI scheme has a specific advantage in terms of making use of both the

benefits of multiple model characteristics and the dynamic neural networks.

The second FDI scheme was achieved by using autoassociative neural networks (ANN).

A parallel bank of ANNs were proposed to diagnose sensor faults as well as the component

faults in the aircraft jet engine. Unlike most FDI techniques, the proposed solution simulta-

neously accomplishes sensor fault and component fault detection and isolation (FDI) within

a unified diagnostic framework. Autoassociative neural networks are feedforward neural net-

works that use the concept of nonlinear principle components analysis (NPCA) and are prac-

tical for filtering or signal smoothing, data validation as well as sensor error correction.
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In both proposed FDI schemes, while each network corresponds to a specific operating

mode of the engine, generated residuals have been evaluated to determine location and time of

the fault occurrence, and all these have been accomplished in presence of measurement noise.

Finally, the two proposed fault diagnosis approaches were compared in terms of performance

and quality of results.

6.2 Suggestions for Future Work

A large number of potential future works to extend the current research can be envisaged.

Some of our plans for future research are explained in the following:

First, the extended dynamic backpropagation algorithm used for training of dynamic

neural network, may sometimes get stuck in unsatisfactory local minima of the error function.

Such issues can be addressed by using the methods that belong to the other class of global opti-

mization by using stochastic methods such as adaptive random search (ARS) or simultaneous

perturbation stochastic approximation (SPSA). This helps to enhance the quality of fault diag-

nosis by improving the quality of learning and identification capability of the dynamic neural

networks.

Second, in this thesis the problem of fault detection and isolation has been addressed.

Identification of faults is another essential problem in aircraft engines fault diagnosis. In-

deed, accurate identification of fault severities is an invaluable asset for system maintenance

as well as development of reliable autonomous recovery procedures. In our approach using
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multiple-model dynamic neural networks, the identification can be pursued by adding more

DNN trained for different fault severity cases.

Third, as another recommendation for further studies, fault diagnosis in other flight

modes such as take off can be addressed considering the situation when the environmental

conditions are varying. Furthermore, employing adaptive or dynamic thresholds techniques

helps also for better quality of FDI. Adaptive thresholds can intrinsically capture the nonlinear

behaviour of the engine, thereby addressing the limitations of fixed thresholds. Residuals

may change with the varying control inputs and dynamic operating conditions of the engine.

Therefore, using a small fixed threshold may result in significant false alarms, while using

a large fixed threshold may increase the number of missed detections and isolations. The

adaptive threshold automatically adapts to the changes in the engine operating conditions and

engine dynamics to enhance the robustness and fault sensitivity of the FDI scheme.

Fourth another future development for advanced FDI techniques can be focused on in-

vestigation of fault diagnosis system in the case when more than one fault or combination of

faults occur. For our proposed approach for detection and isolation of two concurrent faults, a

hierarchical approach can be employed.
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