1,034 research outputs found

    A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data

    Get PDF
    Stochastic collocation methods for approximating the solution of partial differential equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality whereby increases in the stochastic dimension cause an explosion of the computational effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations to reduce the overall computational complexity. In addition, our proposed approach utilizes, for approximation in stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity which can then be used for approximating statistics of the solution as well as for building high-order surrogates featuring faster convergence rates. A rigorous convergence and computational cost analysis of the new multilevel stochastic collocation method is provided, demonstrating its advantages compared to standard single-level stochastic collocation approximations as well as MLMC methods. Numerical results are provided that illustrate the theory and the effectiveness of the new multilevel method

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Multilevel Double Loop Monte Carlo and Stochastic Collocation Methods with Importance Sampling for Bayesian Optimal Experimental Design

    Full text link
    An optimal experimental set-up maximizes the value of data for statistical inferences and predictions. The efficiency of strategies for finding optimal experimental set-ups is particularly important for experiments that are time-consuming or expensive to perform. For instance, in the situation when the experiments are modeled by Partial Differential Equations (PDEs), multilevel methods have been proven to dramatically reduce the computational complexity of their single-level counterparts when estimating expected values. For a setting where PDEs can model experiments, we propose two multilevel methods for estimating a popular design criterion known as the expected information gain in simulation-based Bayesian optimal experimental design. The expected information gain criterion is of a nested expectation form, and only a handful of multilevel methods have been proposed for problems of such form. We propose a Multilevel Double Loop Monte Carlo (MLDLMC), which is a multilevel strategy with Double Loop Monte Carlo (DLMC), and a Multilevel Double Loop Stochastic Collocation (MLDLSC), which performs a high-dimensional integration by deterministic quadrature on sparse grids. For both methods, the Laplace approximation is used for importance sampling that significantly reduces the computational work of estimating inner expectations. The optimal values of the method parameters are determined by minimizing the average computational work, subject to satisfying the desired error tolerance. The computational efficiencies of the methods are demonstrated by estimating the expected information gain for Bayesian inference of the fiber orientation in composite laminate materials from an electrical impedance tomography experiment. MLDLSC performs better than MLDLMC when the regularity of the quantity of interest, with respect to the additive noise and the unknown parameters, can be exploited

    Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method

    Full text link
    This paper addresses optimization problems constrained by partial differential equations with uncertain coefficients. In particular, the robust control problem and the average control problem are considered for a tracking type cost functional with an additional penalty on the variance of the state. The expressions for the gradient and Hessian corresponding to either problem contain expected value operators. Due to the large number of uncertainties considered in our model, we suggest to evaluate these expectations using a multilevel Monte Carlo (MLMC) method. Under mild assumptions, it is shown that this results in the gradient and Hessian corresponding to the MLMC estimator of the original cost functional. Furthermore, we show that the use of certain correlated samples yields a reduction in the total number of samples required. Two optimization methods are investigated: the nonlinear conjugate gradient method and the Newton method. For both, a specific algorithm is provided that dynamically decides which and how many samples should be taken in each iteration. The cost of the optimization up to some specified tolerance Ï„\tau is shown to be proportional to the cost of a gradient evaluation with requested root mean square error Ï„\tau. The algorithms are tested on a model elliptic diffusion problem with lognormal diffusion coefficient. An additional nonlinear term is also considered.Comment: This work was presented at the IMG 2016 conference (Dec 5 - Dec 9, 2016), at the Copper Mountain conference (Mar 26 - Mar 30, 2017), and at the FrontUQ conference (Sept 5 - Sept 8, 2017

    Multi-index Stochastic Collocation convergence rates for random PDEs with parametric regularity

    Full text link
    We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDEs) with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a suitable expansion. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data and, naturally, the error analysis uses the joint regularity of the solution with respect to both the variables in the physical domain and parametric variables. In MISC, the number of problem solutions performed at each discretization level is not determined by balancing the spatial and stochastic components of the error, but rather by suitably extending the knapsack-problem approach employed in the construction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods. We use a greedy optimization procedure to select the most effective mixed differences to include in the MISC estimator. We apply our theoretical estimates to a linear elliptic PDEs in which the log-diffusion coefficient is modeled as a random field, with a covariance similar to a Mat\'ern model, whose realizations have spatial regularity determined by a scalar parameter. We conduct a complexity analysis based on a summability argument showing algebraic rates of convergence with respect to the overall computational work. The rate of convergence depends on the smoothness parameter, the physical dimensionality and the efficiency of the linear solver. Numerical experiments show the effectiveness of MISC in this infinite-dimensional setting compared with the Multi-index Monte Carlo method and compare the convergence rate against the rates predicted in our theoretical analysis

    IGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domains

    Full text link
    This paper proposes an extension of the Multi-Index Stochastic Collocation (MISC) method for forward uncertainty quantification (UQ) problems in computational domains of shape other than a square or cube, by exploiting isogeometric analysis (IGA) techniques. Introducing IGA solvers to the MISC algorithm is very natural since they are tensor-based PDE solvers, which are precisely what is required by the MISC machinery. Moreover, the combination-technique formulation of MISC allows the straight-forward reuse of existing implementations of IGA solvers. We present numerical results to showcase the effectiveness of the proposed approach.Comment: version 3, version after revisio

    Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations

    Full text link
    In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations. Our approach is non-intrusive and we use the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier-Stokes equation for each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly competitive in this setting and even outperforms some other standard methods
    • …
    corecore