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A multilevel stochastic collocation method
for partial differential equations with random input data

A. L. Teckentrup∗, P. Jantsch†, C. G. Webster‡, and M. Gunzburger§

Abstract. Stochastic collocation methods for approximating the solution of partial differential equations with
random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality
whereby increases in the stochastic dimension cause an explosion of the computational effort. We
propose and analyze a multilevel version of the stochastic collocation method that, as is the case for
multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations to reduce the
overall computational complexity. In addition, our proposed approach utilizes, for approximation in
stochastic space, a sequence of multi-dimensional interpolants of increasing fidelity which can then
be used for approximating statistics of the solution as well as for building high-order surrogates fea-
turing faster convergence rates. A rigorous convergence and computational cost analysis of the new
multilevel stochastic collocation method is provided in the case of elliptic equations, demonstrating
its advantages compared to standard single-level stochastic collocation approximations as well as
MLMC methods. Numerical results are provided that illustrate the theory and the effectiveness of
the new multilevel method.

Key words. multilevel methods, stochastic collocation, PDEs with random input data, sparse grids, uncer-
tainty quantification, finite element methods, multivariate polynomial approximation, hierarchical
methods, high-dimensional approximation

AMS subject classifications. 65C20, 65C30, 65N30, 65N35, 65M75, 65T50, 65T60

1. Introduction. Nowadays, mathematical modeling and computer simulations are used
extensively in many scientific and engineering fields, usually with the goal of understanding
or predicting the behavior of a system given its inputs such as the computational domain,
model parameter values, and source terms. However, whether stemming from incomplete
or inaccurate knowledge or from some inherent variability in the system, often these inputs
may be subject to uncertainty. In order to correctly predict the behavior of the system, it is
especially pertinent to understand and propagate the effect of the input uncertainty to the
output of the simulation, i.e., to the solution of the mathematical model.

In this paper, we consider systems which are modeled by elliptic partial differential equa-
tions (PDEs) with random input data. We work under the finite-dimensional noise assump-
tion, i.e., we assume that the random inputs are characterized by a finite-dimensional random
vector. When enough information is available to completely characterize the randomness in
the inputs, probability theory provides a natural setting for quantifying uncertainties. The
object of our computations is the accurate calculation of solutions of stochastic elliptic PDEs
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or statistics of some functional of the solution of the PDE. For instance, in addition to the
solution itself, one might be interested in the expected value or variance of the solution in a
given region of the computational domain.

A large number of methods have been developed for the numerical solution of PDEs with
random inputs; see, e.g., [24] and the references cited therein. The most popular approach is
the Monte Carlo (MC) method which involves random sampling of the input vector of random
variables (also referred to as the stochastic parameter space) and the solution of the determin-
istic PDE at each of the sample points. In addition to the benefits of simple implementation
and a natural decoupling of the stochastic and spatial degrees of freedom, MC methods fea-
ture a convergence rate that is independent of the dimension of the stochastic space. This
makes it particularly attractive for high-dimensional problems. However, the convergence is
in general very slow and, especially in case the stochastic space is only of moderate dimension
and the solution of the PDE or a functional of interest is smooth with respect to the random
parameters, better convergence rates can be achieved using more sophisticated methods.

Stochastic collocation (SC) methods [1, 31, 32] are similar to MC methods in the sense
that they involve only the solution of a sequence of deterministic PDEs at given sample
points in the stochastic space. However, rather than randomly chosen samples, SC methods
use a deterministic grid of points at which one solves the corresponding deterministic PDE,
and then builds an interpolant, either using global Lagrange-type polynomials [1, 31, 32] or
even local hierarchical basis functions [23, 29]. For problems where the solution is a smooth
function of the random input variables and the dimension of the stochastic space is moderate,
SC methods have been shown to converge much faster than MC methods.

Unfortunately, for most problems, stochastic collocation methods suffer from the curse
of dimensionality, a phrase that refers to the deterioration of the convergence rate and the
explosion of computational effort as the dimension of the stochastic space increases. In this
paper, we introduce a multilevel stochastic collocation (MLSC) approach for reducing the
computational cost incurred by standard, i.e., single level, SC methods. Drawing inspiration
from multigrid solvers for linear equations, the main idea behind multilevel methods is to
utilize a hierarchical sequence of spatial approximations to the underlying PDE model that
are then combined with stochastic discretizations in such a way as to minimize computational
cost. Starting with the pioneering works [27] in the field of integral equations and [20] in the
field of computational finance, the multilevel approach has been successfully applied to many
applications of MC methods; see, e.g., [2, 8, 15,21,22,28,30].

The MLSC method proposed in this work is similar to the construction found in [4],
where the authors propose a simple rule to balance the resolution of the spatial and stochastic
discretizations, thereby reducing the total degrees of freedom. In contrast, our construction
provides the flexibility of optimizing the interpolation operators used at each level of dis-
cretization to minimize computational cost. Our method is also similar to the multilevel
quadrature approximations of moments of the solution studied in the works [25, 26], which
consider quasi-MC, polynomial chaos and collocation schemes, and analyze convergence of
the schemes in terms of overall level. However, our focus is on the analysis of the compu-
tational complexity of the multilevel interpolation algorithms, and also includes results for
functionals of the solution. In particular, we prove new interpolation error bounds on func-
tionals of the solution that are needed for the analysis of the MLSC methods. Finally, we
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mention [13], which applies a multilevel technique to a best-N term approximation scheme
in stochastic space coupled with a finite element discretization in the spatial domain. The
convergence rates given in that work, in terms of total degrees of freedom, may be regarded
as benchmarks, but are not realizable in practice.

In the independent and simultaneous work [35], results that closely resemble those of
this paper are presented; the setting for both papers is the same, namely elliptic PDEs with
random coefficients. However, the errors analyzed in the two papers are significantly different.
In [35], the the analysis is focused on the quadrature error committed by approximating the
expected value of a functional of the PDE solution by the expected value of the functional
applied to an SC approximation of the PDE solution. On the other hand, in this work, we
consider a generalized SC approximation to the PDE as well as a functional of the PDE
solution, i.e., the order of applying the functional and the SC approximation are reversed.
Moreover, the approach of this paper enables a more straightforward and somewhat sharper
analysis, leading to optimal convergence rates of the error. Finally, the analysis in this paper
is also valid for a wider class of isotropic and anisotropic SC methods, beyond the standard
Clenshaw-Curtis-based sparse grid methods treated in [35].

The outline of the paper is as follows. In Section 2, we introduce the mathematical
problem, the main notation used throughout, the assumptions on the parametrization of the
random inputs that are used to transform the original stochastic problem into a deterministic
parametric version, and necessary assumptions about the regularity of the solution of the
PDE. A description of the spatial and stochastic approximations as well as the formulation
of the MLSC method follows in Section 3. In Section 4, we provide a general convergence
and complexity analysis for the MLSC method. As an example of a specific single level
SC approach satisfying our interpolation assumptions, we describe, in Section 5, a generalized
sparse grid stochastic collocation approach based on global Lagrange interpolation. In Section
6, we provide numerical results that illustrate the theoretical results and complexity estimates
and also explore issues related to the implementation of the MLSC method.

2. Problem Setting. Consider the problem of approximating the solution of an elliptic
partial differential equation (PDE) with random input data. To this end, let D ⊂ Rd, d =
1, 2, 3, denote a bounded, Lipschitz domain with boundary denoted by ∂D and let (Ω,F ,P)
denote a complete probability space. Here, Ω denotes the set of outcomes, F ⊂ 2Ω the σ-
algebra of events, and P : F → [0, 1] a probability measure. Given a random field a(ω,x) :
Ω × D → R, the model problem we consider is stated as follows: find u(ω,x) : Ω × D → R
such that almost surely{

−∇(a(ω,x) · ∇u(ω,x)) = f(x) in D
u(ω,x) = 0 on ∂D.

(2.1)

We make the following assumptions on a:

A1. (Finite-dimensional noise) The random field a is determined by a finite number N of
random variables, denoted by the random vector y(ω) := [y1(ω), . . . yN (ω)] : Ω → RN .

A2. (Boundedness) The image Γn := yn(Ω) of yn is bounded for all n ∈ {1, . . . , N} and,
with Γ =

∏N
n=1 Γn, the random variables y have a joint probability density function

ρ(y) =
∏N

n=1 ρ̃(yn) ∈ L∞(Γ), where ρ̃(·) : [−1, 1] → R denotes the one-dimensional
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PDF corresponding to the probability space of the random fields. Without loss of
generality, we assume that Γ = [−1, 1]N .

Remark 2.1. Another setting having a finite number of random variables occurs when the
coefficient a depends on a finite number of independent scalar random physical parameters,
e.g., diffusivities, reaction rates, porosities, elastic moduli, etc. In this case, each of the N
parameters would have its own PDF ρn(yn), n = 1, . . . , N , so that the joint PDF is now given
by ρ(y) =

∏N
n=1 ρn(yn). The algorithms discussed in this work all apply equally well to this

setting.

Under assumptions A1 and A2, the solution u to (2.1) depends measurably on a, and
therefore it follows from the Doob-Dynkin Lemma that u can also be characterized in terms of
the random vector y(ω). The solution u(ω,x) thus has a deterministic, parametric equivalent
u(y,x), with the probability space (Γ,B, ρ(y)dy) taking the place of (Ω,F ,P); see, e.g., [1].
Here, B denotes the Borel σ-algebra generated by the open subsets of Γ. In what follows, we
will therefore denote the solution by u(y,x) for y ∈ Γ and x ∈ D. Then we also assume:

A3. (Existence and uniqueness) The coefficient a(ω,x) is uniformly bounded and coercive,
i.e., there exists amin > 0 and amax <∞ such that

Prob
[
ω ∈ Ω : amin ≤ a(y(ω),x) ≤ amax ∀x ∈ D

]
= 1

and f ∈ H−1(D) so that the problem (2.1) admits a unique solution u ∈ L2
ρ(Γ;H

1
0 (D))

with realizations in H1
0 (D), i.e., u(y(ω), ·) ∈ H1

0 (D) almost surely.

Here, given a Banach spaceX(D) of functions onD, the weighted Bochner spaces Lq
ρ(Γ;X(D))

for 1 ≤ q <∞ are defined by

Lq
ρ(Γ;X(D)) =

{
v : Γ → X(D) | v is strongly meas. and

∫
Γ
∥v(y, ·)∥qX(D)ρ(y)dy <∞

}
with corresponding norm ∥ · ∥Lq

ρ(Γ;X(D)) given by

∥v∥q
Lq
ρ(Γ;X(D))

=

∫
Γ
∥v(y, ·)∥qX(D)ρ(y)dy.

Assumption A1 is naturally satisfied by random fields that only depend on a finite set of
parameters, e.g.,

a(ω,x) = a(y(ω),x) = a0(x) +
N∑

n=1

yn(ω)an(x), {an}Nn=0 ⊂ L2(D),

where y(ω) is a vector of independent random variables. If this is not the case, approxima-
tions of a that satisfy assumption A1 can be obtained by appropriately truncating a spectral
expansion such as the Karhunen-Loève expansion [13,19]. This introduces an additional error;
see [31] for a discussion of the effect of this error on the convergence of stochastic collocation
methods and [7, 17] for bounds on the truncation error. As an alternative to truncating infi-
nite expansions, one can also consider using dimension-adaptive sparse grids as interpolation
operators. For more details on this type of approximation, we refer the reader to [9, 18].
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Assumption A2 can be weakened to include the case of unbounded random variables such
as Gaussian variables. See [1] for an analysis of the interpolation error and note that, with only
minor modifications, the multilevel stochastic collocation method introduced in this paper also
applies to unbounded random variables. Furthermore, assumption A3 can be weakened to
include coefficients a that are not uniformly coercive; see [8, 34].

Finally, we remark that the multilevel stochastic collocation method proposed in this
paper is not specific to the model problem (2.1); it can be applied also to higher-order PDEs
and other types of boundary conditions.

3. Hierarchical multilevel stochastic collocation methods. We begin by recalling that
standard stochastic collocation (SC) methods generally build an approximation of the solu-
tion u by evaluating a spatial approximation uh(y, ·) ∈ Vh at a given set of points {ym}Mm=1

in Γ, where Vh ⊂ H1
0 (D) is a finite-dimensional subspace. In other words, we compute

{uh(ym, ·)}Mm=1. Then, given a basis {ϕm(y)}Mm=1 for the space PM = span {ϕm(y)}Mm=1 ⊂
L2
ρ(Γ), we use those samples to construct the fully discrete approximation given by the inter-

polant

u
(SL)
M,h (y,x) = IM [uh](y,x) =

M∑
m=1

cm(x)ϕm(y), (3.1)

where the coefficients cm(x) are fully determined by the semi-discrete solutions at the colloca-
tion points, uh(ym,x) for m = 1, . . . ,M . In (3.1), we label the standard SC approximation by
‘SL’ to indicate that that approximation is constructed using a single set of points {ym}Mm=1

in stochastic space, in contrast to the multilevel approximations considered below that use a
hierarchy of point sets; thus, we refer to (3.1) as a single level approximation. A wide range
of choices for the interpolation points {ym}Mm=1 and basis functions {ϕm(y)}Mm=1 are possible.
A particular example of the approximation (3.1), namely global Lagrange interpolation on
generalized sparse grids, is given in Section 5.

Convergence of the SC approximation (3.1) is often assessed in the natural L2
ρ(Γ;H

1
0 (D))-

norm, and the goal is to determine a bound on the error ∥u− IM [uh]∥L2
ρ(Γ;H

1
0 (D)). To obtain

a good approximation with SC methods, it is necessary in general to use accurate spatial
approximations uh and a large number M of collocation points. To determine the coefficients
cm(x) of the interpolant (3.1), the method requires the computation of uh(ym, ·) for m =
1, . . . ,M so that, in practice, the cost can grow quickly with increasing M . Therefore, to
reduce the overall cost, we consider a multilevel version of SC methods that combines different
levels of fidelity of both the spatial and parameter approximations.

3.1. Spatial approximation. For spatial approximation, we use a hierarchical family of
finite element discretizations [5, 10]. As discussed in [26], the formulation of the multilevel
method does not depend on the specific spatial discretization scheme used and the results
readily hold for other choices. For k ∈ N0, define a hierarchy of nested finite element spaces

Vh0 ⊂ Vh1 ⊂ · · · ⊂ Vhk
⊂ · · · ⊂ H1

0 (D),

where each Vhk
consists of continuous, piecewise polynomial functions on a shape regular

triangulation τhk
of D having maximum mesh spacing parameter hk. Note that k merely

serves to index the given spaces; the approximation properties of the space Vhk
is governed
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by hk. For simplicity, we assume that the triangulations {τhk
}k∈N0 are generated by iterative

uniform subdivisions of the initial triangulation τ0; this implies that hk = η−kh0 for some
η ∈ N, η > 1 and that indeed the corresponding finite element spaces are nested.

Remark 3.1. For simplicity, we have assumed that the finite element family of spaces is
nested, and in fact, are constructed by a series of uniform subdivisions of a parent mesh with
mesh size h0. Neither of these assumptions are necessary for our algorithms or conclusions
to hold, provided η1 ≤ hk/hk+1 ≤ η2 for some 0 < η1 < η2 <∞ and all k ∈ N0; in such cases,
the finite element spaces are not necessarily nested.

We also let uhk
(y, ·) denote the Galerkin projection of u(y, ·) onto Vhk

, i.e., uhk
∈ Vhk

de-
notes the finite element approximation. Note that uhk

(y, ·) is still a function on the stochastic
parameter space Γ. We assume the following approximation property of the finite element
spaces {Vhk

}k∈N0 :

A4. There exist positive constants α and Cs, independent of hk, such that for all k ∈ N0,

∥u− uhk
∥L2

ρ(Γ;H
1
0 (D)) ≤ Cs h

α
k .

In general, the rate α depends on the (spatial) regularity of u, which in turn depends on the
regularity of a and f as well as on the geometry of the domain D. For example, if a, f , and
D are sufficiently regular so that u ∈ L2

ρ(Γ;H
2(D)), assumption A4 holds with α = 1 and

Cs dependent only on a and ∥u∥L2
ρ(Γ;H

2(D)). For additional examples and detailed analyses of

finite element errors, see [34].

3.2. Stochastic interpolation. For stochastic approximation, we use interpolation over
Γ, where we assume u ∈ C0(Γ;H1

0 (D)). The specific choice of interpolation scheme is not
crucial at this juncture. We begin by letting {IMk

}∞k=0 denote a sequence of interpolation
operators IMk

: C0(Γ) → L2
ρ(Γ) using Mk points. We assume the following:

A5. There exist positive constants CI , Cζ , and β, and a Banach space Λ(Γ;H1
0 (D)) ⊂

L2
ρ(Γ;H

1
0 (D)) containing the finite element approximations {uhk

}k∈N0 such that for
all v ∈ Λ(Γ;H1

0 (D)) and all k ∈ N0

∥v − IMk
v∥L2

ρ(Γ;H
1
0 (D)) ≤ CI σ(Mk) ζ(v),

for some decreasing sequence {σk}k∈N0 , with σk = σ(Mk), and operator
ζ : Λ(Γ;H1

0 (D)) → R that admits the estimates

ζ(uhk
) ≤ Cζ h

β
0 and ζ(uhk+1

− uhk
) ≤ Cζ h

β
k+1.

Remark 3.2. As in the previous section, k is merely an index; we use the same index for
the hierarchies of spatial and stochastic approximations because, in the multilevel SC method
we introduce below, these two hierarchies are closely connected.

Remark 3.3. σk determines the approximation properties of the interpolant. Moreover,
we allow non-unique interpolation operators in the sequence, i.e., it is possible that, for any
k = 0, . . . ,∞, Mk+1 = Mk and therefore IMk+1

= IMk
and σk+1 = σk. Thus, although the

spatial approximation improves with increasing k, i.e., hk+1 < hk, we allow for the parameter
space approximation for the index k + 1 remaining the same as that for k.
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In Section 5, assumption A5 is shown to hold for global Lagrange interpolation using gen-
eralized sparse grids, with σk =M−µ

k , with Λ a space of H1
0 (D)-valued functions over Γ admit-

ting a complex extension in a suitable region E ∈ CN , and defining ζ(v) = supz∈E ∥v(z)∥H1
0 (D).

The bounds on the function ζ in assumption A5 are shown to be the key to balancing spatial
and stochastic discretizations through the multilevel formulation. Crucially, we make use of
the fact that the interpolation error is proportional to the size of the function being interpo-
lated, measured in an appropriate norm. In the case of the model problem (2.1), this norm is
usually related to the (spatial) H1

0 (D)-norm. The bounds in assumption A5 then arise from
the fact that for any k ∈ N0, ∥uhk

∥H1
0 (D) is bounded by a constant, independent of k, whereas

∥uhk
− uhk−1

∥H1
0 (D) decays with hβk for some β > 0. We usually have β = α, where α is as

in assumption A4. Note that we have chosen to scale the bound on ζ(uhk
) by hβ0 to simplify

calculations. Because h0 is a constant, this does not affect the nature of the assumption.

3.3. Formulation of the multilevel method. As in the previous sections, denote by
{uhk

}k∈N0 and {IMk
}k∈N0 sequences of spatial approximations and interpolation operators

in parameter space, respectively. Then, for any K ∈ N, the formulation of the multilevel
method begins with the simple telescoping identity

uhK
=

K∑
k=0

(uhk
− uhk−1

), (3.2)

where, for simplicity, we set uh−1 := 0.

It follows from assumption A5 that as k → ∞, less accurate interpolation operators are
needed in order to estimate uhk

− uhk−1
to achieve a required accuracy. We therefore define

our multilevel interpolation approximation as

u
(ML)
K :=

K∑
k=0

IMK−k
[uhk

− uhk−1
] =

K∑
k=0

(
u
(SL)
MK−k,hk

− u
(SL)
MK−k,hk−1

)
. (3.3)

Rather than simply interpolating uhK
, this approximation uses different levels of interpolation

on each difference uhk
− uhk−1

of finite element approximations. To preserve convergence, the
estimator uses the most accurate interpolation operator IMK

on the coarsest spatial approx-
imation uh0 and the least accurate interpolation operator IM0 on the finest spatial approxi-
mation uhK

− uhK−1
. Note that in (3.3) a single index k is used to select appropriate spatial

and stochastic approximations and thus these approximations are indeed closely related.

4. Analysis of the multilevel approximation. This section is devoted to proving the con-
vergence of the multilevel approximation defined in Section 3.3 and analyzing its computa-
tional complexity. We first prove, in Section 4.1, a general error bound, whereas in Sections
4.2 and 4.3 we prove a bound on the computational complexity in the particular case of an
algebraic decay of the interpolation errors.

4.1. Convergence analysis. We consider the convergence of the multilevel approximation

u
(ML)
K to the true solution u in the natural norm ∥ · ∥L2

ρ(Γ;H
1
0 (D)).
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First, we use the triangle inequality to split the error into the sum of a spatial discretization
error and a stochastic interpolation error, i.e.,

∥u− u
(ML)
K ∥L2

ρ(Γ;H
1
0 (D)) ≤ ∥u− uhK

∥︸ ︷︷ ︸
(I)

L2
ρ(Γ;H

1
0 (D)) + ∥uhK

− u
(ML)
K ∥︸ ︷︷ ︸

(II)

L2
ρ(Γ;H

1
0 (D)). (4.1)

The aim is to prove that with the interpolation operators {IMk
}Kk=0 chosen appropriately, the

stochastic interpolation error (II) of the multilevel approximation converges at the same rate
as the spatial discretization error (I), hence resulting in a convergence result for the total
error.

For the spatial discretization error (I), it follows immediately from assumption A4 that

(I) ≤ Csh
α
K .

From (3.2) and assumption A5, we estimate the stochastic interpolation error using the
triangle inequality:

(II) =
∥∥∥ K∑

k=0

(uhk
− uhk−1

)− IMK−k
(uhk

− uhk−1
)
∥∥∥
L2
ρ(Γ;H

1
0 (D))

≤
K∑
k=0

∥∥(uhk
− uhk−1

)− IMK−k
(uhk

− uhk−1
)
∥∥
L2
ρ(Γ;H

1
0 (D))

≤
K∑
k=0

CI Cζ σK−k h
β
k .

To obtain an error of the same size as (I), we choose interpolation operators such that

σK−k ≤ Cs

(
(K + 1)CI Cζ

)−1
hαK h−β

k . (4.2)

Continuing from above,

(II) ≤
K∑
k=0

Cs

(
(K + 1)CI Cζ)

)−1
hαK h−β

k CI Cζ h
β
k = Csh

α
K ,

as required. It follows that with σk as in (4.2)

∥u− u
(ML)
K ∥L2

ρ(Γ;H
1
0 (D)) ≤ 2Cs h

α
K .

4.2. Cost analysis. We now proceed to analyze the computational cost of the MLSC
method. We consider the ε-cost of the estimator, denoted here by CML

ε , which is the compu-
tational cost required to achieve a desired accuracy ε. In order to quantify this cost, we use
the convergence rates of the spatial discretization error and, for the stochastic interpolation
error, the rates given by assumptions A4 and A5. In particular, we will assume that A5
holds with σk =M−µ

k for some µ > 0.
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Remark 4.1. The choice σk =M−µ
k best reflects approximations based on SC methods that

employ sparse grids. In particular, as mentioned in Section 3.2, algebraic decay holds for the
generalized sparse grid interpolation operators considered in Section 5; see Theorem 5.5. For
other possible choices in the context of quadrature, see [26].

In general, the MLSC method involves solving, for each k, the deterministic PDE for each
of the Mk sample points from Γ; in fact, according to (3.3), two solves are needed, one for
each of two spatial grid levels. Thus, we also require a bound on the cost, which we denote
by Ck, of computing uhk

− uhk−1
at a sample point. We assume:

A6. There exist positive constants γ and Cc, independent of hk, such that Ck ≤ Cc h
−γ
k for

all k ∈ N0.
If an optimal linear solver is used to solve the finite element equations for uhk

, this assumption
holds with γ ≈ d (see, e.g., [5]), where d is the spatial dimension. Note that the constant Cc

will in general depend on the refinement ratio η described in Section 3.1.
We quantify the total computational cost of the MLSC approximation (3.3) using the

metric

C(ML) =

K∑
k=0

MK−k Ck. (4.3)

We now have the following result for the ε-cost of the MLSC method required to achieve an

accuracy ∥u− u
(ML)
K ∥L2

ρ(Γ;H
1
0 (D)) ≤ ε. In the analysis, we define the relations a ≲ b and a ≂ b

to indicate that a ≤ Cb (resp. a = Cb) for some constant C independent the mesh width h,
the number of interpolation points M and the accuracy ε.

Theorem 4.2. Suppose assumptions A4–A6 hold with σk = M−µ
k , and assume that α ≥

min(β, µγ). Then, for any ε < exp[−1], there exists an integer K, and a sequence {Mk}Kk=0,
such that

∥u− u
(ML)
K ∥L2

ρ(Γ;H
1
0 (D)) ≤ ε

and

C(ML)
ε ≲


ε
− 1

µ , if β > µγ

ε
− 1

µ | log ε|1+
1
µ if β = µγ

ε
− 1

µ
− γµ−β

αµ if β < µγ.

(4.4)

Proof. As in (4.1), we consider separately the two error contributions (I) and (II). To
achieve the desired accuracy, it is sufficient to bound both error contributions by ε

2 . Without
loss of generality, for the remainder of this proof we assume h0 = 1. If this is not the case, we
simply need to rescale the constants Cs, Cζ , and Cc.

First, we choose K large enough so that (I) ≤ ε
2 . By assumption A4, it is sufficient

to require Csh
α
K ≤ ε

2 . Because the hierarchy of meshes {hk}k∈N0 is obtained by uniform
refinement, hk = η−kh0 = η−k, and we have

hK ≤
( ε

2Cs

)1/α
if K =

⌈
1

α
logη

(2Cs

ε

)⌉
. (4.5)

This fixes the total number of levels K.
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In order to obtain the multilevel estimator with the smallest computational cost, we now
determine the {Mk}Kk=0 so that the computational cost (4.3) is minimized, subject to the
requirement (II) ≤ ε

2 . Treating theMk as continuous variables, we use the Lagrange multiplier
method. To begin, we form the Lagrange function, using assumptions A4-A6.

L(M0, . . . ,MK , λ) =

K∑
k=0

CcMK−k η
kγ + λ

(
K∑
k=0

CI Cζ M
−µ
K−k η

−kβ − ε/2

)
.

Here we have replaced the condition (II) ≤ ε/2 with the sufficient condition∑K
k=0CI Cζ M

−µ
K−k η

−kβ ≤ ε/2. To find a relative extremum, we require ∇L = 0, leading
to the K + 2 conditions

∂L
∂MK−k

= ηkγ − λCI CζµM
−(µ+1)
K−k η−kβ = 0, k = 0, . . . ,K, (4.6)

∂L
∂λ

=
K∑
k=0

CI Cζ M
−µ
K−k η

−kβ − ε/2 = 0. (4.7)

Solving the first K + 1 equations (4.6) for MK−k yields

MK−k = (CI Cζµλ)
1/(µ+1)η

−k(β+γ)
µ+1 , k = 0, . . . ,K. (4.8)

Now, substitute (4.8) into (4.7), and solve for λ to obtain

λ = (2µ+1CICζ)
1/µµ−1ε−(µ+1)/µS(η,K)(µ+1)/µ,

where

S(η,K) =
K∑
k=0

η
−k(β−γµ

µ+1
)
.

Inserting this into (4.8) results in the optimal choice

MK−k =
(
2CI Cζ S(η,K)

)1/µ
ε−1/µ η

− k(β+γ)
µ+1 . (4.9)

Because MK−k given by (4.9) is, in general, not an integer, we choose

MK−k =

⌈
(2CI Cζ S(η,K))1/µ ε−1/µ η

− k(β+γ)
µ+1

⌉
. (4.10)

Note that this choice determines the sequence {Mk}Kk=0 and consequently {IMk
}Kk=0. Also note

that, in practice, this choice may not be possible for all interpolation schemes; see Remark
4.4.
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With the number of samplesMK−k fixed, we now examine the complexity of the multilevel
approximation. Since ⌈x⌉ < x+ 1, for any x ∈ R, we have

C(ML)
ε =

K∑
k=0

MK−kCk ≲
K∑
k=0

MK−k η
kγ

≲
K∑
k=0

( ε

S(η,K)

)− 1
µ
η
−k β+γ

µ+1 ηkγ +

K∑
k=0

ηkγ

≂ ε
− 1

µS(η,K)
1
µ

K∑
k=0

η
−k

β+γ−γ(µ+1)
µ+1 +

K∑
k=0

ηkγ

≂ ε
− 1

µS(η,K)
1
µ

K∑
k=0

η
−k β−γµ

µ+1 +

K∑
k=0

ηkγ (4.11)

≂ ε
− 1

µS(η,K)
1+ 1

µ +
K∑
k=0

ηkγ .

To bound the cost in terms of ε, first note that because K < 1
α logη(2Cs/ε) + 1 by (4.5), we

have
K∑
k=0

ηkγ ≤ ηγK

1− η−γ
≤ ηγ(2Cs)

γ/α

1− η−γ
ε−γ/α. (4.12)

Next, we need to consider different values of β and µ. When β > γµ, S(η,K) is a geometric

sum that converges to a limit independent of K. Because α ≥ γµ implies that ε−γ/α ≤ ε
− 1

µ

for ε < exp[−1] < 1, we have C
(ML)
ε ≲ ε

− 1
µ in this case.

When β = γµ, we find that S(η,K) = K+1, and so, using (4.5), α ≥ µγ, and ε < exp[−1],

C(ML)
ε ≲ ε

− 1
µ (K + 1)

1+ 1
µ + ε−

γ
α ≂ ε

− 1
µ | log ε|1+

1
µ .

For the final case of β < γµ, we reverse the index in the sum S(η,K) to obtain a geometric
sequence

S(η,K) =

K∑
k=0

η
(k−K)β−γµ

µ+1 = η
−K β−γµ

µ+1

K∑
k=0

η
−k( γµ−β

µ+1
) ≲ ε

β−γµ
α(µ+1) .

Because α ≥ β, this gives

C(ML)
ε ≲ ε

− 1
µ ε

β−γµ
α(µ+1)

(1+ 1
µ
)
+ ε−

γ
α ≂ ε

− 1
µ
− γµ−β

αµ .

This completes the proof.
Remark 4.3. Assumptions. The requirement α ≥ min(β, µγ) is not restrictive and may

be easily verified in practice, since most often α = β. Indeed, this assumption is satisfied for
each of the examples in Section 6.

Remark 4.4. Error and quadrature level. In this section, we characterized the conver-
gence of the interpolation errors in terms of the number of interpolation points Mk. Yet when
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computing quadratures based on sparse grid techniques (see Section 5), an arbitrary number of
points will not in general have an associated sparse grid. Thus, choosing an interpolant using
the optimal number of points according to (4.10) may not be possible in practice. However,
in light of estimates such as [31, Lemma 3.9], it is not unreasonable to make the assumption

that given any number of points M , there exists an interpolant using M̃ points, with

M ≤ M̃ ≤ CM δ (4.13)

for some δ ≥ 1. We can think of δ as measuring the inefficiency of our sparse grids in repre-
senting higher-dimensional polynomial spaces. Using (4.13), one can proceed as in Theorem
4.2 to derive a bound on the ε-cost of the resulting multilevel approximation.

Another possibility would be to solve a discrete, constrained minimization problem to find
optimal interpolation levels, relying on convergence results for the interpolation error in terms
of the interpolation level rather than number of points; see [32, Theorem 3.4]. However, our
cost metric relies on precise knowledge of the number of points, making theoretical comparison
difficult.

Remark 4.5. Cancellations and computational cost. The cost estimate (4.3) takes
into consideration the cost of all the terms in the multilevel estimator (3.3). However, when
the same interpolation operator is used on two consecutive levels, terms in the multilevel
approximation cancel and need in fact not be computed. For example, if IMK−k

= IMK−k−1
,

then
IMK−k

(uhk
− uhk−1

) + IMK−k−1
(uhk+1

− uhk
) = IMK−k

(uhk+1
− uhk−1

)

so that the computation of the interpolants of uhk
is not necessary. Especially in the context

of sparse grid interpolation, in practice we choose the same interpolation grid for several
consecutive levels, leading to a significant reduction in the actual computational cost compared
to that estimated in Theorem 4.2. The effect of these cancellations is clearly visible in some
of the numerical experiments of Section 6, see the discussion of Figures 6.2 and 6.5 for more
details.

4.2.1. Comparison to single level collocation methods. Under the same assumptions
as in Theorem 4.2, for any Msl ∈ N0 and hsl, the error in the standard single-level SC
approximation (3.1) can be bounded by

∥u− u
(SL)
Msl,hsl

∥L2
ρ(Γ;H

1
0 (D)) ≤ Cs h

α
sl + CI ζ(uh)M

−µ
sl .

To make both contributions equal to ε/2, it suffices to choose hsl ≂ ε1/α and Msl ≂ ε−1/µ.
This choice determines Msl and hence IMsl

. The computational cost to achieve a total error
of ε is then bounded by

C(SL)
ε ≂ h−γ

sl Msl ≂ ε
− 1

µ
− γ

α .

A comparison with the bounds on computational complexity proved in Theorem 4.2 shows
clearly the superiority of the multilevel method.

In the case β > γµ, the convergence rate of the finite element correction errors is compar-
atively larger than the convergence rate of the interpolant when multiplied by the cost factor
γ. From (4.11), this indicates that the cost MK−kCk is largest at the coarsest level k = 0, and
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hence most of the computational effort of the multilevel approximation is expended computing
IMK

(uh0). The savings in cost compared to single level SC hence correspond to the difference
in cost between obtaining samples uh0 on the coarse grid h0 and obtaining samples uhK

on the
fine grid hsl = hK used by the single-level method. This gives a saving of (hsl/h0)

γ ≂ εγ/α.
The case β = µγ corresponds to the computational effort being spread evenly across the

levels, and, up to a log factor, the savings in cost are again of order εγ/α.
In contrast, when β < γµ, i.e., when the interpolation error is converging quickly compared

to the finite element approximations, the computational cost of computing one sample of uhk

grows comparatively quickly with respect to k, and most of the computational effort of the
multilevel approximation is on the finest level k = K. The benefits compared to single level
SC hence corresponds approximately to the difference between MK and Msl. This gives a
savings of MK/Msl ≂ (hβK)1/µ ≂ εβ/αµ.

4.3. Multilevel approximation of functionals. In applications, it is often of interest to
bound the error in the expected value of a functional ψ of the solution u, where ψ : H1

0 (D) →
R. Similar to (3.1), the SC approximation of ψ(u) is given by

ψ
(SL)
M,h [u] = IM [ψ(uh)] (4.14)

and, similar to (3.3), the multilevel interpolation approximation of ψ(u) is given by

ψ
(ML)
K [u] :=

K∑
k=0

IMK−k

(
ψ(uhk

)− ψ(uhk−1
)
)
, (4.15)

where, as before, we set uh−1 := 0 and we also assume, without loss of generality, that ψ(0) = 0.
Note that in the particular case of linear functionals ψ, we in fact have

ψ
(SL)
M,h [u] = ψ(u

(SL)
M,h ) and ψ

(ML)
K [u] = ψ(u

(ML)
K ).

Analogous to Theorem 4.2, we have the following result about the ε-cost for the error∣∣E[ψ(u)− ψ
(ML)
K [u]

]∣∣ in the expected value of the multilevel approximation of functionals.
Proposition 4.6. Suppose there exist positive constants α, β, µ, γ, Cs, CI , Cζ , Cc, with α ≥

min(β, µγ), and an operator ζ : Λ(Γ;R) → R, for a Banach space Λ(Γ;R) ⊂ L2
ρ(Γ;R) con-

taining the finite element approximations {ψ(uhk
)}k∈N0, such that for all k ∈ N0 we have

F1. |E[ψ(u)− ψ(uhk
)]| ≤ Cs h

α
k

F2.
∣∣E[ψ(uhk

)−ψ(uhk−1
)−IMK−k

(ψ(uhk
)−ψ(uhk−1

))
]∣∣ ≤ CI M

−µ
K−k ζ(ψ(uhk

)−ψ(uhk−1
))

F3. ζ(ψ(uhk
)− ψ(uhk−1

)) ≤ Cζ h
β
k

F4. Ck ≤ Cc h
−γ
k .

Then, for any ε < exp[−1], there exists an integer K and a sequence {Mk}Kk=0 such that∣∣E[ψ(u)− ψ
(ML)
K (u)

]∣∣ ≤ ε,

with computational cost C
(ML)
ε bounded as in Theorem 4.2.
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The assumptions F1–F4 are essentially the same as the assumptions A4–A6 of Theorem
4.2, with perhaps different values for the constants Cs, CI , Cζ , and Cc. Certainly, bounded
linear functionals have this inheritance property. In Section 5, we give some examples of
nonlinear functionals that also have this property.

5. Global multi-dimensional interpolation. In this section, we provide a specific example
of a single level SC approach, given by (3.1), that will be used to construct the interpolation
operators in our MLSC approach. As such, we briefly recall generalized multi-dimensional
(including sparse grid) interpolation, as well as theoretical results related to the interpolation
operator. For a more thorough description, see [1, 3, 31,32].

Remark 5.1. In this section, we again introduce a second notion of levels. The levels here
should not be confused with the levels used previously. For the latter, ‘levels’ refer to members
of hierarchies of spatial and stochastic approximations, both of which were indexed by k. In
this section, ‘levels’ refer to a sequence, indexed by l, of stochastic polynomial spaces and
corresponding point sets used to construct a specific sparse grid interpolant. The result of this
construction, i.e., of using the levels indexed by l, is the interpolants used in the previous
sections that were indexed by k.

5.1. Construction of generalized sparse grid interpolant. The construction of the inter-
polant in the N -dimensional space Γ =

∏N
n=1 Γn is based on sequences of one-dimensional

Lagrange interpolation operators {Up(l)
n }l∈N : C0(Γn) → Pp(l)−1(Γn), where Pp(Γn) denotes

the space of polynomials of degree p on Γn. In particular, for each n = 1, . . . , N , let l ∈ N+

denote the one-dimensional level of approximation and let {y(l)n,j}
p(l)
j=1 ⊂ Γn denote a sequence

of one-dimensional interpolation points in Γn. Here, p(l) : N+ → N+ is such that p(1) = 1
and p(l) < p(l + 1) for l = 2, 3, . . ., so that p(l) strictly increases with l and defines the total

number of collocation points at level l. For a univariate function v ∈ C0(Γn), we define Up(l)
n

by

Up(l)
n [v](yn) =

p(l)∑
j=1

v
(
y
(l)
n,j

)
φ
(l)
n,j(yn) for ln = 1, 2, . . . , (5.1)

where φ
(l)
n,j ∈ Pp(l)−1(Γn), j = 1, . . . , p(l), are Lagrange fundamental polynomials of degree

p(l)− 1, which are completely determined by the property φ
(l)
n,j(y

(l)
n,i) = δi,j .

Using the convention that Up(0)
n = 0, we introduce the difference operator given by

∆p(l)
n = Up(l)

n − Up(l−1)
n . (5.2)

For the multivariate case, we let l = (l1, . . . , lN ) ∈ NN
+ denote a multi-index and L ∈ N+

denote the total level of the sparse grid approximation. Now, from (5.2), the L-th level
generalized sparse-grid approximation of v ∈ C0(Γ) is given by

Ap,g
L [v] =

∑
g(l)≤L

N⊗
n=1

∆p(ln)
n [v], (5.3)

where g : NN
+ → N is another strictly increasing function that defines the mapping between the

multi-index l and the level L used to construct the sparse grid. The single level approximation
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(5.3) requires the independent evaluation of v on a deterministic set of distinct collocation
points given by

Hp,g
L =

∪
L−N+1≤g(l)≤L

∏
1≤n≤N

{
y
(ln)
n,j

}p(ln)

j=1

having cardinality ML.
Remark 5.2. For the MLSC method, the interpolation operators IMk

introduced in Section
3.2 are chosen as Ap,g

L with Mk =ML. However, we have already noted in Remark 4.4 that an
arbitrary number of points will not in general have an associated sparse grid, and in practice
a rounding strategy has to be applied to choose the interpolation operator on each level. For
examples of rounding strategies, see the numerical examples in Section 6. Note that although
in theory this rounding may change the computational complexity of the MLSC estimators,
our numerical investigations confirm that the complexities proved in Theorem 4.2 are a good
fit in practice.

The particular choices of the one-dimensional growth rate p(l) and the function g(l) define
a general multi-index set J p,g(L) = {l : g(l) ≤ L} used in the construction of the sparse grid,
and the corresponding underlying isotropic polynomial space of the approximation denoted
PJ p,g(L)(Γ) [3,24]. Some examples of functions p(l) and g(l) and PJ p,g(L)(Γ) are given in Table
5.1. Extensions to anisotropic versions can be constructed by introducing a weight vector as
described in Remark 5.7.

Table 5.1
The functions p : N+ → N+ and g : NN

+ → N and the corresponding isotropic polynomial subspaces.

Polynomial Space p(l) g(l)

Tensor product p(l) = l max
1≤n≤N

(ln − 1)

Total degree p(l) = l
∑N

n=1(ln − 1)

Hyperbolic cross p(l) = l
∏N

n=1(ln − 1)

Sparse Smolyak p(l) = 2l−1 + 1, l > 1
∑N

n=1(ln − 1)

Table 5.1 defines several polynomial spaces. A means for constructing a basis for poly-
nomial subspaces consists of selecting a set of points and then defining basis functions based
on those points, e.g., Lagrange fundamental polynomials. For sparse Smolyak polynomial
spaces, the most popular choice of points are the sparse grids based on the one-dimensional
Clenshaw-Curtis abscissas [11] which are the extrema of Chebyshev polynomials, including
the end-point extrema. For level l, and in the particular case Γn = [−1, 1] and p(l) > 1, the
resulting points are given by

y
(l)
n,j = − cos

(
π(j − 1)

p(l)− 1

)
for j = 1, . . . , p(l).

In particular, the choice p(l) given in Table 5.1 for the sparse Smolyak case results in a nested

family of one-dimensional abscissas, i.e.,
{
y
(l)
n,j

}p(l)
j=1

⊂
{
y
(l+1)
n,j

}p(l+1)

j=1
, so that the sparse grids
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are also nested, i.e., Hp,g
L ⊂ Hp,g

L+1. Using g(l) in (5.3), given as in Table 5.1 for the Smolyak
polynomial space, corresponds to the most widely used sparse-grid approximation, as first
described in [33]. Other nested families of sparse grids can be constructed from, e.g., the
Newton-Cotes and Gauss-Patterson one-dimensional abscissas.

Remark 5.3. In general, the growth rate p(l) can be chosen as any increasing function on N.
However, to construct the approximation (5.3) in the tensor product, total degree, hyperbolic
cross, and Smolyak polynomial spaces, the required functions p and g are described in Table 5.1.
Moreover, if the underlying abscissas are nested, as for the Clenshaw-Curtis points described
above, the approximation (5.3) remains a Lagrange interpolant. For non-nested point families,
such as standard Gaussian abscissas, the approximation (5.3) is no longer guaranteed to be
an interpolant, but the analysis of the approximation error remains similar to the analysis
presented here (see [31] for more details).

5.2. Multilevel approximation using generalized sparse grid interpolants. The goal of
the section is to verify the the assumptions of our multilevel collocation scheme for the gen-
eralized global sparse grid operator IMk

= Ap,g
Lk

. The convergence of the global sparse grid
operators, applied to the the approximate solutions uhk

, and the functionals ψ(uhk
), is proved

using the uniform ellipticity of the input coefficient in polyellipses containing Γ, based on
complex analysis arguments. By ℜ(z) we denote the real and imaginary part of a complex
number z, and require the additional assumption on the regularity of the coefficient a:

A7. (Holomorphic parameter dependence) The complex continuation of a, represented as
the map a∗ : CN → L∞(D), is a L∞(D)-valued holomorphic function on CN that
is (δ, τ )-polyellipse uniform elliptic, i.e., for all δ < amin, there exists a vector τ =
(τn)1≤n≤N with τn > 1 for all n, such that ℜ(a(x, z)) ≥ δ for all x ∈ D and all
z = (zn)1≤n≤N contained in the polyellipse

Eτ =
⊗

1≤n≤N

{
1

2

(
zn + z−1

n

)
: zn ∈ C, |zn| = τn

}
.

The set Eτ ⊂ CN is the product of ellipses in the complex plane, with foci zn = ±1, which
are the endpoints of the domain Γn, n = 1, . . . , N . Such polyellipses are commonly used in
proving convergence results for global polynomial and interpolation schemes. In particular,
the following result is proved in [13, Theorem 1.2] and [16, Lemma 3.3 and Theorem 2.5].

Lemma 5.4. (Analyticity of the solution u to (2.1)) Assume that the coefficient a(x,y)
satisfies assumptions A3 and A7 for some 0 < δ < amin and τ = (τn)1≤n≤N with τn > 1 ∀n.
Then the function z 7→ u(z) is holomorphic in an open neighborhood of the the polyellipse Eτ .
We remark that if the solution u admits less regularity, we might use local basis functions

such as wavelets or splines to construct the interpolant. For a solution u which admits an
analytic extension, convergence with respect to the total number of collocation points for the
tensor product, sparse isotropic, and anisotropic Smolyak approximations (see Table 5.1) was
analyzed in [1, 31, 32]. In what follows, our goal is to prove the bounds on the interpolation
error in the approximate solutions uhk

and the functionals ψ(uhk
), for k ∈ N0, and thus verify

the convergence assumptions given in A5 and F2, F3. Under the polyellipse analyticity
assumptions and Lemma 5.4, we arrive at the following result, which is given in [31,32].
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Theorem 5.5. LetW denote a general Banach space and let v ∈ C0(Γ;W ) admit an analytic
extension in the complex polyellipse Eτ . Then, with r = min1≤n≤N τn, there exist constants
C(N) and µ(r,N), depending on N , such that

∥v −Ap,g
L v∥L2

ρ(Γ;W ) ≤ C(N)M
−µ(r,N)
L ζ(v),

where ML is the number of points used by Ap,g
L and

ζ(v) ≡ max
z∈Eτ

∥v(z)∥W . (5.4)

Note that Theorem 5.5 only gives an algebraic convergence rate for the collocation approx-
imation in terms of the number of points, while for large levels L the collocation scheme is
known to converge exponentially [31,32]. Since our method is constructed using a combination
of low- and high-level interpolants, the assumption of algebraic rates in practice apply to the
full range of operators IMk

used in the multilevel construction.
Define the Banach space Λ(Γ;H1

0 (D)) consisting of all functions v ∈ C0(Γ;H1
0 (D)) such

that v admits an analytic extension in the region Eτ . It follows from Lemma 5.4 that, under
appropriate assumptions on a, we have u ∈ Λ(Γ;H1

0 (D)). Because the dependence on y is
unchanged in the approximate solution uhk

, it also follows that uhk
∈ Λ(Γ;H1

0 (D)) for all
k ∈ N0, and hence also uhk

− uhk−1
∈ Λ(Γ;H1

0 (D)) for all k ∈ N.
Similar to A4, using the triangle inequality and the assumption that hk = η−kh0, it

follows from standard finite element convergence theory [5, 10] that with W = H1
0 (D) and ζ

as in (5.4), ζ(uhk
) can be bounded by a constant independent of k, whereas ζ(uhk

− uhk−1
)

can be bounded by a constant multiple of hβk for some β > 0. In general, the constants
appearing in these estimates will depend on norms of a and f as well as on the mesh refinement
parameter η. We can hence conclude that with IMk

= Ap,g
Lk

, assumption A5 is satisfied for
the interpolation schemes considered in Theorem 5.5. Therefore, for the numerical examples
presented in Section 6, we utilize the sparse grid stochastic collocation as the interpolation
scheme.

Remark 5.6. Dimension-dependent convergence rate. The asymptotic rate of conver-
gence µ = µ(r,N) in general deteriorates with growing dimension N of the stochastic space.
For example, we have µ = r/N in the tensor product case, and for Smolyak sparse grids this
is improved to µ = r/ log(N). The use of sparse grid SC methods is hence only of interest for
dimensions N for which µ ≥ 1/2 so that the error still converges faster than the correspond-
ing Monte Carlo sampling error. The multilevel approximation presented in this paper suffers
from the same deterioration of convergence rate, and roughly speaking, the MLSC method can
improve on the multilevel Monte Carlo method only when standard SC performs better that
standard Monte Carlo; see [12, Theorem 4.1].

Remark 5.7. Anisotropic sparse grid approximations. To define anisotropic Smolyak
approximations, we introduce a weight vector α = (α1, . . . , αN ) into the definition of g to
reflect the relative importance of each dimension when selecting points, e.g., the anisotropic
sparse Smolyak space uses p(l) = 2l−1+1, l > 1 and g(l) =

∑N
n=1

αn
αmin

(ln−1). The weight αn

is related to the size of the largest polyellipse Eτ on which the map u : Γn → C0(
∏

j ̸=n Γn,W )
can be analytically extended. These weights can be computed either a priori or a posteriori;
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see [32, section 2.2]. For an isotropic grid, all the components of the weight vector α are the
same so that one has to take the worst case scenario, i.e., choose the components of α to all
equal to the minimum αmin.

Now we verify the analyticity assumption in Theorem 5.5 also for the functionals ψ(u).
Because Lemma 5.4 already gives an analyticity result for u, we use the following result, which
can be found in [36], about the composition of two functions on general normed vector spaces.

Theorem 5.8. Let X1, X2, and X3 denote normed vector spaces and let θ : X1 → X2 and
ν : X2 → X3 be given. Suppose that θ is analytic on X1, ν is analytic on X2 and θ(X1) ⊆ X2.
Then the composition ν ◦ θ : X1 → X3 is analytic on X1.

Hence, if we can show that ψ is an analytic function of u, we can conclude that ψ(u) is
analytic on Eτ . To this end, we need the notion of analyticity for functions defined on general
normed vector spaces, which we will now briefly recall.

Given normed vector spaces X1 and X2 and an infinitely Fréchet differentiable function
θ : X1 → X2, we can define a Taylor series expansion of θ at the point ξ in the following
way [6]:

Tθ,ξ(x) =
∞∑
j=0

1

j!
djθ(ξ)(x− ξ)j , (5.5)

where x, ξ ∈ X1, the notation (x − ξ)j denoting the j-tuple (x − ξ, . . . , x − ξ) and djθ(ξ)
denoting the j-linear operator corresponding to the j-th Fréchet differential Djθ(ξ). The
function θ is then said to be analytic in a set Z ⊂ X1 if, for every z ∈ Z, Tθ,z(x) = θ(x) for
all x in a neighbourhood Nr(z) = {x ∈ Z : ∥x − z∥X1 < r}, for some r > 0. The following
result now immediately follows from Theorem 5.8.

Lemma 5.9. Let the assumptions of Lemma 5.4 be satisfied. Suppose ψ, viewed as a map-
ping from H1

0 (D) to R, is analytic in the set E(u) ⊂ H1
0 (D), and u(z;x) ∈ E(u) for all z ∈ Eτ .

Then, ψ ◦ u, viewed as a mapping from Γ to R, admits an analytic extension to the set Eτ .
Together with Theorem 5.5, now with W = R, it then follows from Lemma 5.9 that as-

sumptions F2 and F3 in Proposition 4.6 are satisfied for the interpolation schemes considered
in this section, provided the functional ψ is an analytic function of u. Note that the function
ζ in Theorem 5.5 acts on ψ(u) instead of u in this case, leading to optimal convergence rates
in h of the stochastic interpolation error.

To finish the analysis, we give some examples of functionals that satisfy the assumptions
of Lemma 5.9. We in particular make use of the following result on Taylor expansions [6].

Lemma 5.10.Let θ : X1 → X2, for normed vector spaces X1 and X2, and let Z ⊂ X1. If
∥djθ(z)∥ ≤ Cjj! for all z ∈ Z and some C <∞, where ∥ · ∥ denotes the usual operator norm,
then θ is analytic on Z. In particular, θ is analytic on Z if ∥djf(z)∥ = 0 for all z ∈ Z and
all j ≥ j∗, for some j∗ ∈ N.

Example 5.11. (Bounded linear functionals) In this case, for any v, w ∈ H1
0 (D), we have

dψ(v)(w) = ψ(w) and djψ(v) ≡ 0 ∀ j ≥ 2,

which implies that ψ is analytic on all of (complex-valued) H1
0 (D). Examples of bounded

linear functionals include point evaluations of the solution u in one spatial dimension and
local averages of the solution u in some subdomain D∗ ⊂ D, computed as 1

|D∗|
∫
D∗ udx, in any

spatial dimension.
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Example 5.12. (Higher order moments of bounded linear functionals) As a generalization of
the above example, consider the functional ψ(v) = ϕ(v)q, for some bounded linear functional
ϕ on H1

0 (D) and some q ∈ N. For any v ∈ H1
0 (D), the differentials of ψ are

djψ(v)(w1, . . . , wj) = ϕ(v)q−j
j∏

i=1

(q − i+ 1)ϕ(wi), 1 ≤ j ≤ q,

djψ(v) ≡ 0, j ≥ q + 1,

from which it follows that ψ is analytic on all of H1
0 (D).

Example 5.13. (Spatial L2-norm) Consider the functional ψ(v) =
∫
D v

2dx = ∥v∥2L2(D). For

any v ∈ H1
0 (D), the differentials of ψ are

dψ(v)(w1) = lim
δ→0

∫
D(v + δw1)

2 −
∫
D v

2

δ
= lim

δ→0

∫
D δvw1 +

∫
D δ

2w2
1

δ
= 2

∫
D
vw1,

d2ψ(v)(w1, w2) = lim
δ→0

2
∫
D(v + δw2)w1 − 2

∫
D vw1

δ
= 2

∫
D
w2w1,

djψ(v) ≡ 0 ∀ j ≥ 2,

which implies that ψ is analytic on the entire space H1
0 (D). For the functional ψ(v) =

∥v∥L2(D), we use Theorem 5.8 and the analyticity of the square root function on (0,∞) to
conclude that ψ is analytic on any subset E(u) ⊆ H1

0 (D) not containing 0.
The analysis in this example can easily be extended to the functionals ∥v∥H1

0 (D) and

∥v∥2
H1

0 (D)
.

6. Numerical Examples. The aim of this section is to demonstrate numerically the sig-
nificant reductions in computational cost possible with the use of the MLSC approach. As an
example, consider the following boundary value problem on either D = (0, 1) or D = (0, 1)2:{

−∇ · (a(y,x)∇u(y,x)) = 1 for x ∈ D
u(y,x) = 0 for x ∈ ∂D.

(6.1)

The coefficient a takes the form

a(y,x) = 0.5 + exp

[
N∑

n=1

√
λnbn(x)yn

]
, (6.2)

where {yn}n∈N is a sequence of independent, uniformly distributed random variables on [-1,1]
and {λn}n∈N and {bn}n∈N are the eigenvalues and eigenfunctions of the covariance operator
with kernel function C(x, x′) = exp[−∥x−x′∥1]. Explicit expressions for {λn}n∈N and {bn}n∈N
are computable [19]. In the case D = (0, 1), we have

λ1Dn =
2

w2
n + 1

and b1Dn (x) = An(sin(wnx) + wn cos(wnx)) for all n ∈ N,

where {wn}n∈N are the (real) solutions of the transcendental equation

tan(w) =
2w

w2 − 1
19
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and the constant An is chosen so that ∥bn∥L2(0,1) = 1. In two spatial dimensions, with
D = (0, 1)2, the eigenpairs can be expressed as

λ2Dn = λ1Din λ1Djn and b2Dn = b1Din b1Djn

for some in, jn ∈ N. In both one and two spatial dimensions, the eigenvalues λn decay
quadratically with respect to n [7].

Let a∗(z,x) = 0.5 + exp
[∑N

n=1

√
λnbn(x)zn

]
be the complex extension of a. Given a

multiindex ν ∈ NN
0 , it is easy to see that the mixed partial derivatives of a∗ satisfy

∂νa
∗(z,x) :=

∂|ν|a

∂ν1z1 . . . ∂νN zN
(z,x) = a(z,x)

N∏
n=1

(
√
λnbn(x))

νn .

Thus, given z ∈ CN , the power series

a∗(z′,x) =
∑
ν∈NN

0

∂νa
∗(z,x)

ν!

N∏
n=1

(z′n − zn)
νn

converges for all z′ ∈ CN such that |z′n−zn| < 1√
λn∥bn(x)∥L∞(D)

, n = 1, . . . , N , and thus a(z,x)

satisfies assumption A7.

For spatial discretization, we use continuous, piecewise-linear finite elements on uniform
triangulations of D, starting with a mesh width of h = 1/2. As interpolation operators, we
choose the (isotropic) sparse grid interpolation operator (5.3), using p and g given by the
classic Smolyak approximation in Table 5.1, based on Clenshaw-Curtis abscissas; see Section
5.

The goal of the computations is to estimate the error in the expected value of a functional
ψ of the solution of (6.1). For fair comparisons, all values of ε reported are relative accuracies,
i.e., we have scaled the errors by the value of E[ψ(u)] itself. We consider two different settings:
in Section 6.1, we consider problem (6.1) in two spatial dimensions with N = 10 random
variables whereas, in Sections 6.2 and 6.3, we work in one spatial dimension with N = 20
random variables. Because the exact solution u is unavailable, the error in the expected value
of ψ(u) has to be estimated. In Sections 6.1 and 6.2, we compute the error with respect to an
“overkilled” reference solution obtained using a fine mesh spacing h∗ and high interpolation
level L∗. However, because this is generally not feasible in practice, we show in Section 6.3 how
the error can be estimated when the exact solution is not available and one cannot compute
using a fine spatial mesh and high stochastic interpolation level.

The cost of the estimators is computed as discussed in Section 4.2 and Remark 4.5, with
γ = d, i.e., by assuming the availability of an optimal linear solver. For simplicity we assume
Cc = 1; if this is not the case, then all costs reported simply need to be multiplied by Cc. For
non-optimal linear solvers for which γ > d, the savings possible with the multilevel approach
will be even greater than demonstrated below.
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6.1. d = 2,N = 10. As the quantity of interest, we choose the average value of u in
a neighborhood of the midpoint (1/2, 1/2), computed as ψ(u) = 1

|D∗|
∫
D∗ u(x)dx, where D

∗

denotes the union of the six elements adjacent to the node located at (1/2, 1/2) of the uniform
triangular mesh with mesh size h = 1/256.

We start by confirming, in Figure 6.1, the assumptions of Proposition 4.6. The reference
values are computed with spatial mesh width h∗ = 1/256 and stochastic interpolation level
L∗ = 5. The expected value of the quantity of interest is E[IM5ψ(u1/256)] ≈ 0.049.
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Figure 6.1. D = (0, 1)2, N = 10. Top left: E[IM5ψ(uh)] and E[IM5(ψ(u1/256) − ψ(uh))] versus 1/h (as-
sumption F1). Top right: |E[(IM5 −IM1)ψ(uh)]| and |E[(IM5 −IM1)(ψ(uh)−ψ(u2h))]| versus 1/h (assumption
F2∗). Bottom left: |E[(IM5 −IMl)ψ(uh)]/h

2
0| and |E[(IM5 −IMl)(ψ(uh)−ψ(u2h))]/h

2| versus Ml, for various
h and l = 0, . . . , 4 (assumption F2∗). Bottom right: number of samples MK−k versus k.

The top-left plot of Figure 6.1 shows the convergence of the finite element error in the
expected value of ψ(u), and confirms that assumption F1 of Proposition 4.6 holds with α = 2.

Next, we verify assumptions F2 and F3. To avoid the explicit computation of the function
ζ from Theorem 5.5, we instead combine these assumptions into the assumption

F2∗:
∣∣E[ψ(uhk

)− ψ(uhk−1
)− IMK−k

(ψ(uhk
)− ψ(uhk−1

))
]∣∣ ≤ CI Cζ M

−µ
K−k h

β
k ,

which is sufficient for the conclusions of Proposition 4.6 to hold.
The top-right plot of Figure 6.1 shows the absolute value of the interpolation error in the

quantities ψ(uh) and ψ(uh) − ψ(u2h) for a fixed interpolation level l = 1, i.e. for fixed Ml,
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as a function of h. We see that the interpolation error in ψ(uh) is bounded by a constant
independent of h, whereas the interpolation error in ψ(uh)−ψ(u2h) decays quadratically in h.
This confirms the convergence with respect to h in F2∗, with β = 2. Note that although only
the interpolation error in ψ(uh0) is needed for the MLSC methods, the interpolation errors
in ψ(uh), for general h, are needed to determine the number of samples in the standard SC
approach.

The bottom-left plot of Figure 6.1 shows the interpolation error in ψ(uh) scaled by h20 =
4−2 and the interpolation error in ψ(uh)−ψ(u2h) scaled by h2 for several values of h. According
to assumption F2∗, these plots should all result in a straight line CM−µ, where C = CICζ .
The best fit which has C = 0.05 and µ = 1.4 is added for comparison. Again, we have here
added results for the functions ψ(uh), which are needed for the standard SC methods.

The bottom-right plot of Figure 6.1 shows the number of samples Mk computed using the
formula (4.9), with C = 0.05 and µ = 1.4, for several values of the relative accuracy ε. The
finest level K was determined using the estimates on the finite element error from the top-left
plot. Solid lines correspond to numbers rounded up to the nearest integer, as is done in (4.10),
whereas dotted lines correspond to the number of samples rounded up to the next level of the
sparse grid. Note that the cardinality of the sparse grids can be computed without actually
computing the sparse grid. As stated in Remark 4.5, when the same number of points are
used for consecutive levels, cancellations occur leading to savings in cost.

In Figure 6.2, we study the cost of the standard and multilevel collocation methods to
achieve a given total accuracy ε. In both plots, the data labeled ‘SC’ and ‘MLSC’ denote
standard and multilevel stochastic collocation, respectively. For the MLSC method, we con-
sider two different approaches, labeled ’formula’ and ’best’, respectively. For both approaches,
we choose h0 = 1/4 and η = 2, and the finest level K is chosen such that the finite element
error (with respect to the reference solution) is less than ε/2. For data labeled ‘formula’,
the number of samples is then determined by the formula (4.9) with C = 0.05 and µ = 1.4,
rounded up to the next sparse grid level (the dotted lines in the bottom right plot of Figure
6.1). For data labeled ‘best’, the number of samples was chosen by trial and error so as to
achieve a sampling error less than ε/2 for the smallest computational cost.
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In the left plot of Figure 6.2, we simply plot the computational cost of the different
estimators against ε. For comparison, we have also added corresponding results for Monte
Carlo (MC) and multilevel Monte Carlo (MLMC) estimators. In both the ‘formula’ and the
‘best’ case, the multilevel collocation method outperforms standard SC. Both collocation-
based methods outperform both Monte Carlo approaches. For the MLSC ’best’ estimator,
we observe that for the two smallest values of ε considered, the cost of the estimator only
increases by a very small amount when decreasing ε, even though the finest levelK is increased
by one. This is due to the cancellations in computational cost discussed in remark 4.5.

In the right plot in Figure 6.2, we compare the computational cost shown in the left plot
with the growth rates predicted by Proposition 4.6 for the standard and multilevel collocation
methods. In our computations, we observed α ≈ 2, β ≈ 2, and µ ≈ 1.4, which with γ =
2 gives computational costs of ε−1 and ε−1.72 for the multilevel and standard SC method,
respectively. We therefore plot the computational cost scaled by ε1, expecting a constant line
in the multilevel case, and a slope in the single level case. We see that both multilevel methods
indeed seem to grow approximately like ε−1, with the ‘formula’ case growing slightly faster
for large value of ε and the ‘best’ case growing slightly faster for small values of ε. The costs
for both standard collocation methods grow a lot faster with ε.

Figure 6.3 provides results for a different quantity of interest, ψ(u) = ∥u∥L2(D). The left
plot corresponds to the bottom-left plot in Figure 6.1 and again confirms that the interpolation
error in ψ(uh) − ψ(u2h) scales with h2. The right plot corresponds to the left plot of Figure
6.2, where we plot the computational cost of the different estimators against ε. We see that
all collocation-based methods outperform the Monte Carlo approaches. In both the ‘formula’
and the ‘best’ case, the multilevel collocation method again outperforms standard SC.
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Figure 6.3. D = (0, 1)2, N = 10. Left: E[IM5ψ(uh) − IMkψ(uh)]/h
2
0 and [IM5(ψ(uh) − ψ(u2h)) −

IMk (ψ(uh)− ψ(u2h)]/h
2 versus Mk, for various h. Right: computational cost versus relative error ε.

Remark 6.1. Before considering the second model problem, let us briefly comment on the
differences between the ‘best’ and the ‘formula’ multilevel methods. The ‘formula’ multilevel
collocation method performs sub-optimally mainly for two reasons. First, it always rounds up
the number of samples Mk to the nearest sparse grid level, which may be substantially higher
than the number of samples actually required. Secondly, it does not take into account sign
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changes in the interpolation error, which in practice can lead to significant reductions in the
interpolation error of the multilevel method. For both of these reasons, the interpolation error
is often a lot smaller than the required ε/2, leading to sub-optimal performance. This issue is
partly addressed in Section 6.3, where we consider not always rounding up, but rounding the
number of samples either up or down to the nearest sparse grid level.

6.2. d = 1,N = 20. We now repeat the numerical tests done in the previous section for
the case D = (0, 1) and N = 20. For the quantity of interest, we choose the expected value of
the solution u evaluated at x = 3

4 . The reference values are computed using the mesh width
h∗ = 1/1024 and interpolation level L∗ = 5. The expected value of the quantity of interest
is E[IM5ψ(u1/1024)] ≈ 0.063.

We again start by confirming, in Figure 6.4, the assumptions of Proposition 4.6. The four
plots of that figure convey the same information as do the corresponding plots in Figure 6.1
and again confirm assumptions F1, F2, and F3 of that theorem with α = 2 and β = 2 and,
in the bottom-left plot, the best line fit C = CICζ with C = 0.005 and µ = 0.8.
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Figure 6.4. D = (0, 1), N = 20. Top left: E[IM5ψ(uh)] and E[IM5(ψ(u1/1024) − ψ(uh))] versus 1/h (as-
sumption F1). Top right: |E[(IM5 −IM1)ψ(uh)]| and |E[(IM5 −IM1)(ψ(uh)−ψ(u2h))]| versus 1/h (assumption
F2∗). Bottom left: |E[(IM5 −IMl)ψ(uh)]/h

2
0| and |E[(IM5 −IMl)(ψ(uh)−ψ(u2h))]/h

2| versus Ml, for various
h and l = 0, . . . , 4 (assumption F2∗). Bottom right: number of samples MK−k versus k.

Figure 6.5 conveys the same information and uses the same labeling as does Figure 6.2.
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Again, for both the ‘formula’ and ‘best’ cases, the multilevel collocation method eventually
outperforms standard SC and both collocation-based methods also outperform the Monte
Carlo approaches. Based on the values α ≈ 2, β ≈ 2, and µ ≈ 0.8, Proposition 4.6 now
predicts the computational costs of ε−1.25 and ε−1.75 for the multilevel and the standard
collocation methods, respectively. The right-plot in Figure 6.5 indicates that the ‘formula’
multilevel collocation method indeed seems to grow like ε−1.25 whereas the ‘best’ multilevel
method actually seems to grow slower for small values of ε. For the three smallest values of
ε considered, the computational cost is approximately the same, even though the finest level
K is different in each case. This is due to the cancellations in computational cost discussed in
Remark 4.5, as well as the different signs of the interpolation errors in the multilevel estimator.
Also, again, the costs for both standard collocation methods grow a lot faster with ε.
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Figure 6.5. D = (0, 1), N = 20. Left: computational cost versus relative error ε. Right: computational
cost scaled by ε−1.25 versus relative error ε.

6.3. Practical implementation. In Sections 6.1 and 6.2, the accuracy of the computed
estimates was assessed by comparison to a reference solution. Of course, in practice, a fine-
grid, high-level reference solution is not available. Therefore, in this section, we describe how
to implement the MLSC method without having recourse to a reference solution. We suggest
the following practical strategy based on Richardson extrapolation, which is similar to the one
proposed in [20]. In order to determine the number of levels we need, we assume that equality
holds on assumption F1, i.e. we assume E[ψ(u)− ψ(uhk

)] = Csh
α
k , and use the equality

E[ψ(uhk
)− ψ(uhk−1

)] = E[ψ(u)− ψ(uhk−1
)]− E[ψ(u)− ψ(uhk

)]

= Csh
α
k−1 − Csh

α
k

= (ηα − 1)E[(ψ(u)− ψ(uhk
))],

where we recall that η = hk−1/hk. Hence, the condition E[ψ(u)− ψ(uhk
)] ≤ ε/2 is equivalent

to the condition E[ψ(uhk
)− ψ(uhk−1

)] ≤ (ηα − 1)ε/2. We then have the following algorithm.
1. Estimate the constants α, β, µ, and C = CI Cζ .
2. Start with K = 1.
3. Calculate the optimal number of samples Mk, k = 0, . . . ,K, according to the formula

(4.9), and round to the nearest sparse grid level.
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4. Test for convergence by checking if there holds

E[ψ(uhK
)− ψ(uhK−1

)] ≤ (ηα − 1) ε/2.

5. If not converged, set K = K + 1 and return to step 3.
Note that in this procedure, steps 3 and 4 ensure that the interpolation error and the spatial
discretization error are each less than the required tolerance ε/2, respectively.

The estimation of the constants α, β, µ, and C in step 1 can be done relatively cheaply
from computations done using mesh widths h0, h1, and h2 and interpolation levels k = 0, 1, 2.
It is of course also possible to iterate over step 1, in the same manner as we iterate over
steps 3 and 4, and to continuously update our estimates of these constants as we increase
the number of levels in our multilevel estimator. This approach would eliminate some of the
problems related to possible pre-asymptotic effects. It is also possible to use the idea behind
the continuation MLMC (CMLMC) method in [14] and use a Bayesian approach to estimating
the constants.

We test the algorithm using the the model problem from Section 6.2. For the results
provided below, we estimated the convergence rate α from the level 1 interpolants IM1 of
ψ(u0), ψ(u1), and ψ(u2), resulting in α ≈ 2.1. In light of the results in Section 5, we assumed
β = α. We then used the first three interpolation levels of ψ(u0) and ψ(u1)−ψ(u0) to obtain
the estimates C ≈ 0.01 and µ ≈ 0.8. Note that the value of µ is the same as in Section 6.2
whereas the value of the constant C is slightly larger. This is due to the fact that, for the
large values of h used to estimate this constant, the function ζ(ψ(uh)−ψ(u2h)) has probably
not yet settled into its asymptotic quadratic decay.

As mentioned in Section 6.1, always rounding the number of samples resulting from for-
mula (4.9) up to the next sparse grid level may lead to a substantial increase in the compu-
tational cost and hence a sub-optimal performance of the multilevel method. In practice, one
might therefore consider not always rounding up, but instead rounding either up or down. As
long as we do not round down more frequently than we round up, or at least not much more
often, this approach should still result in an interpolation error below the required tolerance
ε/2.

Table 6.1 shows the number of samplesMK−k resulting from the implementation described
in this section for the model problem with d = 1 and N = 20 from Section 6.2. For each
value of ε, the first row, denoted by ‘formula’, corresponds to the numbers MK−k resulting
from formula (4.9) rounded up to the nearest integer. The second row, denoted ‘up’, are the
numbers in the first row rounded up to the next corresponding sparse grid level. For the final
row, denoted ‘up/down’, the rounding of the number of samples was done in the following
way: first, all numbers were rounded either up or down to the nearest corresponding sparse
grid level. If this resulted in more numbers being rounded down than up, we chose the number
that was rounded down by the largest amount and then instead rounded this number up. This
procedure was continued iteratively. The same was done when more numbers were rounded
up than down.

To confirm that the adaptive procedure still achieves the required tolerance on the total
error, we have, for Table 6.2, computed the stochastic interpolation and finite element errors
(with respect to a reference solution) and the computational cost of the multilevel approxi-
mations from Table 6.1. For comparison, we have added the results for the multilevel method
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ε level 0 1 2 3 4

6.3e-4

formula 191 48 15

up 841 841 41

up/down 841 41 41

7.9e-5

formula 3002 747 233 73

up 11561 841 841 841

up/down 841 841 841 41

1.4e-5

formula 27940 6949 2169 677 212

up 120401 11561 11561 841 841

up/down 11561 11561 841 841 841

4.7e-6

formula 110310 27433 8562 2672 834

up 120401 120401 11561 11561 841

up/down 120401 11561 11561 11561 841
Table 6.1

D = (0, 1), N = 20. Number of samples MK−k computed using formula (4.9) and various rounding schemes.

which was manually found to give a total error less than ε at minimal cost, which was al-
ready computed in Section 6.2 assuming a reference solutions was available. Note that for
large values of ε, the adaptive procedure described in this section overestimated the finite
element error, leading to a larger number of levels K compared to that found in Section 6.2.
It is clear from Table 6.2 that not only does the alternative rounding procedure yield the re-
quired bound on the error, it also significantly reduces the computational cost of the multilevel
method, bringing it close to what was manually found to be the minimal cost possible.

7. Concluding remarks. Computing solutions of stochastic partial differential equations
using stochastic collocation methods can become prohibitively expensive as the dimension of
the random parameter space increases. Drawing inspiration from recent work in multilevel
Monte Carlo methods, this work proposed a multilevel stochastic collocation method, based on
a hierarchy of spatial and stochastic approximations. A detailed computational cost analysis
showed, in all cases, a sufficient improvement in costs compared to single-level methods.
Furthermore, this work provided a framework for the analysis of a multilevel version of any
method for SPDEs in which the spatial and stochastic degrees of freedom are decoupled.

The numerical results practically demonstrated this significant decrease in complexity
versus single level methods for each of the problems considered. Likewise, the results for the
model problem showed multilevel SC to be superior to multilevel MC even up to N = 20
dimensions.

One of the largest obstacles to the practicality of stochastic collocation methods is the huge
growth in the number of points between grid levels. In the multilevel case, this can lead to a
large amount of computational inefficiency. Certain simple rounding schemes were proposed
to mitigate this effect, and proved to be extremely effective for the problems considered.
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ε Interpolation error Spatial error Cost

6.3e-4
up 6.7e-5 3.4e-5 8266

up/down 2.8e-4 3.4e-5 4902

best 8.0e-5 2.9e-4 369

7.9e-5
up 2.2e-5 6.3e-6 85558

up/down 3.0e-5 6.3e-6 15650

best 2.4e-5 3.4e-5 4591

1.4e-5
up 2.7e-6 1.6e-6 853207

up/down 8.3e-6 1.6e-6 158714

best 3.9e-6 6.3e-6 119699

4.7e-6
up 7.3e-8 1.6e-6 1519787

up/down 1.2e-6 1.6e-6 1038183

best 1.2e-6 1.6e-6 1038183
Table 6.2

D = (0, 1), N = 20. Stochastic interpolation and spatial errors (with respect to the reference solution) and
computational cost of various multilevel methods.

Similarly, since most of our example problems involved computation of a reference solution
for the estimation of the necessary constants, a more practical multilevel stochastic collocation
algorithm that dispensed with the need for a reference solution was proposed and tested.

It is clear that for any sampling method for SPDEs, whether Monte Carlo or stochastic
collocation, multilevel methods are to be preferred over single-level methods for improved
efficiency. Especially in the case of stochastic collocation methods, multilevel approaches
enable one to further delay the curse of dimensionality, tempering the explosion of compu-
tational effort that results when the stochastic dimension increases. Though Monte Carlo
methods are often preferable for problems involving a large stochastic dimension, multilevel
approaches greatly improve the effectiveness of stochastic collocation methods versus Monte
Carlo methods.

Acknowledgements. The first and the fourth authors are supported by the US Depart-
ment of Defense Air Force Office of Scientific Research (AFOSR) under grant number FA9550-
11-1-0149 and by he US Department of Energy Advance Simulation Computing Research
(ASCR) program under grant number DE-SC0010678.

The second and third authors are supported by the US AFOSR under grant number 1854-
V521-12 and by the US Department of Energy ASCR under grant number ERKJ259. Also
supported by the Laboratory Directed Research and Development (LDRD) Program at the
Oak Ridge National Laboratory (ORNL). The ORNL is operated by UT-Battelle, LLC, for
the US Department of Energy under Contract DE-AC05-00OR22725.

REFERENCES

28



c⃝ Society for Industrial and Applied Mathematics
Vol. , pp.
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