652 research outputs found

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    SENSOR MANAGEMENT FOR LOCALIZATION AND TRACKING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are very useful in many application areas including battlefield surveillance, environment monitoring and target tracking, industrial processes and health monitoring and control. The classical WSNs are composed of large number of densely deployed sensors, where sensors are battery-powered devices with limited signal processing capabilities. In the crowdsourcing based WSNs, users who carry devices with built-in sensors are recruited as sensors. In both WSNs, the sensors send their observations regarding the target to a central node called the fusion center for final inference. With limited resources, such as limited communication bandwidth among the WSNs and limited sensor battery power, it is important to investigate algorithms which consider the trade-off between system performance and energy cost in the WSNs. The goal of this thesis is to study the sensor management problems in resource limited WSNs while performing target localization or tracking tasks. Most research on sensor management problems in classical WSNs assumes that the number of sensors to be selected is given a priori, which is often not true in practice. Moreover, sensor network design usually involves consideration of multiple conflicting objectives, such as maximization of the lifetime of the network or the inference performance, while minimizing the cost of resources such as energy, communication or deployment costs. Thus, in this thesis, we formulate the sensor management problem in a classical resource limited WSN as a multi-objective optimization problem (MOP), whose goal is to find a set of sensor selection strategies which re- veal the trade-off between the target tracking performance and the number of selected sensors to perform the task. In this part of the thesis, we propose a novel mutual information upper bound (MIUB) based sensor selection scheme, which has low computational complexity, same as the Fisher information (FI) based sensor selection scheme, and gives estimation performance similar to the mutual information (MI) based sensor selection scheme. Without knowing the number of sensors to be selected a priori, the MOP gives a set of sensor selection strategies that reveal different trade-offs between two conflicting objectives: minimization of the number of selected sensors and minimization of the gap between the performance metric (MIUB and FI) when all the sensors transmit measurements and when only the selected sensors transmit their measurements based on the sensor selection strategy. Crowdsourcing has been applied to sensing applications recently where users carrying devices with built-in sensors are allowed or even encouraged to contribute toward the inference tasks. Crowdsourcing based WSNs provide cost effectiveness since a dedicated sensing infrastructure is no longer needed for different inference tasks, also, such architectures allow ubiquitous coverage. Most sensing applications and systems assume voluntary participation of users. However, users consume their resources while participating in a sensing task, and they may also have concerns regarding their privacy. At the same time, the limitation on communication bandwidth requires proper management of the participating users. Thus, there is a need to design optimal mechanisms which perform selection of the sensors in an efficient manner as well as providing appropriate incentives to the users to motivate their participation. In this thesis, optimal mechanisms are designed for sensor management problems in crowdsourcing based WSNs where the fusion center (FC) con- ducts auctions by soliciting bids from the selfish sensors, which reflect how much they value their energy cost. Furthermore, the rationality and truthfulness of the sensors are guaranteed in our model. Moreover, different considerations are included in the mechanism design approaches: 1) the sensors send analog bids to the FC, 2) the sensors are only allowed to send quantized bids to the FC because of communication limitations or some privacy issues, 3) the state of charge (SOC) of the sensors affects the energy consumption of the sensors in the mechanism, and, 4) the FC and the sensors communicate in a two-sided market

    Resource aware distributed detection and estimation of random events in wireless sensor networks

    Get PDF
    In this dissertation, we develop several resource aware approaches for detection and estimation in wireless sensor networks (WSNs). Tolerating an acceptable degradation from the best achievable performance, we seek more resource efficient solutions than the state-of-the-art methods. We first define a multi-objective optimization problem and find the trade-off solutions between two conflicting objectives for the distributed detection problem in WSNs: minimizing the probability of error and minimizing the total energy consumption. Simulation results show that Pareto-optimal solutions can provide significant energy savings at the cost a slight increase in the probability of error from its minimum achievable value. Having detected the presence of the source, accurate source localization is another important task to be performed by a WSN. The state-of-the-art one-shot location estimation scheme requires simultaneous transmission of all sensor data to the fusion center. We propose an iterative source localization algorithm where a small set of anchor sensors first detect the presence of the source and arrive at a coarse location estimate. Then a number of non-anchor sensors are selected in an iterative manner to refine the location estimate. The iterative localization scheme reduces the communication requirements as compared to the one-shot location estimation while introducing some estimation latency. For sensor selection at each iteration, two metrics are proposed which are derived based on the mutual information (MI) and the posterior Cramer-Rao lower bound (PCRLB) of the location estimate. In terms of computational complexity, the PCRLB-based sensor selection metric is more efficient as compared to the MI-based sensor selection metric, and under the assumption of perfect communication channels between sensors and the fusion center, both sensor selection schemes achieve the similar estimation performance that is the mean squared error of the source location gets very close to the PCRLB of one-shot location estimator within a few iterations. The proposed iterative method is further extended to the case which considers fading on the channels between sensors and the fusion center. Simulation results are presented for the cases when partial or complete channel knowledge are available at the fusion center. We finally consider a heterogenous sensing field and define a distributed parameter estimation problem where the quantization data rate of a sensor is determined as a function of its observation SNR. The inverse of the average Fisher information is then defined as a lower bound on the average PCRLB which is hard to compute. The inverse of the average Fisher information is minimized subject to the total bandwidth and bandwidth utilization constraints and we find the optimal transmission probability of each possible quantization rate. Under stringent bandwidth availability, the proposed scheme outperforms the scheme where the total bandwidth is equally distributed among sensors

    Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy

    Get PDF
    [Abstract]: Outlier detection is an important research problem in data mining that aims to discover useful abnormal and irregular patterns hidden in large data sets. Most existing outlier detection methods only deal with static data with relatively low dimensionality. Recently, outlier detection for high-dimensional stream data became a new emerging research problem. A key observation that motivates this research is that outliers in high-dimensional data are projected outliers, i.e., they are embedded in lower-dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very challenging task for several reasons. First, detecting projected outliers is difficult even for high-dimensional static data. The exhaustive search for the out-lying subspaces where projected outliers are embedded is a NP problem. Second, the algorithms for handling data streams are constrained to take only one pass to process the streaming data with the conditions of space limitation and time criticality. The currently existing methods for outlier detection are found to be ineffective for detecting projected outliers in high-dimensional data streams. In this thesis, we present a new technique, called the Stream Project Outlier deTector (SPOT), which attempts to detect projected outliers in high-dimensional data streams. SPOT employs an innovative window-based time model in capturing dynamic statistics from stream data, and a novel data structure containing a set of top sparse subspaces to detect projected outliers effectively. SPOT also employs a multi-objective genetic algorithm as an effective search method for finding the outlying subspaces where most projected outliers are embedded. The experimental results demonstrate that SPOT is efficient and effective in detecting projected outliers for high-dimensional data streams. The main contribution of this thesis is that it provides a backbone in tackling the challenging problem of outlier detection for high- dimensional data streams. SPOT can facilitate the discovery of useful abnormal patterns and can be potentially applied to a variety of high demand applications, such as for sensor network data monitoring, online transaction protection, etc

    Innovative Wireless Localization Techniques and Applications

    Get PDF
    Innovative methodologies for the wireless localization of users and related applications are addressed in this thesis. In last years, the widespread diffusion of pervasive wireless communication (e.g., Wi-Fi) and global localization services (e.g., GPS) has boosted the interest and the research on location information and services. Location-aware applications are becoming fundamental to a growing number of consumers (e.g., navigation, advertising, seamless user interaction with smart places), private and public institutions in the fields of energy efficiency, security, safety, fleet management, emergency response. In this context, the position of the user - where is often more valuable for deploying services of interest than the identity of the user itself - who. In detail, opportunistic approaches based on the analysis of electromagnetic field indicators (i.e., received signal strength and channel state information) for the presence detection, the localization, the tracking and the posture recognition of cooperative and non-cooperative (device-free) users in indoor environments are proposed and validated in real world test sites. The methodologies are designed to exploit existing wireless infrastructures and commodity devices without any hardware modification. In outdoor environments, global positioning technologies are already available in commodity devices and vehicles, the research and knowledge transfer activities are actually focused on the design and validation of algorithms and systems devoted to support decision makers and operators for increasing efficiency, operations security, and management of large fleets as well as localized sensed information in order to gain situation awareness. In this field, a decision support system for emergency response and Civil Defense assets management (i.e., personnel and vehicles equipped with TETRA mobile radio) is described in terms of architecture and results of two-years of experimental validation

    Identifying and Detecting Attacks in Industrial Control Systems

    Get PDF
    The integrity of industrial control systems (ICS) found in utilities, oil and natural gas pipelines, manufacturing plants and transportation is critical to national wellbeing and security. Such systems depend on hundreds of field devices to manage and monitor a physical process. Previously, these devices were specific to ICS but they are now being replaced by general purpose computing technologies and, increasingly, these are being augmented with Internet of Things (IoT) nodes. Whilst there are benefits to this approach in terms of cost and flexibility, it has attracted a wider community of adversaries. These include those with significant domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facilities, a Steel Mill in Germany, and Ukraine’s power grid; however, non specialist attackers are becoming increasingly interested in the physical damage it is possible to cause. At the same time, the approach increases the number and range of vulnerabilities to which ICS are subject; regrettably, conventional techniques for analysing such a large attack space are inadequate, a cause of major national concern. In this thesis we introduce a generalisable approach based on evolutionary multiobjective algorithms to assist in identifying vulnerabilities in complex heterogeneous ICS systems. This is both challenging and an area that is currently lacking research. Our approach has been to review the security of currently deployed ICS systems, and then to make use of an internationally recognised ICS simulation testbed for experiments, assuming that the attacking community largely lack specific ICS knowledge. Using the simulator, we identified vulnerabilities in individual components and then made use of these to generate attacks. A defence against these attacks in the form of novel intrusion detection systems were developed, based on a range of machine learning models. Finally, this was further subject to attacks created using the evolutionary multiobjective algorithms, demonstrating, for the first time, the feasibility of creating sophisticated attacks against a well-protected adversary using automated mechanisms
    corecore