538 research outputs found

    A Multimodal Deep Network for the Reconstruction of T2W MR Images

    Full text link
    Multiple sclerosis is one of the most common chronic neurological diseases affecting the central nervous system. Lesions produced by the MS can be observed through two modalities of magnetic resonance (MR), known as T2W and FLAIR sequences, both providing useful information for formulating a diagnosis. However, long acquisition time makes the acquired MR image vulnerable to motion artifacts. This leads to the need of accelerating the execution of the MR analysis. In this paper, we present a deep learning method that is able to reconstruct subsampled MR images obtained by reducing the k-space data, while maintaining a high image quality that can be used to observe brain lesions. The proposed method exploits the multimodal approach of neural networks and it also focuses on the data acquisition and processing stages to reduce execution time of the MR analysis. Results prove the effectiveness of the proposed method in reconstructing subsampled MR images while saving execution time.Comment: 29th Italian Neural Networks Workshop (WIRN 2019

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    DCE-FORMER: A Transformer-based Model With Mutual Information And Frequency-based Loss Functions For Early And Late Response Prediction In Prostate DCE-MRI

    Full text link
    Dynamic Contrast Enhanced Magnetic Resonance Imaging aids in the detection and assessment of tumor aggressiveness by using a Gadolinium-based contrast agent (GBCA). However, GBCA is known to have potential toxic effects. This risk can be avoided if we obtain DCE-MRI images without using GBCA. We propose, DCE-former, a transformer-based neural network to generate early and late response prostate DCE-MRI images from non-contrast multimodal inputs (T2 weighted, Apparent Diffusion Coefficient, and T1 pre-contrast MRI). Additionally, we introduce (i) a mutual information loss function to capture the complementary information about contrast uptake, and (ii) a frequency-based loss function in the pixel and Fourier space to learn local and global hyper-intensity patterns in DCE-MRI. Extensive experiments show that DCE-former outperforms other methods with improvement margins of +1.39 dB and +1.19 db in PSNR, +0.068 and +0.055 in SSIM, and -0.012 and -0.013 in Mean Absolute Error for early and late response DCE-MRI, respectively.Comment: Accepted at IEEE ISBI 202

    Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential Generative Adversarial Networks

    Full text link
    In this paper, we propose a bi-modality medical image synthesis approach based on sequential generative adversarial network (GAN) and semi-supervised learning. Our approach consists of two generative modules that synthesize images of the two modalities in a sequential order. A method for measuring the synthesis complexity is proposed to automatically determine the synthesis order in our sequential GAN. Images of the modality with a lower complexity are synthesized first, and the counterparts with a higher complexity are generated later. Our sequential GAN is trained end-to-end in a semi-supervised manner. In supervised training, the joint distribution of bi-modality images are learned from real paired images of the two modalities by explicitly minimizing the reconstruction losses between the real and synthetic images. To avoid overfitting limited training images, in unsupervised training, the marginal distribution of each modality is learned based on unpaired images by minimizing the Wasserstein distance between the distributions of real and fake images. We comprehensively evaluate the proposed model using two synthesis tasks based on three types of evaluate metrics and user studies. Visual and quantitative results demonstrate the superiority of our method to the state-of-the-art methods, and reasonable visual quality and clinical significance. Code is made publicly available at https://github.com/hustlinyi/Multimodal-Medical-Image-Synthesis

    Generative Models for Preprocessing of Hospital Brain Scans

    Get PDF
    I will in this thesis present novel computational methods for processing routine clinical brain scans. Such scans were originally acquired for qualitative assessment by trained radiologists, and present a number of difficulties for computational models, such as those within common neuroimaging analysis software. The overarching objective of this work is to enable efficient and fully automated analysis of large neuroimaging datasets, of the type currently present in many hospitals worldwide. The methods presented are based on probabilistic, generative models of the observed imaging data, and therefore rely on informative priors and realistic forward models. The first part of the thesis will present a model for image quality improvement, whose key component is a novel prior for multimodal datasets. I will demonstrate its effectiveness for super-resolving thick-sliced clinical MR scans and for denoising CT images and MR-based, multi-parametric mapping acquisitions. I will then show how the same prior can be used for within-subject, intermodal image registration, for more robustly registering large numbers of clinical scans. The second part of the thesis focusses on improved, automatic segmentation and spatial normalisation of routine clinical brain scans. I propose two extensions to a widely used segmentation technique. First, a method for this model to handle missing data, which allows me to predict entirely missing modalities from one, or a few, MR contrasts. Second, a principled way of combining the strengths of probabilistic, generative models with the unprecedented discriminative capability of deep learning. By introducing a convolutional neural network as a Markov random field prior, I can model nonlinear class interactions and learn these using backpropagation. I show that this model is robust to sequence and scanner variability. Finally, I show examples of fitting a population-level, generative model to various neuroimaging data, which can model, e.g., CT scans with haemorrhagic lesions
    corecore