24,181 research outputs found

    A multiple layer model to compare RNA secondary structures

    Get PDF
    International audienceWe formally introduce a new data structure, called MiGaL for ``Multiple Graph Layers'', that is composed of various graphs linked together by relations of abstraction/refinement. The new structure is useful for representing information that can be described at different levels of abstraction, each level corresponding to a graph. We then propose an algorithm for comparing two MiGaLs. The algorithm performs a step-by-step comparison starting with the most ``abstract'' level. The result of the comparison at a given step is communicated to the next step using a special colouring scheme. MiGaLs represent a very natural model for comparing RNA secondary structures that may be seen at different levels of detail, going from the sequence of nucleotides, single or paired with another to participate in a helix, to the network of multiple loops that is believed to represent the most conserved part of RNAs having similar function. We therefore show how to use MiGaLs to very efficiently compare two RNAs of any size at different levels of detail

    A new procedure to analyze RNA non-branching structures

    Get PDF
    RNA structure prediction and structural motifs analysis are challenging tasks in the investigation of RNA function. We propose a novel procedure to detect structural motifs shared between two RNAs (a reference and a target). In particular, we developed two core modules: (i) nbRSSP_extractor, to assign a unique structure to the reference RNA encoded by a set of non-branching structures; (ii) SSD_finder, to detect structural motifs that the target RNA shares with the reference, by means of a new score function that rewards the relative distance of the target non-branching structures compared to the reference ones. We integrated these algorithms with already existing software to reach a coherent pipeline able to perform the following two main tasks: prediction of RNA structures (integration of RNALfold and nbRSSP_extractor) and search for chains of matches (integration of Structator and SSD_finder)

    BRASERO: A Resource for Benchmarking RNA Secondary Structure Comparison Algorithms

    Get PDF
    The pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets

    Explainable deep learning models for biological sequence classification

    Get PDF
    Biological sequences - DNA, RNA and proteins - orchestrate the behavior of all living cells and trying to understand the mechanisms that govern and regulate the interactions among these molecules has motivated biological research for many years. The introduction of experimental protocols that analyze such interactions on a genome- or transcriptome-wide scale has also established the usage of machine learning in our field to make sense of the vast amounts of generated data. Recently, deep learning, a branch of machine learning based on artificial neural networks, and especially convolutional neural networks (CNNs) were shown to deliver promising results for predictive tasks and automated feature extraction. However, the resulting models are often very complex and thus make model application and interpretation hard, but the possibility to interpret which features a model has learned from the data is crucial to understand and to explain new biological mechanisms. This work therefore presents pysster, our open source software library that enables researchers to more easily train, apply and interpret CNNs on biological sequence data. We evaluate and implement different feature interpretation and visualization strategies and show that the flexibility of CNNs allows for the integration of additional data beyond pure sequences to improve the biological feature interpretability. We demonstrate this by building, among others, predictive models for transcription factor and RNA-binding protein binding sites and by supplementing these models with structural information in the form of DNA shape and RNA secondary structure. Features learned by models are then visualized as sequence and structure motifs together with information about motif locations and motif co-occurrence. By further analyzing an artificial data set containing implanted motifs we also illustrate how the hierarchical feature extraction process in a multi-layer deep neural network operates. Finally, we present a larger biological application by predicting RNA-binding of proteins for transcripts for which experimental protein-RNA interaction data is not yet available. Here, the comprehensive interpretation options of CNNs made us aware of potential technical bias in the experimental eCLIP data (enhanced crosslinking and immunoprecipitation) that were used as a basis for the models. This allowed for subsequent tuning of the models and data to get more meaningful predictions in practice

    Identification of hepta-histidine as a candidate drug for Huntington's disease by in silico-in vitro- in vivo-integrated screens of chemical libraries.

    Get PDF
    We identified drug seeds for treating Huntington's disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD
    • 

    corecore